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Abstract 

Meaningful exploration of the chemical space of druglike molecules in drug design is a highly 

challenging task due to a combinatorial explosion of possible modifications of molecules. In this work, 

we address this problem with transformer models, a type of machine learning (ML) model, with recent 

demonstrated success in applications to machine translation and other tasks. By training transformer 

models on pairs of similar bioactive molecules from the public ChEMBL dataset, we enable them to 

learn medicinal-chemistry-meaningful, context-dependent transformations of molecules, including 

those absent from the training set. Most generated molecules are highly plausible and follow similar 

distributions of simple properties (molecular weight, polarity, hydrogen bond donor and acceptor 

numbers) as the training dataset. By retrospective analysis of the performance of transformer models on 

ChEMBL subsets of ligands binding to COX2, DRD2, or HERG protein targets, we demonstrate that 

the models can generate structures identical or highly similar to highly active ligands, despite the models 

having not seen any ligands active against the corresponding protein target during training. Thus, our 

work demonstrates that transformer models, originally developed to translate texts from one natural 

language to another, can be easily and quickly extended to “translations” from known molecules active 

against a given protein target to novel molecules active against the same target, and thereby contribute 

to hit expansion in drug design. 

  

mailto:anton.sinitskiy@pfizer.com


2 

 

Introduction 

A critical component of small molecule drug discovery is hit 

expansion, the process of designing, synthesizing and testing 

candidate compounds active against a certain protein target, when 

some active compounds against this target (“hits”) are already 

known. A successful drug discovery campaign should generate a 

diverse set of active compounds to de-risk the absorption, 

distribution, metabolism, elimination, toxicity (ADMET) 

challenges. Hit expansion has been a difficult task for several 

reasons, including a combinatorial explosion of the number of 

chemically-meaningful modifications of bioactive molecules, a 

need to ensure synthetic accessibility of new compounds, limiting 

possible modifications to minor changes in R-groups, and 

complex relationships between the structure of molecules and their 

multiple properties relevant for drug optimization. 

Machine learning (ML) has been actively used for drug design (for 

recent reviews, see Refs. 1). However, applications of ML 

specifically to hit expansion have limited demonstrated success.2, 

3-9 A question arises whether this practice could be improved with 

ML, and if so, what kind of ML models could better serve this 

purpose. 

In this work, we use transformer models for this end. Transformer 

models were first proposed in 201710 for translation between 

natural languages (Fig. 1a), and have gained a lot of popularity due 

to successful applications to various tasks, including machine 

translation10, 11, predictions of chemical reaction outcomes,12 and 

protein structure prediction.13 In this paradigm, we consider hit 

expansion as a process of “translation” of known molecules active 

against a certain target into novel molecules that should be active 

(preferably, more active) against the same target (Fig. 1b). For this 

translation, we write input and output molecules in the form of 

SELFIES,14 a representation that – unlike a more popular SMILES 

representation – automatically ensures chemical validity of nearly 

100% of random strings, thereby helping an ML model to focus 

on learning chemically informative trends and rules in the training 

set, without a need to learn grammar rules of composing 

chemically valid structures first. 

To better simulate the original field of transformer models, we 

train them on SELFIES of pairs of similar bioactive molecules. 

Such datasets of pairs can be generated from a large corpus of 

bioactive molecules (specifically, ChEMBL15 in this work). A 

transformer model trained on such pairs of molecules should learn 

chemically-meaningful rules for modifications in a molecule that 

have a high chance of resulting in another biologically active 

molecule. Then, known structures of active compounds can be 

inputted into a trained model to generate new molecules, and 

therefore, new ideas for hit expansion. 

 

 

Fig. 1. (a) Transformer models were originally developed for and have demonstrated much success in machine translation between natural languages. 

(b) In this work, we apply the same approach to generating new molecular structures for the purposes of drug design. 
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The conceptual similarity of this approach to the initial use of 

transformers allowed us to hope that the goal could be achieved in 

a relatively quick and straightforward way. The availability of 

software building blocks and reference transformer 

implementations from other researchers made it possible to 

implement and benchmark our implementation during the course 

of a summer internship of the first author (E.P.T.). 

Results 

1. Transformer models trained on pairs of bioactive molecules 

can generate new molecular transformations for hit expansion 

In this work, we show that transformer models are not only able to 

generate new molecular structures absent from the training 

dataset, but, in doing so, also go beyond the standard matched 

molecular pairs (MMP)-based approach.3, 4, 16 To demonstrate this, 

we first generated all MMP transformation rules (in the form of 

SMIRKS) for our training subset of ChEMBL15 molecules; 

expectedly,4, 16 the most ubiquitous of them were additions or 

replacements of single atoms (H, F, Cl, etc.) or simple groups 

(methyl, methoxy, ethyl, etc.) (Fig. S1). Then, we applied the same 

procedure to generate all reasonable SMIRKS between the 

molecules outputted by the transformer ML model and the input 

molecules taken from the validation subset (see Methods) We 

identified 1086 SMIRKS for non-evident, medicinal-chemist-

level molecular transformations that the transformer model 

invented, in the sense that they were absent from the set of MMP 

transformations for the training subset (Fig. 2). In most cases, 

these novel transformations may be interpreted in terms of broad 

categories familiar to the field, such as rigidification of a molecule 

by ring formation (Fig 2a), R-group substitution (Fig. 2c), or 

heterocycle replacement, while preserving the key pharmacophore 

pattern (Fig. 2b and 2d). 

Generating new molecules with a transformer model is not simply 

applying all possible SMIRKS (known or new) to each input 

molecule. By construction of the ML model, the transformation 

rules are context-specific, and the number of outputted molecules 

is limited. Thus, transformer modeling prevents a combinatorial 

explosion of all possible ways of applying known molecular 

transformations to a given molecule. 

Despite the structural novelty of the generated molecules, their 

easily computable molecular properties (molecular weight, 

octanol-water partition coefficient, and numbers of hydrogen bond 

donors and acceptors) follow similar distributions as for the 

training molecules or all molecules in the ChEMBL dataset (Fig. 

S2). This invariance of distributions is desirable, because with 

drug-like molecules as the input, the output of the model also stays 

drug-like (at least for the shown properties). This invariance is also 

expected, because in the training set, the assignments of which 

molecule is considered as an input, and which one as the output, 

were made at random, and therefore, did not create a bias towards 

higher or lower values of the listed molecular properties. 

 

 

Fig. 2. Transformer-generated transformations go beyond matched molecular pair (MMP)-based transformations in exploring the chemical space: 

Transformer models trained on the ChEMBL dataset in this work have generated 1086 non-trivial molecular transformations absent from the training 

set. Several transformations are depicted, illustrating various classes of possible changes. (a) New ring(s) may be formed (or broken), typically with 

the use of atoms and functional groups present in the input molecule, making the structure more (or less) rigid. (b) Certain fragments of a molecule 

may be simplified, oftentimes approximately preserving original pharmacophore patterns. (c) R-groups attached to a constant core may be changed. 

(d) Heteroatoms in heterocyclic cores may be rearranged.  
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2. Perplexity, an information-theory-based score, changes in 

agreement with chemical scores of the performance of a model 

The results shown in Fig. 2 and S2 refer to a transformer model 

trained for 12 epochs on the ChEMBL data filtered with the cutoff 

level (Fig. S1, red lines) of 50. We focus now on the choice of 

these parameters and the corresponding sensitivity of the results. 

To decide on when to stop training, we monitored not only 

common information-theory-based scores, but also chemical 

scores of the transformer model output. As a representative of the 

former, we use perplexity score17 in this work (see Methods, 

“Model Evaluation”); for the latter, we computed the total number 

of successfully generated molecules in the output, the number of 

scaffold change transformations, the number of R-group change 

transformations, the number of unique scaffolds, and the number 

of new scaffolds in the output (see Methods). 

The dynamics of the validation perplexity and its difference from 

the training perplexity (Fig. 3a) suggests that training should be 

stopped after 10 to 12 epochs. To guide the eye, we also plotted 

the difference between the perplexities on the validation and 

training sets for the current epoch (Fig. 3b, “Perplexity Validation 

– Train”), and the difference of the perplexity on the validation set 

at the current and previous epochs of training (Fig. 3b, “Delta 

Perplexity Validation”). Evidently, the validation perplexity 

stabilizes after 10 to 12 epochs. Note, however, that the early 

stopping criterion is not applicable here, because the validation 

perplexity continues decreasing very slowly even around epoch 

32, and one would not stop training with this criterion even at such 

a late stage. 

Notably, at the same stage of training (epochs 10-12), we observed 

a qualitative change in the pattern of chemical scores of the model. 

While the total number of successfully generated molecules stayed 

nearly the same at various epochs (Fig. 3c), the type of the 

molecular transformation undertaken by the model changed. 

Before epochs 10-12, the scaffold of an output molecule was 

typically different from the scaffold of the corresponding input 

molecule (“scaffold change count”, Fig. 3c), while after epochs 

10-12, increasingly, generated molecules had the same scaffolds 

as the corresponding input molecules, and the molecular 

transformations were limited to changes in the scaffold 

decorations (“R-group change count”, Fig. 3d). Also, at epochs 

10-12 the maximal diversity of generated molecules is reached, as 

measured by the number of unique or new (relative to the input 

set) scaffolds of the generated molecules (Fig. 3e). At subsequent 

epochs, the number of new generated scaffolds and the fraction of 

transformations that affect scaffolds decreases, while the count of 

simpler transformations (“R-group change”) increases, which we 

interpret as overtraining the ML model. These observations may 

also suggest that appropriately trained transformer models, at least 

with the parameters used in this work, are more appropriate for 

scaffold-modifying molecular transformations than for changes 

affecting only side groups. 

We explored sensitivity of these conclusions to how the data 

filtering was performed, namely, to the filter cutoff values (see 

Methods). The results reported above refer to the filter cutoff of 

50. Lowering the cutoff to 20 (Fig. S3, “filter20”) or increasing it 

to 500 (Fig. S3, “filter500”) keeps the behavior of the scores 

unchanged: perplexities on the training and validation sets 

decrease fast during first epochs, and then reach plateaus; the total 

number of generated molecules stays constant and nearly equal to 

the number of inputted molecules (perhaps, after some 

fluctuations at initial training epochs); the number of generated 

molecules with changed scaffolds (relative to the corresponding 

input molecule) rapidly drops, while that of the molecules with 

side group changes rapidly increases, both at epochs where 

perplexity stabilizes; finally, at the same epochs, the numbers of 

unique and new (relative to all inputted molecules) scaffolds reach 

maxima. However, further significant decreases in the filter cutoff 

value deteriorate the performance of ML models: As illustrated for 

the cutoff value of 5 (Fig. S3, “filter5”), the number of new or 

unique scaffolds in the set of generated molecules is much smaller 

than for cutoffs of 20, 50 or 500, and they reach plateaus, not 

maxima, during training. Therefore, the filter cutoff of 50 used in 

this work is appropriate (though not unique) for the transformer 

model to learn medicinally-chemically-relevant transformations 

of compounds. 

3. Target-specific held-out models can generate ideas for some 

of the most active ligands 

To emulate an application of transformer models to real-life drug 

design projects, we carried out retrospective analysis of its 

performance for several protein targets with data on potency 

available in ChEMBL, namely, COX2, DRD2 and HERG proteins 

(note that the HERG protein is usually considered in drug design 

as an antitarget due to serious cardiac side effects,18 but in this 

work we consider it as a target to test the proposed method on a 

large public dataset of molecules binding to it). For each target, 

we excluded its ligands from the training dataset, and trained a 

new transformer model. Hence, for each of these three protein 

targets, we trained a separate ML model, ignorant to molecules 

active against the given target. 
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Fig. 3. Chemical scores align with perplexity, a common information-theory-based score, during training of the generative chemistry ML model. (a) 

The dynamics of the validation and training perplexity suggests that training should be stopped around epochs 10-12. (b) The difference between the 

perplexities on the validation and train sets, and between the validation perplexity at the current and previous training steps are also plotted to guide an 

eye. (c-e) At the same stages of training, the maximal structural diversity of generated molecules is reached, while at subsequent epochs the diversity 

decreases, presumably indicating that the ML model gets overtrained. The chemical scores of generated molecules used in this work are: (c) a total 

number of generated molecules, the number of molecules with new scaffolds, (d) the number of molecules with changes in side groups, (e) the number 

of unique and new scaffolds in the generated molecules. 
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Next, for each target protein, we split the set of its ligands into two 

subsets, based on the ligand activity (measured by pIC50, pEC50 

or pKi values, depending on the target). The subset of 95% 

molecules used as input to a transformer model (further called 

‘input subset’) was formed by weakly and moderately active 

ligands, while 5% most active ligands formed a ‘test subset’ used 

for scoring the output molecules. With this 95%:5% split, we 

compare generated structures with the most active molecules; note 

that in practical scenarios all 100% known active molecules, not 

only 95%, can be used as the input.  

Note that target-specific information was contained only in the 

input to ML models, and not used for training ML models 

themselves. In practical applications, one would not have to retrain 

an ML model to make predictions for a new protein target (though 

in this work we had to retrain a model from scratch for each target 

to make sure that the training set does not include molecules active 

against the given target for the purpose of the method validation). 

Surprisingly, these target-naïve ML models managed to generate 

not just reasonable molecular structures, but molecular structures 

some of which are highly active ligands against each of the three 

protein targets, or at least provide ideas for such ligands (Fig. 4). 

Some of the generated molecules coincided with the known highly 

active ligands, while some other generated molecules have minor 

differences from known actives (e.g., they may differ by -Cl, -OH, 

-CH3 groups, etc.). This ability to generate, among others, highly 

active ligands from moderately active ones, or ideas for such 

highly active ligands, was not an ability that these models were 

explicitly trained for, because the pairs of molecules in the training 

sets were not ordered by bioactivity. Generated molecules could 

in principle be less active or more active as input molecules, but 

the results reported in this section demonstrate that a sufficiently 

large fraction of output molecules is highly active. 

Discussion 

First of all, we compare our approach to MMP analysis,3, 4, 16, 19 a 

popular algorithm for lead optimization. This method is based on 

extraction of transformation rules from (in the terminology of ML) 

a training set of molecules, and application of these rules to known 

actives. Transformations captured in this way are generic and 

generally applicable, the method is based on the additivity 

principle, which is one of the main assumptions in medicinal 

chemistry, and it yields multiple suggested molecules. On the 

other hand, combinatorial explosion of generated structures limits 

its applicability, and the additivity principle often violates in 

practice. By contrast, the method used in this work generates only 

prioritized structures, evading a combinatorial explosion by taking 

into account a wider molecular context of input molecules, not 

limited by the MMP chemical environment radius, and, being 

highly non-linear by construction, does not imply the additivity. 

As for transformer models in generative chemistry, they have 

demonstrated noticeable success, but for purposes different than 

in this work. For example, transformers were used to generate 

structures of molecules from their text description in English20 or 

even from the primary amino acid sequence of a protein they 

should bind to.21 Fragment replacement with optimization of logP, 

PSA and other easily computable properties was reported.7 New 

molecules with desired values of logP, TPSA, QED (and SAS in 

the second case) were generated from a seed molecule6 or a 

scaffold.9 A combination of a Restricted Boltzmann Machine 

(RBM) with two transformer models was built, with the hope to 

replace an RBM with a Quantum Boltzmann Machine in the 

future, and thereby enable quantum computing in drug design.5 A 

latent space representation of organic molecules was constructed 

with a transformer model and contrastive learning approach.22 A 

transformer model, pre-trained on ChEMBL to generate valid 

SMILES, was trained on molecules active against a given protein 

target by transfer learning and reinforcement learning, and used to 

generate novel molecules.8 Note that in all these papers generated 

molecules were validated only based on their easily computable 

properties, such as logP and QED (typically, by comparisons of 

distributions of these properties with those for the input or 

reference sets); the most advanced comparison, as far as we know, 

used docking scores and similarity to known bioactive molecules.8 

Also, the cited papers address, in essence, the problem of de novo 

compound design. For example, in Ref. 8, the model was transfer-

learned on 4702 known molecules active against the protein target, 

much more than what we usually have for hit expansion, then 50k 

molecules were generated by the model and prioritized docking. 

In this work, we follow the best practices in the field, validating 

generated molecules by their easily computed properties and a 

comparison to known active molecules. We apply transformer 

models for the first time, as far as we know, to the task of hit 

expansion. 

Our model is built in such a way that it learns about biological 

activity of molecules implicitly, from pairs of molecules used for 

training. It was known that transformer models can learn general 

rules of composition of relevant organic molecules without 

explicitly using information on their stability;7, 12, 20 here, we 

extend such an approach to generating biologically active 

molecules. This approach is not the only possible solution. As 

examples of alternatives, we can mention Ref 23, where a separate 

LSTM model was trained to prioritize SMILES coming from a 

generative model, and Ref 7, where a transformer model is trained 

to optimize logP and other easily computable properties (but not 

biological activity) of generated molecules. Note also that transfer 

learning or fine tuning of a generative chemical model on 

molecules active against the given target8 is not necessary, as we 

show in this work. 
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Fig. 4. Even without fine-tuning on project-specific data, transformer models can generate structural ideas for some of the most active ligands against 

a given target, with the use of less potent molecules as the input. In the scatter plots, each dot corresponds to a generated molecule, its Tanimoto 

similarity to the structurally closest molecule from the training set is shown on the x axis, and the experimental potency (pIC50 or pEC50 or pKi) of 

this closest molecule shown on the y axis. Most potent molecules exactly generated by the transformer models are shown by red cycles on the plots, 

and the corresponding chemical structures are shown on the right. Protein targets: (a) COX2, (b) DRD2, (c) HERG. 
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We could speculate that one of the reasons for success was the use 

of SELFIES to represent molecules in the input to and output from 

a transformer model, because nearly any SELFIES corresponds to 

a meaningful chemical structure. SMILES encoding is still more 

popular,5, 6, 8, 9, 12, 17, 21, 23, 24 but a random SMILES string is highly 

unlikely to represent a valid molecule, and special efforts have to 

be undertaken to train the model property. Interestingly, papers 

using SMILES representation in generative chemistry always have 

a separate section devoted to the demonstration of the validity of 

generated molecules. By contrast, SELFIES-based generative 

models do not have to learn formal grammar rules first. Only a 

small fraction of SELFIES generated by ML models in this work 

were chemically insensible, and the reasons for it were the 

following: generated SELFIES were empty strings; generated 

molecules contained non-flat multi-cycle aromatic systems; or 

generated molecules contained fragments (e.g., -O-O-F) hardly 

acceptable in drug molecules. However, such issues rarely 

occurred (less than 1% of all cases) and were all rejected by simple 

filters. 

This work demonstrates that training a transformer model 

proceeds from learning to creatively generate more scaffolds of 

bioactive molecules to – at the stage of overtraining – generating 

new decorations to known scaffolds. The optimal state of a model 

is reached at the border between these two regimes, ensuring a 

maximal chemical diversity of the generated structures. We also 

show that perplexity can serve as a score of the quality of de novo 

generated molecules, in agreement with previous work,17 which 

differs from our work in the following aspects. In that paper, 

perplexity was used to score SMILES (not SELFIES) of molecules 

generated with an LSTM (not transformer) model, and Tanimoto 

similarities on Morgan and topological pharmacophore 

fingerprints between generated and true bioactive molecules were 

used as the chemical scores. This conclusion is of practical 

importance, because chemical scores typically do not provide a 

differentiable loss function for ML training, and can realistically 

be computed only for validation of a trained model. 

This work has certain limitations and leaves some important 

questions unanswered. We did not perform an exhaustive 

hyperparameter search and explored the effect of only two 

parameters on the quality of generated molecules: the number of 

training epochs, and the cutoff value N for filtering the training 

set. Another limitation is that only one output molecule was 

generated per input molecule, which could be particularly 

restrictive when only few initial hits are available, as is often the 

case early in the hit expansion process. Increasing the number of 

generated molecules could further improve the practical 

applicability of the method, though causing a need for additional 

prioritization, a complication that we tried to evade in this work. 

Also, note that the training sets were formed by pairs of molecules 

without ordering by bioactivity. Moreover, two molecules in a pair 

could be active against different targets. As a result, models 

reported here cannot be expected to bias generation of molecules 

towards higher bioactivity. They only perform medicinally-

chemically-meaningful steps in the chemical space, and the goal 

of improving bioactivity (or optimizing ADMET properties, 

synthesizability, etc., under given restrictions on bioactivity) can 

be solved, for example, by postprocessing (triaging/filtering) the 

output of such generative models, or including one into a larger 

reinforcement-learning-type ML model. Note, however, that 

despite these limitations, the most active molecules against COX2, 

DRD2, and HERG have been successfully recovered or 

approached to in this work. Another direction of performance 

improvement of the model would be to run fine-tuning on data 

referring to the same or similar protein targets, possibly ordering 

the molecular pairs in the training set by their bioactivity against 

these targets. Finally, an ability to specify target or binding site 

information as part of training and inference could further improve 

the performance of such generative models. 

We conclude that transformer models can be a powerful tool for 

hit expansion in drug design. They can go beyond MMP in 

generating reasonable context-dependent modification of 

bioactive molecules and demonstrate the ability to predict the most 

active known molecules, exactly or up to minor modification, in 

retrospective tests on public datasets. A common informatic-

theory-based score of the quality of predictions, namely 

perplexity, correlates with chemical scores, and can be used 

instead of the latter, that are more difficult to formalize and, if 

formalized, are often non-differentiable (such as the number of 

novel molecules, scaffolds, R-group replacements, etc.). Finally, 

we demonstrate that the entrance barrier for this method of hit 

expansion is low, as proven by its successful implementation 

during a summer internship of the first author of this paper, an 

undergraduate student without prior professional experience in 

drug design (E.P.T.). 

Methods 

Data Preparation – For training of the transformer model, 

molecules from ChEMBL15 (version 28, dated back to January 15, 

2021) were used. ChEMBL is a public dataset of biologically 

active molecules. We selected molecules with the following 

criteria: molecule type was “small molecule”, and molecule record 

had an IC50, EC50 or Ki value. All disconnected structures 

(defined as ‘.’ in the SMILES structural representation; typically, 

these are salts) were excluded, and all stereochemistry was 

removed. This selection resulted in 940 640 molecules. 

SMILES representations of the molecules were inputted into 

MMPDB (Matched Molecular Pair Database Generation) 

software25 to pair structurally similar molecules. For each pair, 

MMPDB outputs the two SMILES, the constant group, and the 
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SMIRK, defined as the transformation rule between the two 

molecules. From the above-mentioned 940 640 molecules, ~57 

million pairs of similar molecules were generated.  

Next, we filtered the set of molecular pairs in the following way: 

(a) all molecular pairs with SMIRKs occurring less than N1 times 

were excluded, and (b) for each remaining SMIRK, only N2 

randomly chosen pairs of molecules were kept (Fig. S1, red lines). 

The first condition eliminated very rare SMIRKs to suppress the 

noise in the MMPDB output. As a visual inspection of a random 

subset of rare SMIRKs showed, they correspond to 

transformations that seem unnatural from the viewpoint of 

Medicinal Chemistry (e.g., keep a small part of a molecule 

unchanged, even as small as a methyl group, and replace a much 

bigger part of a molecule). The second condition was introduced 

to eliminate an extreme bias of the original set of molecular pairs 

towards the simplest transformations, such as a replacement of a 

hydrogen atom by a methyl group or a halogen atom, and thereby 

to ensure diversity of molecular transformations in the dataset 

(Fig. S1). In general, N1 and N2 may be different, but in this work, 

we considered only filters with the same values of N1 and N2. For 

brevity, we use the term “Filter N” in this paper to refer to the 

above-described dataset filtering procedure with the cutoffs of N 

= N1 = N2. 

Then, a timesplit of a filtered set of molecular pairs into training, 

validation and testing subsets was performed. The timestamp for 

each molecule was defined as the year of the first publication that 

mentioned this molecule (as reported in the ChEMBL). A training 

set was formed by pairs in which both molecules had timestamps 

before a train year threshold. A test set was defined as at least one 

molecule in each pair was experimentally published after a test 

year threshold. A validation set was comprised of all remaining 

pairs. We used the train and test cutoff years of 2013 and 2015, 

respectively, which ensures an approximate 2:1:1 ratio of the sizes 

of the training, validation and test subsets, respectively. In each 

subset, SMILES representations of molecules were converted to 

SELFIES.14 

Model – We adapted the transformer model from OpenNMT, an 

open-source neural machine translation project using PyTorch, 

with its default settings (unless explicitly stated) for our generative 

chemistry project. We chose this software because it is actively 

maintained and has a high number of users in various fields of 

application. The batch size of 128 was used (decreasing the batch 

size to 16 did not improve the performance of trained models but 

slowed down training; data not shown). All our programs for 

preprocessing data, training a model, using a model to make 

predictions, and postprocessing results were written in Python and 

ran with SLURM scripts in a High-Performance Computing 

cluster at Pfizer. Models were trained on one GPU of a 4-GPU 

(NVidia V100) node. 

Model Evaluation – For evaluation, the validation set of 

molecules was used in two different ways. First, it served as a set 

of pairs of molecules to compute information-theory-based 

scores of ML models. In this work, we report and discuss 

perplexity of ML models,17 as shown in Figs. 3a and S3, as a 

representative score from this group; no new conclusions were 

found from other information-theory-based scores (data not 

shown). Perplexity ppl is defined, as usual, as: 𝑝𝑝𝑙 =  exp (𝐿/𝑁), 

where L is the loss function minimized to train the model, and N 

is the number of “words” (output molecules in our case). We used 

the default choice of the loss function in OpenNMT.  

Second, all molecules from the validation set were inputted into 

the model using OpenNMT translate module, and multiple 

chemical scoring metrics were computed for the molecules 

generated as an output, as shown in Figs. 3b and S3. The following 

scoring metrics, aimed to capture the diversity and reasonableness 

of the molecules generated, were implemented and evaluated on 

the generated molecules set: 

• the total number of successfully generated molecules, 

• the number of scaffold change transformations, 

• the number of R-group change transformations, 

• the number of unique scaffolds, 

• the number of new scaffolds. 

To calculate these scores, we determined scaffolds of each 

generated molecule and each input validation molecule with 

Chem.Scaffolds.MurckoScaffold function from RDKit. Then, the 

type of transformation for each generated molecule was found by 

comparing its scaffold to the scaffold of the respective input 

validation molecule. If the two scaffolds were the same (but the 

molecules were different), then the transformation was classified 

as “R-group change”. If the two scaffolds were different, then the 

transformation was classified as “scaffold change”. The cases of 

each transformation type were counted over the whole set of 

generated molecules. (Note that the sum of the number of scaffold 

change transformations and the number of R-group change 

transformations may be slightly less than the total number of 

successfully generated molecules because of the rare cases when 

input and output molecules were identical.) The number of unique 

scaffolds refer to the total number of unique scaffolds in the set of 

generated molecules. The number of new scaffolds refer to those 

unique scaffolds that were absent from the training or input 

validation sets. 

Target-held-out Models – Like in the subsection “Data 

Preparation”, SMILES representations of all the molecules were 

inputted into MMPDB, structurally similar molecules were paired, 

and filtering was performed to exclude rare SMIRKs and 

randomly sample remaining SMIRKs. After that, and unlike the 

previously described data preparation, all pairs with at least one 

molecule active against a given target (COX2, DRD2 or HERG) 
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were removed. For each target, a transformer model was trained 

with the default values of hyperparameters. Each of the resulting 

three trained models was “target-agnostic” in the sense that during 

its training it has not seen any ligands active against the 

corresponding protein target. 

For each of those three protein targets, the set of ligands active 

against a given target was split by their activity levels (as measured 

by EC50, IC50 or Ki values reported in ChEMBL) into two 

subsets, one with the bottom 95% least active molecules, and the 

other with the top 5% most active molecules. Molecules from the 

first group (weakly and moderately active ligands) were inputted 

into the corresponding target-agnostic transformer model. Then, 

the Tanimoto similarity score (on ECFP4, Morgan fingerprints 

with the radius of 2, computed with 

AllChem.GetMorganFingerprint from RDKit) was calculated 

between each generated molecule and each of the top 5% most 

active ligands from ChEMBL for the same protein target. The 

Tanimoto similarity score is a standard metric of a structural 

similarity of two organic molecules. Then, for each of those most 

active molecules from ChEMBL (that is, experimentally known to 

be active), a closest generated molecule was identified (as the 

molecule with the highest Tanimoto similarity). The scatter plots 

for the corresponding Tanimoto similarities vs. the corresponding 

experimental potencies were drawn for each of the protein targets 

(Fig. 4). 
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SUPPLEMENTARY INFORMATION 

 

Fig. S1. Molecular transformations (SMIRKS) for the pairs of close ChEMBL molecules have an extremely uneven distribution, with replacements or 

additions of single atoms or simple groups prevailing in numbers. Top 10 most prevalent transformations in entire ChEMBL dataset are shown. Filtering 

approach, intended to fix the bias towards simple transformations, is illustrated by red lines.  
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(a) 

 

(b) 

 

Fig. S2. Molecules generated with the transformer model have distributions of molecular weight, octanol-water partition coefficient, and numbers of 

hydrogen bond donors and acceptors that are similar to the corresponding distributions for (a) all ChEMBL molecules and (b) molecules used as the 

input to the transformer model.  
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Filter5 

 

Filter20 

 

Filter50 

 

Filter500 

 
 

Fig. S3. In a wide range of values, the filter cutoff does not much affect the dynamics of information-theory-based and chemical scores of transformer 

models during training. The cutoff value of 50 (“filter50”) was used to train the model presented in Results (Subsection 1) and Figs. 2, 3 and S2. Plots 

for the cutoff values of 20 and 500 demonstrate similar behavior, and only lowering the cutoff value to 5 causes deterioration of the model performance 

(see more detailed discussion in the main text). The notations are the same as in Fig. 3. 


