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ABSTRACT: The development of chiral catalysts that can provide high enantioselectivities across a wide assortment of substrates 
or reaction range is a priority for many catalyst design efforts. While several approaches are available to aid in the identification of 
general catalyst systems there is currently no simple procedure for directly measuring how general a given catalyst could be. Herein, 
we present a catalyst-agnostic workflow centered on unsupervised machine learning that enables the rapid assessment and quantifi-
cation of catalyst generality. The workflow uses curated literature data sets and reaction descriptors to visualize and cluster chemical 
space coverage. This reaction network can then be applied to derive a catalyst generality metric through designer equations and 
interfaced with other regression techniques for general catalyst prediction. As validating case studies, we have successfully applied 
this method to identify-through-quantification the most general catalyst chemotype for an organocatalytic asymmetric Mannich re-
action and predicted the most general chiral phosphoric acid catalyst for the addition of nucleophile to imines. The mechanistic basis 
for catalyst generality can then be gleaned from the calculated values by deconstructing the contributions of chemical space and 
enantiomeric excess to the overall result. We conclude that broadly applicable catalysts may be more adaptative to changes in reactant 
structure because enantioinduction does not rely on a single set of noncovalent interactions. In contrast, some systems work by en-
gaging in robust noncovalent contacts that do not change significantly in nature when the structure of the reaction component is 
altered. Ultimately, our findings represent a framework for interrogating and predicting catalyst generality, and this strategy should 
be relevant to other catalytic systems widely applied in asymmetric synthesis.

Chiral catalysts that can be applied to facilitate enantioselective 
bond constructions between diverse reaction components are 
prioritized in new synthetic campaigns. Asymmetric organoca-
talysis exemplifies this where a small subset of catalysts has 
proven to be remarkably accommodating to changes in reaction 
component structure.1–3 To this extent, the privileged status of 
several catalyst chemotypes has narrowed the focus of asym-
metric catalyst discovery, with most modern developments fall-
ing within certain boundaries of catalyst space. While this ap-
proach of employing broadly applicable catalysts largely drives 
reaction optimization efforts, it can be especially disadvanta-
geous to underutilized catalytic systems. This issue is very com-
mon in enantioselective reaction development where practition-
ers are generally not willing to explore recently reported or un-
familiar catalysts where considerable synthetic effort is re-
quired to generate materials and the results are less certain. 
Even in cases where extensive reaction surveys have been per-
formed, they rarely include the information necessary to reach 
reliable conclusions about catalyst generality.4,5 In other words, 
while employing different catalyst structures to facilitate a re-
action on the same substrate is possible, it is seldom performed, 
thus diminishing the data available for the direct comparison of 
catalyst performances. This issue is exasperated when selec-
tions are to be made across multiple catalyst chemotypes as con-
clusions must be drawn from fragmented datasets derived from 
unique catalyst types. Accordingly, the most general catalyst 
structure or chemotype can remain largely unknown, hindering 
catalyst design and application in diverse reaction space. It is 
for these reasons that the identification and development of gen-
eral catalyst structures is both necessary and difficult (Figure 1).  Figure 1.  Our approach to quantifying catalysts generality ac-

counts for the extent of the chemical space applicable to catal-
ysis in addition to the enantioselectivity values.  
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Despite this, only recently have research efforts recognized 
generality as a target property to be optimized for (i.e., yield, 
selectivity, etc.) with few examples in transition metal-,6,7 bio-
,8 and photocatalysis.9 Regarding asymmetric catalysis, recent 
works have focused on using high-throughput techniques al-
lowing for direct comparative studies of catalyst perfor-
mance.10,11 While such protocols assess an important aspect of 
generality, they do not capture the impact of the catalyst struc-
ture in high-dimensional search space. To this end, our group 
has focused on utilizing comprehensive statistical models that 
encompass many reaction types and conditions to provide in-
formation about the necessary catalyst features for high enanti-
oselectivity across a broad reaction range.12 Although highly 
enabling, it is typically limited to one catalyst chemotype which 
constrains the breadth of structures that can be analyzed in the 
process.  
 While these existing approaches probe generality, they typ-
ically do not return outcomes that can be interpreted as a value; 
therefore, an expert chemist is required to analyze the data gen-
erated either experimentally or virtually to draw conclusions 
about the most general catalyst structure. A second limitation in 
applying these workflows is that the reaction space to be inter-
rogated is not rigorously defined. Therefore, it is difficult to 
compare catalyst structures that perform well for a large breadth 
of substrates to those that proceed with high enantioselectivities 
for a set of similar reactions. Clearly, a new approach that solves 
the challenging problem of calculating a standalone normalized 
generality value for a given catalyst chemotype or structure is 
needed to allow comparisons to made in such difficult cases.      
 Considering this, we envisioned that deriving a quantita-
tive generality metric would not only provide a physical organic 
tool for mechanistically assessing general catalyst performance 
but also allow for the development of a statistical means to op-
timize general catalyst structures. Herein, we provide a catalyst-
agnostic workflow that leverages unsupervised machine learn-
ing to capture the breadth of substrates and reactions amenable 
to a particular catalyst or chemotype (Figure 1). This work rep-
resents a new technique in asymmetric catalyst assessment and 
will prove valuable in applying and developing general catalyst 
structures for enantioselective synthesis. 
General Approach 
 As a synthetic tool, catalysts that encompass many diverse 
substrates are more valuable than those systems that facilitate 
reactions with substrates possessing similar molecular fea-
tures.13 Accordingly, our approach to deriving quantitative gen-
erality values focuses on accounting for the extent of the chem-
ical space covered by the system in addition to the enantiose-
lectivity values (Figure 2). We realized that a flexible approach 
that permits end users to define how enantioselectivity and 
chemical space would be weighted within the workflow would 
be most useful. To this end, we pursued a method that allows 
the practitioner to assign an enantioselectivity value that they 
would consider successful. We postulated that if the catalyst 
was very general, this enantioselectivity value could be 
achieved across a wide range of reactions displaying unique 
structural features. Conversely, if the catalyst was not general-
izable the system would provide desirable enantioselectivities 
only within a narrow portion of reaction space (Figure 2A).  
 To reveal distinct reaction types within a dataset, reactions 
with a similar distribution of properties were defined using non-
linear dimensionality reduction and unsupervised clustering.14 
In principle, this step can be implemented with different numer-
ical  

Figure 2. (A) Overview of the workflow to assign generality 
scores. (B) The values will then provide mechanistic insight 
into the features that contribute to catalyst generality and a sta-
tistical means to optimize general catalyst structures.  
 
descriptors and dimensionality reduction algorithms, with the 
ideal choice likely dependent on the problem at hand. In this 
study, we utilized either RDKit or quantum mechanical de-
scriptors to efficiently transform the reaction components into 
numerical descriptors and determined each individual reaction 
by the linear combination of nucleophile and electrophile prop-
erties. The reaction space expressed by these descriptors was 
reduced by Uniform Manifold Approximation and Projection 
(UMAP) to provide a way of visualizing the high-dimensional 
data. UMAP was chosen as the preferred dimensionality reduc-
tion algorithm due to its ability to elucidate clusters in complex, 
non-linear data sets compared to linear algorithms like PCA.15 
The supporting information shows PCA applied to our data sets 
exhibited increased overlap and ill-defined clusters compared 
to UMAP. This may suggest an inferior ability to capture im-
portant reaction features necessary for a reliable analysis. Im-
portantly, the chemically relevant separation observed from 
UMAP visualization also serves as a validation for the de-
scriptors chosen. Reducing the dimensionality of the reaction 
space also functions as a crucial preprocessing step for achiev-
ing high performance when clustering (i.e., produce well de-
fined and meaningful partitions) given the noted challenges in 
clustering high-dimensional data.16 Specifically, it has been 
shown that clustering accuracy can drastically increase when 
first reducing the number of dimensions with UMAP.17  
 While there are unsupervised learning methods that iden-
tify the natural clustering present in the data set, we specifically 
choose k-means as it allows setting the number of clusters via 
the hyperparameter k. Although the number of clusters is deter-
mined by the elbow method, it does provide some degree of 
flexibility, affording the ability to adapt and update distinct re-
action space without compromising the statistical validity of the 
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approach. Specifically with non-ideal data sets where enanti-
oselectivity values and chemical space are not distributed 
evenly, the choice of number of clusters poses an initial trade-
off decision for the user. With a large number of clusters, one 
can be more confident in the homogeneity of the cluster; how-
ever, a lack of comparative data may lead to a stronger correla-
tion with the popularity of a catalyst. In contrast, a lower num-
ber of clusters more adequately adjusts for popularity bias 
though the clusters may include reactions that are less similar. 
We show below that an effective approach is to augment exper-
imental data sets with virtual data (i.e., predicted values) that 
can be obtained from well validated regression models. In this 
context, it is well known that enantioselectivity often shows 
complex nonlinear dependencies on the identity of the reaction 
components and conditions.18,19 This factor combined with the 
ability of machine learning models to elucidate non-linear 
matching effects between input variables are the reasons for 
why we utilize these methods to account for imbalanced litera-
ture data – though having this option is not very common or 
necessary. Many of the reactions that we consider later can be 
catalyzed by multiple catalyst chemotypes and the diversity of 
these structures is immense. Accordingly, it is not straightfor-
ward to build well performing regression models that can be 
used to augment experimental data sets of this type. We were 
therefore very interested in developing a methodology for gen-
erality assignment using unsupervised ML that can also be ap-
plied to these situations where the data sets are less than ideal 
and structurally unique catalyst structures are being interro-
gated.           
 The grouping of similar reactions is an inherent feature of 
dimensionality reduction methods, however, reaction bounda-
ries are often difficult to define.20 In other words, we are work-
ing within the assumption that the reaction space as given by 
the set dimensions is relatively continuously populated without 
clusters that are separated by “empty” space. Consequently, the 
implementation of clustering is a necessary requirement. Taken 
these steps together, the generality of a catalyst is described as 
the proportion of clusters with an average performance higher 
than the user set threshold. This can be formulated as: 
(1) 

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 =
1
𝐾	.

(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)!
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where K is the total number of clusters, and successes are de-
fined as clusters wherein the average performance is higher than 
the set threshold. The implicit supposition taken in this ap-
proach is that a reaction point defined within that cluster is rep-
resentative of all the other reaction points. This is important as 
it allows generality scores to be derived and compared even in 
cases where overlapping reaction space between catalyst sys-
tems is reduced.  
 The implementation of our equation does require a suitable 
success value to be determined - if this value is too high, mildly 
selective catalysts may not be counted in any cluster and the 
resulting generality scores will show little variation. If the value 
is too low, catalysts with very poor enantioselectivity values 
would not be differentiated from highly enantioselective cata-
lysts. Evidently, this set value is system dependent and users of 
the method should test a range of values before applying the 
generality scores.  

 In considering this value further, it is important to recog-
nize the factors that would impact its reliability. Inclusion of 
reactions that operate under suboptimal conditions could signif-
icantly influence the average enantioselectivity values such that 
they do not meet or exceed the user set success threshold. Alt-
hough we determined in our case studies that including this data 
does not change the final conclusions sufficiently, this may not 
always be the case. We anticipate that the recorded average en-
antioselectivity will be particularly altered by the extensiveness 
of experiments performed during reaction optimization and this 
will vary widely. Accordingly, we suggest that such bias can be 
minimized by including only reactions that appear in scope ta-
bles. Of note, the inclusion of data pertaining to optimization 
campaigns is necessary in cases where less general catalysts are 
also being interrogated in the process. Again, users of the meth-
odology should identify when using or combining certain data 
types would be problematic.  
 The steps necessary for calculating catalyst generality 
closely mirror those involved in building machine learning 
models for predicting enantioselectivity.21 Considering this, and 
the significant research activity in the field, we expect our met-
ric can be simply integrated into these well-established work-
flows and will find broad applicability in assessing catalyst 
structures. 
 
Results and Discussion 
 In this study, we applied our metric to two different case 
studies which interrogate unique aspects of catalyst generality. 
In describing these results, we surmised that it would be bene-
ficial to use the first case study as a lesson in assigning the gen-
erality values by outlining the necessary steps to be taken. This 
process is then repeated for the second study, however most of 
the technical discussion is relegated to the supporting infor-
mation for this example.  
 
Reaction selection and analysis. The most common assess-
ment of generality in asymmetric catalysis is demonstrated 
through high enantioselectivity across a diverse set of substrates 
for a given reaction. Indeed, for many widely explored asym-
metric reaction types, different catalyst chemotypes have been 
applied and in some cases to include the same substrate. How-
ever, ranking the different catalyst designs for effective enanti-
ocontrol is difficult to achieve retrospectively as the compara-
tive data required for this direct evaluation is small and the di-
versity of catalyst structure makes it difficult to trace any dif-
ferences in superior performance. It is for these reasons that 
many mechanistic investigations focus on evaluating a single 
catalyst chemotype. Yet, information on how different struc-
tures with unique catalytic modes of activation compare with 
each other is necessary to determine the catalysts that allow ac-
cess to the greatest diversity of products.  
 In this first stage of developing an unsupervised learning 
platform, we sought to identify a “privileged” reaction type in 
catalysis wherein many different catalyst chemotypes had been 
employed. As imine electrophiles and carbonyl nucleophiles are 
amenable to a variety of catalytic modes of activation, we iden-
tified the organocatalytic Mannich reaction as the unifying re-
action platform (Figure 3A).22–25 This reaction type provides a 
wide range of both substrate and catalyst structures from pub-
lished sources. We curated a dataset consisting of 3003 reac-
tions from 106 publications wherein diverse chiral H-bonding 
(1418 reactions), Brønsted acid (256 reactions), covalent cata-
lysts (1182 reactions), and miscellaneous catalysts (147 reac-
tions) had been employed (Figure 3). Considering the large 



 

numbers of electrophile and nucleophile structures under eval-
uation (858 structures), we first implemented RDKit descriptors 
because these feature sets do not require any calculation. Fol-
lowing the rapid assembly of the nucleophile and electrophile 
descriptor sets with RDKit, we deployed UMAP to segregate 
the reaction types for further analysis. Essentially this permitted 
the reaction space to be visualized by reducing the total number 
of descriptors from 416 to just two (see SI for more details). It 
should be noted that because we are interrogating enantioselec-
tive catalysts, we only visualize reactions with enantioselectiv-
ities measured to be 80% ee or higher. These reaction examples 
encompassed systems traditionally included in the optimization 
table (changing solvent, catalyst, loadings, temperature, and 
time) and those included in the reaction scope (Figure 3B).  
 To reveal which set of starting materials can effectively un-
dergo different types of catalysis, the points were branded by 
catalyst chemotype allowing a straightforward analysis of these 
vast reaction networks. Figure 3B shows that these were visu-
alized as either covalent, H-bond, Brønsted acid (BA), miscel-
laneous (misc) (a catalyst that doesn’t naturally fit into the pre-
vious categories), and combinations of catalyst structures to re-
veal overlapping reaction space. Generally, examples from the 
literature cover the bottom portion of the reaction space well, 
while the top depicts more unique reactions and is sparsely sam-
pled. Within this populated space, it is immediately obvious that 
the various reaction types are reasonably separated by catalytic 
mode of activation, demonstrating the ability for mechanistic 
classification with UMAP. This also implies that the RDKit de-
scriptor set contains chemically relevant information that is re-
quired to differentiate distinct reaction types responsive to al-
ternative modes of catalysis despite the simplified nature of the 
parameters. Figure 3B shows that UMAP essentially segregates 
the reaction network into three important reaction types, those 
that are amenable to catalysis with H-bond donors (left and up-
per), Brønsted acid catalyst (middle), and those that facilitate 
reactivity through covalent bonds (lower right).  
 
Applying k-means to identify and interrogate general cata-
lyst chemotypes. Having demonstrated that UMAP in combi-
nation with RDKit descriptors can generate mechanistically rel-
evant reaction networks, we set out to determine the most gen-
eral catalyst chemotype (i.e., phosphoric acid, cinchona alka-
loid, secondary amine, and so on) for the organocatalytic Man-
nich reaction. The correct identification of the current most gen-
eral catalyst scaffold would give unique insight in deriving fea-
tures that lead to generality for this system. Such identification 
from the literature is currently not possible, with proxy 
measures like popularity or average selectivity of a catalyst not 
being reliable metrics.   
 To simplify the visualization of the reaction space in Fig-
ure 3, the H-bond catalysts included cinchona alkaloid, squara-
mide, and urea-based catalysts. However, such a broad binning 
of catalyst structures by catalytic mode of activation does not 
readily allow generality values to be derived from chemotypes 
of similar structure. Accordingly, with the exception of urea and 
thioureas which are termed collectively as urea-based catalysts, 
these have been subdivided into their own distinct category for 
the generality analysis shown in Figure 4. For the same reasons, 
covalent catalysts have been further arranged as primary (1o) or 
secondary (2o) amines. 
 Prior to assigning a generality score for each catalyst 
chemotype, the data set was restructured to ensure a comparison 
of only ideal reaction conditions. As noted above, this is im-
portant in removing bias as incorporating results from  

 

 
Figure 3. (A) The organocatalytic Mannich reaction. (B) 
UMAP visualization of the substrate space represented as 
RDKIT descriptors. Examples of catalysts included in the anal-
ysis are shown above. BA refers to Brønsted acid and Misc de-
notes miscellaneous catalysts. 
 
optimization campaigns could have disproportional influence 
on the final result.  Accordingly, only reactions that applied the 
optimized conditions (i.e., appeared in the reaction scope ta-
bles) were included in this portion of the analysis. Following 
UMAP reduction to 10 dimensions, the substrate space was 
clustered with the k means algorithm (k = 12) and the average 
ee corresponding to each catalyst chemotype was acquired from 
each cluster. Generality scores were calculated according to 
equation (1) with a success determined by an 80% ee value. Fig-
ure 4 summarizes the results along with extended information 
like the number of reactions present in the database and average 
ee.  
 Although our designer metric is inherently influenced by 
the reported selectivities, there is minimal correlation between 
the generality score and the average enantioselectivity value 
calculated for a catalyst class (Pearson r = -0.26). Because the 
generality value is derived from chemical space coverage and 
popular catalysts are typically linked to wider application, nat-
urally, there is a correlation between our generality score and 
popularity (Pearson r = 0.65). As noted above, we expect this 
correlation to fluctuate depending on the users set cluster value 
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with higher clusters leading to stronger correlations between the 
two metrics. There are, however, notable differences between 
the two values meaning the generality metric reads out a differ-
ent fundamental feature of catalysis. According to the tradi-
tional reaction metrics for gauging generality, secondary 
amines would be considered the most general for this reaction 
on the basis of their high enantioselectivity values and substan-
tial popularity. In contrast, urea-based and cinchona alkaloid-
based (CA) catalysts measure higher in generality according to 
our equation. These disparities can be attributed to the breadth 
of unique reaction space the different catalysts are applied (Fig-
ure 5). For example, according to the clustering, many second-
ary amine catalyzed Mannich reactions are being reported with 
similar substrates, though high enantioselectivity is observed 
within the clusters.  
 

Figure 4. Generality scores obtained for the organocatalytic 
Mannich reaction with the scaled average ee and min-max nor-
malized popularity of each catalyst chemotype. CA refers to 
cinchona alkaloid catalysts and urea-based includes both urea 
and thiourea moieties. 
 
 Conversely, urea-based catalysts proceed with generally 
lower enantioselectivities in overlapping clusters but can cata-
lyze a much larger breadth of reactions. Intriguingly, cinchona 
alkaloid derived catalysts can also catalyze a greater diversity 
of substrates than secondary amines despite far less reactions 
reported with this catalyst. The structural modularity afforded 
by the catalyst framework is clearly a key feature that accounts 
for the broad applicability of privileged structures across this 
reaction type. While a large scope for catalyst modularity can 
be construed as a possible limitation, it is evident that catalyst 
optimization requires some level of structural feature tuning. In-
deed, H-bonding catalysts like thioureas and cinchona alkaloids 
have multiple points for introducing a broad set of groups en-
compassing different steric and electronic properties.26 In con-
trast, secondary amines have witnessed significantly less struc-
tural diversity at the chiral framework. This can be demon-
strated by the number of unique catalysts present in the database 
that correspond to a particular chemotype. We recorded 27 
urea-based catalysts that were good for at least one Mannich 
reaction which is greater than the number of secondary amines 
(21) although more reactions have been performed with second-
ary amines. Similarly, the number of unique cinchona alkaloids 
(16) is high despite a much lower number of reactions reported. 

 
Figure 5. Performance within each cluster for secondary amine 
(dark cyan) and urea-based (red) catalysts. The success cutoff 
at 80% ee is shown as a grey dashed line. 
 
  Mechanistically, the ability to synthesize many well per-
forming but structurally unique catalysts may provide opportu-
nities to establish different types of noncovalent interactions be-
tween the catalyst and various reactants. Essentially, H-bonding 
catalysts may be more adaptative to changes in reactant struc-
ture because enantioinduction does not rely on a single set of 
noncovalent interactions.27 Overall, we reason that the privi-
leged nature of such catalysts can be explained by this important 
factor that relates structure to mechanism. We expect this effect 
could account for the enhanced generality in scope for other 
systems, however, insight into the precise structural features 
contributing to the broad solicitation of certain catalysts re-
mains limited.  
    
Revealing structural features important to generality. To 
further interrogate the structural effects that permit a chiral cat-
alyst to be impervious to changes in the reaction component 
structure, multivariate linear regression (MLR) modeling28–30 
was used to complement our generality metric. Specifically, we 
anticipated that the subtle differences in catalyst generality 
could be related through the steric and electronic properties of 
the catalyst. By analyzing the physical organic properties uti-
lized in the mathematical equation, precise structural insight 
into the molecular features that provide high enantioselectivity 
for a broad set of reactions could be realized. To probe this idea, 
we decided to limit our analysis to one catalyst chemotype that 
has been applied across a reaction range. This would not only 
provide the necessary structural changes to the reaction compo-
nent for generality analysis but also incorporate sufficient over-
lapping catalyst features for modeling.  

Considering these constraints, we decided to interrogate 
the nucleophilic additions to imines catalyzed by chiral phos-
phoric acids.31 Earlier studies from our lab established that the 
enantioselectivity afforded by distinct reaction types can be 
connected through a mathematical equation that describes the 
structure of the imine, nucleophile, catalyst and solvent.32 Alt-
hough this data set is extensive and achieves substantial cover-
age of reaction space, the number of occurrences a particular 
catalyst is used varies widely which may impact the reliability 
of the generality metrics derived from this literature curated da-
taset (see above discussion). Consequently, and to explore 



 

different substrate-catalyst combinations more comprehen-
sively, we investigated several robust non-linear machine learn-
ing (ML) regression techniques for correlating the enantioselec-
tivity outcomes represented as DDG‡ to the structure of the re-
action components.33,34 The resulting models could then be de-
ployed to create a virtual dataset35 by predicting the enantiose-
lectivity for every combination of imine, nucleophile and cata-
lyst contained in the experimental database. Unlike our previ-
ous work in correlating and predicting enantioselectivity values, 
interpolation rather than extrapolation is the overarching goal – 
this distinction is important as some non-linear models cannot 
extrapolate outside of the ranges of training data.      

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. (A) XGBoost model predicting the ΔΔG‡

 of the CPA 
catalyzed nucleophilic addition to imines shown in the reaction 
scheme above. (B) UMAP visualization of the reactions present 
in the original dataset (blue) and virtual dataset (red).  
  

To choose the regressor for virtual data set construction, random 
forest, XGBoost, k-nearest neighbors, and support vector re-
gression models were tested on the experimental dataset.32 This 
included a total of 364 reactions that proceed through an E(+ee) 
or a Z(-ee) imine transition state. Distinguishing between the 
two imine forms is important in understanding the enantioselec-
tivity outcome as nucleophile addition to the same face will lead 
to different enantiomers.36,37 Therefore, the sign of the enanti-
oselectivity value corresponds to a certain imine geometry and 
this information can be used to predict the absolute product ste-
reochemistry. The training set (80% of the entire dataset) was 
correlated to the structure of the catalyst, nucleophile, and imine 
represented by 71 computed parameters. These DFT acquired 
structural descriptors describe the size and electronic features 
of the molecules through Sterimol values,38,39 IR vibrations,40 
NBO charges, energies of molecular orbitals and polarizability. 
Including parameters to describe the solvent structure here 
would require significant additional descriptors and this may 
lead to poor model performance (i.e., overfit). We assume that 
any subsequent decreases in accuracy in correlating and predict-
ing the DDG‡ values will affect both the training and test fits 
equally, and thus will not change the final conclusions suffi-
ciently to warrant their inclusion. Hyperparameters for each 
model were tuned using sequential random and grid search al-
gorithms and evaluated by 10-fold cross-validation. Based on 
its high cross-validation and test set statistics, we chose the 
XGBoost algorithm shown in Figure 6A to predict the virtual 
data set (see SI). The high Q2 and low test MAE demonstrate 
model robustness and considering that every component in-
cluded in the virtual data set has in some way been represented 
in model training, the  errors in predicting the virtual data can 
be expected to be similar to the training set.41,42  
 Next, the XGBoost model was applied to predict the enan-
tioselectivity arising from each permutation of imine, nucleo-
phile, and catalyst contained in the experimentally curated data 
set (125460 reactions consisting of 15 catalysts×8,364 reac-
tants). The differences in structure between tested (experiment) 
and untested (virtual) reactant combinations is minor (e.g., 
switching one imine protecting group for another). For exam-
ple, hemiaminals have been generated from the addition of al-
cohols to N-Bz protected imines,43 although mechanistically N-
Boc imines should also work well and have been employed as 
a substrate for reaction with other nucleophile types.44 There-
fore, in this data augmentation tactic we are assuming that the 
capabilities of the known reactions could be reasonably ex-
tended to include other similar electrophile and nucleophile 
structures that have been successfully applied in at least one 
other reaction. This straightforward approach may not always 
be successful (i.e., some reactant combinations may not lead to 
a reaction), but it does allow us to significantly increase the va-
riety of the reaction partners considered for prediction by the 
statistical model and ultimately, the reaction space from which 
the generality value will be derived. Because reaction space will 
be either active or inactive for all chiral phosphoric acids, this 
will not affect the final generality score and thus provides a 
strong incentive for implementing this approach. The UMAP 
plot in Figure 6B shows the greater coverage of chemical space 
now covered by the virtual data set. The virtual data points 
shown in light blue appear in local neighborhoods to the exper-
imental points shown in grey, showing that our augmentation 
method is simply used to populate the empty space between the 
known experimental points rather than create genuinely new re-
action space where the applicability of our catalysts will be less 
certain. Importantly, this reaction space now has an 

A. Correlating the enantioselectivity to the reaction component with XGBoost

B. Reaction network created by UMAP
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enantioselectivity value associated with all tested catalysts and 
limits the impact of the initially imbalanced dataset. 

To ensure the generality scores displayed sufficient varia-
tion, a predicted success value of 60% ee was set for this case 
study. Higher values here led to less selective catalysts not be-
ing counted for any cluster.  Following UMAP reduction to 10 
dimensions, the substrate space was clustered with the k means 
algorithm (k = 50) and the generality values were determined 
from the virtual data for the 15 CPA catalysts. The resulting 
values showed that Ar = 2,4,6-iPr (TRIP) is assigned as the most 
general catalyst with a value of 0.93 (meaning TRIP will pro-
vide on average at least 60% ee in 93% of the clusters), while 
9-phenanthryl and 9-anthryl derived chiral phosphoric acids 
were predicted to be slightly less applicable (Figure 7). This is 
surprising given the large structural differences between the cat-
alyst systems. Accordingly, we were motivated to understand 
these results better by deconstructing the contributions of chem-
ical space and enantioselectivity values to the generality score. 
Figure 8 shows this data simultaneously, where each point rep-
resents a cluster of unique reaction space branded by the cata-
lyst.  
 Inspection of this data shows significant catalyst-substrate 
matching effects of two superficially structurally similar cata-
lysts: 9-anthryl and 9-phenanthryl (Figure 8A). Interestingly, 
most substrate clusters provide greater enantioselectivities with 
one of these catalyst structures. This illustrates that similar cat-
alysts can engage in unique interactions with substrates. The 
generality values for each catalyst are comparable (9-anthryl = 
0.78, 9-phenanthryl = 0.8) which can be explained by the simi-
lar number of clusters showing enhanced enantioselectivity 
with one catalyst.  Figure 8B shows the two catalysts with the 
highest generality scores: TRIP and 9-phenanthryl. While there 
are some substrates where 9-phenanthryl is the more selective 
catalyst, it is clear that TRIP is better for a larger range of sub-
strates, explaining the higher generality score. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Obtained generality scores for the CPA catalyzed nu-
cleophilic addition to imines. 
 
However, this data set reveals no intuitive global trends regard-
ing the features that impact generality. While higher generality 
scores were generally associated with larger aromatic groups, 
increasing the steric bulk did not always produce a more general 
catalyst (compare 2,4,6-MeC6H2 (0.66) to 2,6-MeC6H3 (0.74). 
To reveal the precise structural features that contribute to certain 
catalysts broad applicability, we correlated the molecular fea-
tures of the catalyst to their associated generality value using 
MLR. In this approach the catalyst structure represented by a 

parameter set of steric and electronic descriptors and a forward 
stepwise linear regression algorithm was applied to the data set. 
Prior to correlation building, the data set was partitioned 80:20 
into training and validation sets. A good relationship was deter-
mined using two parameters revealing a simple model consist-
ing of a single steric (Sterimol B5) and electronic (P NMR) term 
(R2 = 0.75) as shown in Figure 9. Mechanistically, this is con-
sistent with the theory that enantioinduction from CPA catalysts 
generally stems from repulsive steric interactions between sub-
strates and catalyst and attractive hydrogen-bonding contacts.31 
These features and the analysis shown in Figure 8 could suggest 
that generally applicable catalysts like TRIP engage in robust 
non-covalent contacts that do not change significantly in nature 
when the structure of the reaction component is altered. This 
mode of generality which relies on transferable non-covalent 
interactions appears to lead to the highest generality scores.45  
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Predicted performance within each cluster for the 3 
catalysts with the highest generality scores. (A) Comparison of 
structurally similar catalysts (9-anthryl shown in blue and 9-
phenanthryl shown in red). (B) Comparison of structurally dis-
similar catalysts (TRIP and 9-phenanthryl, displayed in green 
and red, respectively).  
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Figure 9. (A) MLR model relating structural parameters de-
rived from the chiral phosphoric acid to the obtained generality 
values. “Measured Generality” values are generality scores 
from virtual data generated using a XGBoost model. (B) Utiliz-
ing the model to predict a more general catalyst structure. 
 
Generality can also be achieved through adaptable non-covalent 
contacts where structures like 9-phenanthryl and 9-anthryl may 
be able to engage in various interactions leading to substrate 
dependent enantioinduction. These two different modes can be 
read out as more consistent catalyst performance vs significant 
substrate-catalyst matching as shown in Figure 8.  
 A major challenge in the development of our generality 
metric involved implementing ways to assess the efficacy of the 
workflow. As generality is not necessarily a physical property 
that can be measured, it is not straightforward to compare the 
generality assigned to a catalyst with an experimental value. 
Accordingly, a final set of studies focused on predicting a more 
general catalyst for this reaction class. As described above, such 
prediction tasks are more suited for linear models given the dif-
ficulties of extrapolation with decision-tree based models. Our 
previous work using different statistical tools and experimental 
methodology had demonstrated that TCYP, a structurally simi-
lar but more recently discovered and significantly less utilized 
catalyst than TRIP, provides higher enantioselectivities across 
a broader set of reactions than TRIP.12 Therefore, we were cu-
rious to see if our new workflow would lead to the same con-
clusions. To utilize all available data, all catalysts except for 
TRIP were added back to the training set and the model re-
trained. The MLR model was then applied to predict the gener-
ality of TRIP and TCYP given the corresponding B5 and NMR 

terms. Notably, TCYP was not included in any regression 
model prior to this prediction task.  In agreement with our pre-
vious study, TCYP is predicted to be a general catalyst with a 
generality score slightly larger than TRIP (Figure 9B). Alt-
hough the generality value is predicted to be higher than the 
maximum of 1 (a consequence of the low cut-off value and 
boundless linear model), these results demonstrate that new cat-
alysts can be screened for generality using this workflow.  
 
Conclusions 
We have developed a new measure centered on unsupervised 
machine learning to quantify catalyst generality. This approach 
was evaluated as a method to assess both substrate (broad sub-
strate scope) and reaction generality (applied to construct dif-
ferent bonds) of catalysts. Our metric accounts for the diversity 
of substrates amenable to catalysis in addition to the recorded 
enantioselectivity values rather than traditionally subjective 
measures like popularity or performance. We show that our sta-
tistical approach can be applied to identify the most general cat-
alyst chemotype for the organocatalytic Mannich reaction by 
evaluating the impact of diverse organocatalyst structures.  
Continued expansion of our approach to diverse bond forming 
reactions catalyzed by chiral phosphoric acids demonstrates 
MLR as a statistical means to optimize general catalyst struc-
tures. In each example, comparing and deconstructing the gen-
erality values reveals several interesting features about the 
mechanistic basis for generality. Most importantly, robust and 
adaptable non-covalent interactions are proven to be particu-
larly critical for broad spectrum success with highly diverse 
substrates and bond forming reactions. We envision that this 
workflow should facilitate the assessment and mechanistic 
studies of other enantioselective catalytic reactions and enable 
the optimization of new general catalyst structure through pre-
diction.  
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