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Abstract

A critical step in structure-based drug discovery is predicting whether and how

a candidate molecule binds to a model of a therapeutic target. However, substantial

protein side chain movements prevent current screening methods, such as docking, from

accurately predicting the ligand conformations, and require expensive refinements to

produce viable candidates. We present the development of a high-throughput and

flexible ligand pose refinement workflow, called “tinyIFD”. The main features of the

workflow includes the use of specialized high-throughput, small-system MD simulation

code mdgx.cuda and an actively learning model zoo approach. We show the application

of this workflow on a large test set of diverse protein targets, achieving 70% and 78%
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success rates for finding a crystal-like pose within top-2 and top-5 poses, respectively.

We also applied this workflow to the SARS-CoV-2 main protease (Mpro) inhibitors,

where we demonstrate the benefit of the active learning aspect in this workflow.

Introduction

The rapid spread of infectious diseases in a globalized economy necessitates rapid devel-

opment of therapeutics, as has been painfully evident in the aftermath of the Covid-19

pandemic. Among the drug development pipeline, the crucial step of high-throughput vir-

tual screening aims to identify ligands with high binding affinities toward a target receptor of

interest. The conventional method used in many virtual screens of small molecule inhibitors

is docking, whereby a ligand structure is modified to best optimize a scoring function that ap-

proximates the quality of receptor-ligand fit, typically keeping the receptor structure rigid.1–7

In addition, docking aims to predict ligand binding structures that align with those seen in

the bioassemblies. In cases where the receptor binding sites are rigid, docking can achieve

high accuracy and demonstrate good docking power.8 However, when the binding site of a

receptor is flexible or when cross-docking, where a ligand is docked to the same protein with

a different structure, is performed, docking results often suffer from the potential induced-fit

effect: where the receptor accommodates the ligand structure by altering its own. Without

refinements to the predicted binding poses, the accuracy of cross-docking is generally low.9

To alleviate the impact of freezing the receptor, some programs allow a limited number of

torsional groups such as protein side chains from the receptors to rotate,2,3 or use an ensemble

of receptor conformers to approximate the conformational flexibility of the receptor.10–12

Molecular dynamics (MD) can, in principle, provide a high accuracy description of the

protein-ligand system with full account of conformational flexibility, albeit at the expense of

relativity high computational cost.13

Some protocols rely on MD simulations and have shown high prediction accuracies, such

as the IFD-MD.14 However, the computational cost can be as high as 250 graphics processing

2



unit (GPU) hours per ligand, making them unsuitable for refining a large set of ligands.

Therefore, a high-throughput method that models ligand-receptor interactions using MD is

needed, one that would enable refinement of virtually screened docked ligand poses.

In this work, we developed a workflow for refining docked poses by utilizing a specialized

small-system MD engine, mdgx from the AmberTools.15 Our aim is to simulate just the

residues around the binding site, thereby better sampling the conformational space that

would be of interest. Because of the tiny simulation system and the induced-fit nature, we

refer to this workflow as “tinyIFD”. Originally designed for ligand parameter generation, the

mdgx code utilizes individual streaming multiprocessors (SMs, 80 on an NVIDIA V100) on

a GPU card to perform as many simulations in parallel, which generates a high throughput

when system size is small enough. The size of the shared memory of the GPU card imposes a

limit on the system size to 928 atoms, which amounts to the simulation of a ligand and about

65 residues surrounding it. We describe the strategy to prepare such a receptor core-ligand

complex for simulations, measure the simulation throughput and show it only consumes

modest computational resources.

With a large amount of aggregated simulation snapshots comes the need of predicting

ligand poses that are favorable, hereby defined as less than 2.5 Å of symmetry-corrected

heavy atom root-mean-square deviation (RMSD) to the target poses. To this end we devel-

oped an active learning approach where, for each receptor-ligand complex, we construct a

classification model to predict whether each snapshot is favorable or not. During inference

time for a new complex, we use a “model zoo” approach to select a fixed number of existing

models based on a distance metric defined using Tanimoto similarity16 of the ligand and

Levenshtein distance17 of the receptor string to those in the training set. When the experi-

mental structure of a test set complex is determined, data from that complex graduate into

the training set and help future predictions for the same protein family.

We show that the tinyIFD protocol improves the success rate of finding a favorable pose

compared to simple docking. We demonstrate the concept of active learning by testing an
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expanded set of SARS-CoV-2 main protease (Mpro) non-covalent ligands, and show that by

including some systems of the protein family of interest in the training set, the success rates

of the refinement increases significantly. Finally, we discuss some limitations of this workflow

and provide potential workarounds.

Methods

tinyIFD Workflow Overview

The overall tinyIFD workflow is depicted in Figure 1. It is a straightforward and scalable

workflow that can be utilized on personal computers with a single GPU card as well as

in high-performance computing environments. The required packages of this workflow are

all open-source, which include python, openbabel,18 AutoDock Vina,2 RDKit,19 mdtraj,20

OpenMM,21 AmberTools,15 Open Drug Discovery Toolkit (oddt),22 XGBoost,23 and spyrmsd.24

A list of software versions can be found in Supporting Information (Section ??).

The input to this workflow is a set of receptor PDB files, a set of ligand PDB files, and a

job descriptor list that includes pointers to the files as well as the docking center. For each

job, the receptor PDB file is first processed by tleap15 to construct missing heavy atoms and

protonate the protein. The protonated protein and ligand PDB files are converted to .pdbqt

files with openbabel. AutoDock Vina is used to dock the ligand into the protein, taking in

the docking center information from the job list. Note that this part can, in principle, be

substituted with any docking program with minimal changes to the workflow.

For MD simulations, the ligand is parameterized with Antechamber25 available from

AmberTools, while the truncated protein is parameterized with tleap. Truncation of the

protein is done with an in-house script taking into account the atom number limit (see

below), which also changes the mass of Cα atoms to a special value, so as to fix these atoms

in subsequent simulations. The receptor-ligand complexes are assembled with RDKit and

saved as AMBER simulation input files (.prmtop and .inpcrd files). The complexes are
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energy minimized using OpenMM and simulated with a modified version of mdgx.

After simulations, the features used in the classification are calculated from the result-

ing trajectories using cpptraj26 and an in-house script based on mdtraj Python package.

These features are passed to a collection of classification models which outputs a weighted

probability of a sample structure being a favorable pose. Starting from the structure with

the highest probability, we pick distinct structures that are R Å RMSD to those already

picked, where R is a hyperparameter to be tuned. These distinct poses are ranked by their

predicted probabilities, taken as the best predicted poses, and returned to the user.

Figure 1: Workflow of tinyIFD using cross-docking of the ligand from 1C84 to 1WAX as an
example. (a) Initial docking is performed by taking the ligand from 1C84 (cyan structure in
ball-and-stick model) and docking to the protein structure of 1WAX (ribbons in cyan) with
a box centered at the 1WAX ligand (not shown). The docking results are shown in thinner
licorice models with varying colors. (b) Some protein residues (licorice models in yellow)
of 1WAX are used to assemble the simulation system based on the distance to the 1WAX
ligand (cyan ball-and-stick model), the number of which capped by the hardware limit of
928 atoms. To limit charged termini, bridging residues are included, and caps are added
to the fragments. The nontrivial task of core truncation is done by iteratively changing
an inclusion distance. (c) Molecular dynamics (MD) simulation with mdgx.cuda results in
multiple snapshots (gray licorice models for protein residues, green ball-and-stick models for
the ligand). Some are closer to the ligand ground truth (cyan). (d) The feature vector
is calculated for each snapshot and used to classify the probability of the ligand being a
favorable pose. From the most probable structure, clustering is performed by calculating
the heavy-atom root-mean-squared distance to those already selected, resulting in distinct
outputs (green and orange structures). In this case, the top-ranked pose is a favorable pose
(green), close to the ground truth (cyan). The graphics were produced with Visual Molecular
Dynamics (VMD).27
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Generation of Docking Datasets

To develop the overall workflow, we first constructed a broad cross-dock dataset (“main”

dataset) based on the list from Miller and coworkers,14 where their induced-fit docking was

developed. The dataset includes 369 cross-dock tasks spanning 40 protein families. For each

docking task, the ligand whose poses are of interest is referred to as the “target” ligand. The

target ligand is to be docked into the structure of a template protein. The template protein

is ideally a holo-protein with a template ligand.

To test the developed workflow, we compiled a narrower dataset focusing on SARS-CoV-

2 main protease (Mpro), which is referred to as the “Mpro” dataset. The active site of PDB

entry 5R84 is set to be the target protein structure. 35 non-covalent Mpro ligands are selected

to be docked to this active site.

All structure files were downloaded from the RCSB PDB database.28 The respective PDB

IDs are reported in the Supporting Information (section ??).

Initial Rigid-body Docking

We utilized the the python binding of AutoDock Vina2 to perform initial docking of the

ligands with the following settings: The search center was set as the center of the template

ligand. The side length of the cubic search box was set at 24 Å. The Monte Carlo (MC)

search exhaustiveness, controlling the number of independent MC runs, was set to 32. Up to

20 poses were saved. The rest of the parameters, such as energy range of ligands and RMSD

clustering radius, were left as default.

Protein Truncation

We cropped the receptor structures to their active site cores by choosing residues radially

distributed closest to the docking center. A hard limit of 928 atoms is enforced by the

mdgx program, as dictated by the size of GPU shared memory. Because of this sensitivity
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to the number of atoms, the missing protein side chains and hydrogens were first repaired

with AMBER’s tleap. The truncation strategy was to include as many intact residues as

possible by iteratively increasing the search radius, taking into account the number of atoms

from the ligand. Truncating the receptor into fragments inevitably generated multiple chain

breaks, or termini. If the termini of two fragments are less then two residues apart, they are

merged as one longer fragment with bridging residues included. Otherwise, each fragment is

capped with acetyl (ACE) and N-methylamide (NME) residues to minimize the number of

charged groups, unless the fragment terminus is also the N- or C-terminus in the full receptor

molecule, in which case no change is made. The coordinates of the heavy atoms in these

capping residues were taken from the flanking residues, so as not to create steric clashes.

Pre-processing for MD Simulations

The short chains of the truncated core were assembled with RDKit and saved as AMBER

simulation parameter (.prmtop) and input coordinate (.inpcrd) files. Finally, we changed

the masses of Cα atoms in the parameter file to 9.999E+03 to inform the modified mdgx code

that these atoms should be fixed in the simulations (see next section). We also saved a copy

where the masses of the same atoms were set to zero, which fixed the atoms in OpenMM

simulations. Note that the present protocol disables the discovery of extra binding sites,

which is beyond the scope of this study. A workaround is provided in section .

For the ligands, the top-ranked pose from AutoDock Vina were parameterized with

Antechamber from AmberTools, using the AM1-BCC charge model.29 After parametrization,

the receptor and ligands were assembled again with RDKit. Each complex was energy mini-

mized with OpenMM before production runs.

MD Sampling

The specialized MD engine mdgx within AmberTools was modified to interpret the special

mass value as an instruction to freeze those atoms. The simulations were performed with
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Generalized-Born (GB) implicit solvation, without periodic boundary conditions, and prop-

agated with velocity Verlet integrator30 with a 2-fs time step. Bond lengths are constrained

with the RATTLE algorithm.31 A Langevin thermostat is used to maintain a system tem-

perature of 310 K.32 For each pose, 20 independent, 8-ns simulations were performed, saving

snapshots every 100 ps. The length of simulation is chosen such that simulations can be

done in under two hours wall time. This eliminates the need for checkpointing on the Sum-

mit supercomputer where the simulations were limited to two hours. This resulted in an

aggregation of, at most, 3.2 µs of simulation and 32,000 frames for a ligand. Users are free

to increase the amount of sampling.

Feature Extraction from MD Trajectories

In order to single out the ligand motion, all of the snapshots collected in the MD sampling

step were aligned to the target receptor structure, using only the coordinates of the receptor

Cα as the reference. The ligand RMSD values were calculated with symmetry correction

using spyrmsd.

In preparation of the classification, we calculated 46 features including several sets, fo-

cusing on different aspects of the system. A detailed explanation for how these terms are

calculated are provided in the Supporting Information (Section ??).

• Overall system energies (2): van der Waals (vdW) and GB solvation terms

• Ligand-centric energy terms (3): nonbonding vdW, 1-4 electrostatic, and nonbonding

electrostatic energies of the ligand

• Interaction energies (2): Change in overall system vdW and electrostatic energies

• Solvent accessible surface area (SASA) terms (5): Change of SASA of entire complex

and of the ligand; absolute SASA of ligand {C, S, P} atoms, ligand aliphatic C atoms,

and ligand polar atoms
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• Template-based terms (4): protein side chain motion, global and local; overlap of

volume and pharmacophores between sampled poses and the template ligand

• Contact-based terms (30): hydrogen bond term between ligand and protein; contacts

between protein {H, C, N, O} and ligand {H, C, N, O, S, halogen} atoms, as well as

between protein S atoms and ligand {H, C, N, O, halogen} atoms

The inclusion of these features is inspired by previous research.14,33,34 The GB solvation

energy, interaction energies and SASA terms are reminiscent of the molecular mechanics gen-

eralized Born surface area (MM/GBSA) method.35 The template-based terms are inspired

from the IFD-MD work.14 The contact-based terms resemble those from the random-forest

scoring function (RF-score) implementation.33 However, the score for each of the contact

terms is determined using a distance-based function found in ChemScore,36,37 similar to that

implemented in Protein–Ligand Empirical Interaction Components (PLEIC),34 instead of a

numerical count per element pairs to allow for normalization (see next subsection). We note

that more advanced features could be incorporated, such as the number of potential bridging

water molecules38,39 and excess chemical potential from molecular quasichemical theory,40

provided they increase model performance and can be calculated in reasonable time for large

number of individual snapshots.

XGBoost Pose Classifier Model Zoo

To avoid costly retraining of a large model, we employed an ensemble prediction paradigm.

The strategy for ranking the sampled poses is to select a predetermined number (N) of

pose classifiers from the “model zoo” and perform a weighted average of individual predicted

probabilities of the pose being a favorable one. To build a model for a training system,

we train a XGBoost classifier on the above feature set, using 2.5 Å RMSD as a cutoff for

“favorable” (< 2.5 Å RMSD to crystal pose) and “unfavorable” (otherwise) poses. To prepare

the input feature set, we normalize the calculated features to a distribution with a mean of
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0 and standard deviation of 1. This normalization is to the level of individual protein-ligand

complexes, as the values from simulations of different complexes are generally not directly

comparable. Furthermore, we remove samples with any normalized feature values beyond 5

standard deviations. During the development of this workflow, we observed that the data

exhibit substantial class imbalance, where unfavorable poses far outweigh positive ones. To

alleviate this problem, we included simulations directly starting from the crystal pose to

increase the ratio of favorable / unfavorable samples. For each model, we associate a code

string comprised of the 1-letter amino acid codes of the included protein residues and the

caps, which are coded as a space. Finally, the ligand SMILES string of the complex is

associated as an attribute of the model.

At predict time, a composite distance function is used to determine the weight of each

model prediction based on the similarity of the test system to systems from which the models

are built. The amino acid code string of the test system is first extracted, and the integer

Levenshtein distances (Ldist) to all the models are calculated. The Tanimoto similarity scores

(Tsim) of the test ligand and the ligands of the models are calculated as well. The composite

distance between the new system and the model is calculated as (Ldist+ϵ)n+k(1−Tsim), where

ϵ, n, and k are hyperparameters that will be tuned. N models with the lowest composite

distances were picked. The predicted probability of each pose is then calculated as the

weighted average of individual predicted probabilities. This approach allows the workflow

to pick models of familiar systems for prediction, enables active learning, and reduces the

computational cost of prediction to a fixed amount. Newly trained models can simply be

placed in the model zoo when a ground truth crystal pose from the experiments becomes

available, avoiding costly retrainings of a large model.
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Results and discussion

MD Simulations

For each of the 369 docking tasks, up to 21 poses (docked pose and crystal pose for training)

were combined with the protein, resulting in 7,322 protein-ligand poses. For each pose,

20 simulations of 8 ns were carried out, with a total of 146,440 individual MD runs. The

simulations were performed on the Summit supercomputer, distributed over 1,836 GPUs

on 306 nodes. Overall, the simulations took 110 minutes and generated 1.17 millisecond of

aggregated simulations, resulting in 11.7 million snapshots.

Dataset Preparation and Splitting for Training and Testing

We constructed a cross-docking dataset from MD snapshots spanning 40 targets with 369

cases. This is similar to Schrödinger’s dataset.14 We will refer to this dataset as the “main

dataset”. The dataset was split horizontally,41 regardless of protein families, to the training

and testing sets with a ratio of 60%:40% to 221 and 149 cases, respectively, similar to what

is done in Schrödinger’s implementation.14 Note that there exist other methods for splitting

the dataset, such as per-target split or vertical split (assigning entire data from a target to

either training or testing set). The models generally perform worst with a vertical split. In

this work, we chose to split the dataset in a more realistic way, where available training data

come from all possible targets. However, for completeness, as we test the unprecedented

system from SARS-CoV-2 Mpro protein in subsection , we verify how this workflow can be

utilized for a brand new target.

In order not to include extremely imbalanced structural pool, such as cases without any

favorable poses, we set a threshold of 0.05% of favorable pose ratio, below which the training

set is excluded. For the remaining cases where favorable pose ratio is less than 1%, we

undersampled the unfavorable poses such that 1% of the poses are favorable. Each case was

trained separately, resulting in 208 individual models in the model zoo.
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XGBoost Model Zoo Performance Tuning

We carried out systematic tuning on the hyperparameters of the XGBoost models and the

model zoo. The set of hyperparameters that resulted in the highest performance was listed

in Table 1.

Table 1: Optimized values of the hyperparameters for the XGBoost model zoo

Meaning Hyperparameter Value
Number of decision trees in XGBoost models n estimators 200
Maximal depth of trees in XGBoost max depth 6
Regularization parameter in XGBoost gamma 0.2
Fraction of features sampled by a tree colsample bytree 1.0
Fraction of samples sampled by a tree subsample 1.0
Number of XGBoost models for ensemble prediction N 20
Base distance in addition to Levenshtein distance ϵ 0.1
Exponent of Levenshtein distance n -0.5
Scaling factor for Tanimoto Similarity k 2.0
RMSD of clusters (Å) R 2.5

tinyIFD Performance

As tinyIFD is a refinement method, it is helpful to establish a baseline performance of the

AutoDock Vina. AutoDock Vina was able to generate a favorable docking pose, defined as

having less than or equal to 2.5 Å heavy atom RMSD from the crystal structure, within

the two, five and twenty top ranked guesses in 107, 144 and 209 of the 369 cases, yielding a

success rate of 29%, 39%, and 57%, respectively. The values are low and comparable to the

performance of GlideSP in Miller and coworkers’ benchmark.14

The refinement workflow based on the AutoDock Vina docking results aims to improve

the success rate by allowing the protein side chain to move freely. Indeed, with the ensemble

prediction method, tinyIFD was able to predict 103, 115, and 118 of the 148 test cases,

or 70%, 78%, and 80%, for the top two, five, and twenty guesses, respectively. All top-

N success rates of tinyIFD are higher than the corresponding values achieved by AutoDock

Vina indicating that by allowing the molecular system to evolve, more favorable poses can be

sampled. A list of the docking and tinyIFD refinement results can be found in the Supporting
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Information.

The breakdown of how tinyIFD was able to preserve AutoDock Vina successes and rescue

failures is shown in Table 2. When Vina was able to find at least a favorable pose in the

top-20 guesses, the tinyIFD workflow was able to generate a favorable pose within the top-2

guesses in 70 out of 81 cases (86 %) and within top-5 guesses in the to 77 out of 81 poses

(95 %). In the 67 cases where Vina was unable to find a favorable pose, the workflow still

found a favorable pose within top-2 and top-5 guesses in 49 % and 57 % of the cases. This

demonstrate the remarkable capabilities of tinyIFD in both ranking and exploring favorable

poses by incorporating large scale sampling.

Table 2: Results breakdown per Vina and tinyIFD results (N = 148).

tinyIFD
Top 2 Top 5 Top 20 Failed

D
oc

ki
ng Top 2 36 3 1 0

Top 5 17 2 0 0
Top 20 17 2 1 2
Failed 33 5 1 28

An example that showcases the impact of the induced-fit effect on the outcome of docking

and refinement is the docking of ligand DT2, a triazolopyrimidine inhibitor, of the human

cyclin-dependent kinase 2 (CDK2) from PDB 2C6K to 1PXI (Figure 2). A superposition of

2C6K ligand and 1PXI protein active site structures shows that the sulfonamide group of

DT2 in 2C6K are in close proximity of the LYS89 in 1PXI, with a minimum distance of 1.01

Å between the ligand sulfur atom and the NZ of the lysine (Figure 2a). All 20 docked poses

avoided the clash, but as a result none is a favorable pose (Figure 2b). The tinyIFD workflow

resolved this problem and was able to sample and predict the crystal pose, by allowing the

LYS89 to move out of the way of the ligand (Figure 2c).
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Figure 2: An example showing the importance of induced-fit effect in docking and refinement.
(a) Structural superposition showing the steric clash of ligand DT2 of PDB 2C6K (ball-and-
stick model in cyan) and LYS89 (green ball-and-stick model) of 1PXI within the active site
(licorice models). (b) Docked poses of ligand DT2 (licorice models of various colors) avoid
clashes with the LYS89 (green ball-and-stick model). (c) tinyIFD refined LYS89 and the
DT2 poses, moving away the former (green ball-and-stick model) to allow for sampling of a
near-native ligand pose of the latter (orange ball-and-stick model). The clashing structures
from (a) are depicted with gray ball-and-stick models for reference.

Failure Analysis

We inspect how the tinyIFD workflow failed some of the test cases. The failed cases include

those where tinyIFD predictions are worse than Vina docking results and where tinyIFD
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cannot rescue docking results that failed (Table 2). Of the 34 cases that qualify as a failure,

six cases are in the former group, while 28 of them are in the latter.

For the four cases where Vina gave top-2 poses but tinyIFD did not, tinyIFD refinement of

docking ligand 132 in 1GJ4 (thrombin) to 1C5N and ligand HFS from 2ETK (rho-associated

kinase) to 2ESM placed the favorable pose at the third, while in the case of placing IIE

from 2BQW (factor XA) in 2BOK, the favorable pose is ranked the fifth. Notably, in the

case of ligand MYU from 2O64 (PIM1 kinase) to 1YI3, while the favorable pose dropped

to the seventh, a pose with an RMSD of 2.75 Å is at the third rank. The RMSD filter

implemented to avoid over-selection of the same ligand conformation may have absorbed

some of the favorable poses into that selection.

Most failures of tinyIFD in refining the other 30 cases can be attributed to the low

concentration or lack of favorable snapshots sampled in MD simulations. 22 cases have

no favorable snapshots at all, while five have less than 1.5 %. These reflect the strong

upstream dependency on docking quality of the tinyIFD workflow. The remaining failure

cases, where MD simulations were able to sample a meaningful portion of favorable poses

but the classification failed, illuminate the room for improvement of the tinyIFD, such as

taking into account the halogen bonding and effect of metal ions in the ligand design for

3SHY,42 and accounting for the drastically different ligand designs between template and

target receptors. For example, the heat shock protein 90 structures, 1YET and 2BYI, exhibit

completely different strategies: the ligand GDM in 1YET is a macrocycle43 while the design

for ligand 2DD in 2BYI specifically exploits the contact surface of Phe137.44 Similarly, in

docking 3CB from 1WSS (factor VIIa) to 2FLB, the target ligand 3CB is much larger than

the template ligand 6NH and interacts with a different set of residues.45,46
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Ensemble Prediction with Distance Weighting Is Better Than In-

dividual Models

We compared the ability of individual models to predict favorable poses to that of ensemble

models. As shown in Table 3, the weighted average method significantly outperforms other

methods, including selecting N best models, defined as having the highest individual top-5

success rates, as well as selecting 20 random models. The weighted average method did

especially well on identifying a favorable pose within the top 2 choice, which is important

for lowering the cost of more expensive downstream simulations such as free energy-based

methods by lowering the number of poses to be examined.

Table 3: Success rate of the model zoo using different selection strategies. For random
selections, standard deviations are included. Values in parentheses are counts of successful
refinements, out of a set of 148 cases.

Method Top 2 Top 5 Top 20
Weighted average 70% 78% 80%
Best single model 49% 69% 79%

Best 5 models 50% 67% 76%
Best 10 models 53% 69% 76%
Best 20 models 53% 69% 77%

Random 20 models (7 trials) 49 ± 4% 67 ± 1% 78 ± 1%

Computational Cost

The main computational cost for tinyIFD is due to the MD simulations. Because the mdgx

code can be run on an NVIDIA V100 GPU in parallel with up to 80 replicas, the 3.2 µs

aggregated simulations can be done in about 9 GPU hours. The computational cost can be

adjusted based on the amount of sampling desired, by changing simulation length or number

of replicas per pose. Table 4 lists several possible scenarios of reduced sampling, showing no

major degradation in performance. Of particular interest is reducing simulation lengths to

4 ns, as it directly cuts the time-to-solution by a half compared to the reference protocol.
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Table 4: Performance of the model zoo using different selection strategies.

Method Top 2 Top 5 Top 20
Reference 70% 78% 80%
10 replicas 69% 76% 78%

6 ns simulations 68% 77% 80%
4 ns simulations 68% 76% 80%

Application of tinyIFD to SARS-CoV-2 Mpro Docking

To demonstrate a typical use case when approaching a new target, we collected 35 crystal

structures of the SARS-CoV-2 Mpro with available non-covalent inhibitors on the RCSB PDB

database and applied the same protocol with the same parameters. We refer to this dataset

as “Mpro dataset”. All of the ligands were cross-docked into the 5R84 protein structure. The

performances of different settings are listed in Table 5. AutoDock Vina in fact performed

better than for the main dataset, achieving 37% and 49% top-2 and top-5 success rate,

respectively.

We then tested the tinyIFD workflow, using all the models from the main dataset (353

models) as the initial model zoo. When we use only the models from the main dataset, the

workflow performed slightly better at 40% and 57% top-2 and top-5 success rate, respectively.

However, since there is almost always a complex structure available, in this case 5R84 and its

own ligand, a more relevant metric would be the performance when the model from the self-

dock task is included, where the top-2 success rates increased to 53%. If there are multiple

available structures, the performance further increases to 67% and 70% top-2 success rates

when two and four other models are included. The included models are constructed by

applying the workflow for docking the ligands from 7AU4, 7RNK, 7B77, and 7RN4 to 5R84;

these would represent the “incorporated test set” after experimentally determined structures

became available.

As an example, refinement of cross-docked pose of ligand V1B from 7QBB to 5R84 is

shown in Figure 3. AutoDock Vina did not produce a favorable pose for this case (best

pose is 3.08 Å), but the tinyIFD workflow was able to rescue the docking failure and suggest
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a pose that is 0.57 Å RMSD to the crystal pose with the inclusion of three 5R84-based

models. Because of the (identical) protein sequence that gave a Levenshtein distance of 0,

these models from the same protein are heavily weighted during the pose quality prediction

stage. This demonstrates the use of active learning; when more data is available for a specific

protein, the workflow naturally utilizes these more local data to predict the pose quality, and

the performance increases. Note the reason that the performance seemed to be capped at

70% success rate is due to that, only 80% of the cases have MD snapshots of ligands in a

favorable pose.

Figure 3: Docking ligand V1B from 7QBB to 5R84. The crystal and refined poses are shown
in cyan and orange ball-and-stick models, respectively.

Table 5: Performance of the model zoo using different selection strategies. Docking has
35 cases and tinyIFD has 30 cases. The “2 other models” are from induced-fit docking of
ligands from 7AU4 and 7RNK to 5R84, while the “4 other models” additionally include those
of 7B77, and 7RN4.

Method Top 2 Top 5 Top 20
Docking 37% 49% 51%

Models from main dataset 40% 57% 63%
+model from 5R84 self-dock 53% 57% 60%

+models from 5R84 and 2 others 67% 70% 70%
+models from 5R84 and 4 others 70% 70% 70%
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Limitation of This Workflow

Summarizing and extending observations above, we discuss observed limitations of the work-

flow due to various required conditions to set up the simulations and when this workflow

may be inapplicable.

Limited sampling due to fixed CA atoms

This code is less effective for refinements where there may be large CA atom movements,

for example the docking and refinement of ligand 3EA of 2ATH to 2FVJ (Figure 4). In this

case, the MET364-CA within the alpha helix in 2FVJ pushes inwards in the active site as

the ligand does not have a steric interaction with the residue. However, in 2ATH the same

CA atom moved 1.28 Å. It is likely because the simulation is done fixing the CA atoms, the

system is unable to explore the part of the conformational landscape that includes favorable

docking poses of 3EA.

Figure 4: Failed refinement of ligand 3EA from 2ATH potentially due to fixed CA atoms.

The problem can potentially be addressed by allowing movements of the CA atoms. How-

ever, care must be taken as allowing all of the CA atoms to move may result in deformation

of the artificially truncated system. A potential compromise could be to allow only CA

atoms of the receptor-ligand interface residues to move, while keeping the rest of the CA

atoms such as those of second shell residues and terminal residues frozen.
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Large binding sites that are not fully occupied by the template ligand, exploring

new binding sites, or generally when there is no information about the template

ligands

Sometimes the template ligands do not occupy the entirety of the binding site, or in general

the sizes of the template and target ligands are vastly different. This results in both (a)

potential for systematically incorrect estimates of the template overlap feature and (b) a

misrepresentation of included residues in the truncated system. An example is the failed case

of docking 3CB from 1WSS to 2FLB mentioned above (Figure 5). A similar circumstance

arises when only the apo receptor structure is available, or if new binding sites such as cryptic

pockets are of interest, where the template overlap becomes undefined and truncation cannot

be carried out.

Figure 5: Demonstrating a better template selection. For the large ligand 3CB (blue) of
1WSS, selecting 1Z6J as the template with a similarly sized ligand PY3 (orange) would
likely be better than 2FLB, which has a smaller ligand 6NH (green).

For cases where holo template structures are available, it is advisable to select one with

a ligand similar in size to approximate the binding site shape. For example, in the factor

VIIa protein family, a better choice of the receptor as the template for the larger 3CB ligand

would be 1Z6J, which has a similarly sized ligand PY3 (Figure 5).47 Alternatively, a way to

circumvent these problems could be to carry out a short, normal MD simulation including
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the entire (apo) receptor, and use one of the many binding pocket identification methods48–51

to define a volume for the pocket. A dummy ligand can then be defined where the volume of

dummy ligand atoms covers the desired pocket, which can be used to truncate the receptor

structure, and the workflow proceeds as normal.

Upstream dependency on rigid-body docking results

The tinyIFD workflow employs AutoDock Vina as the provider of docking poses, serving

as the initial guesses of the structures for the MD simulations. This places an upstream

dependency of the workflow performance on the quality of the docking result. However, in

principle, the workflow can take the output from any docking programs with appropriate

conversions of the docking result, for example through the use of OpenBabel. Users are

therefore advised to utilize programs best suited for the particular docking cases of interest.

While this workflow is designed to work with only open source codes, it is not limited

to so. In particular, within Schrödinger’s workflow, the Phase-Glide-Prime (PGP) steps are

claimed to generate at least a favorable pose in 99% of the cross-docking cases within the

top-20 guesses, although such poses are not reliably highly ranked.14 The tinyIFD workflow

can be adapted so that after MD sampling, these PGP-generated poses act as filters after

the classification step, which could increase the performance of the workflow.

Conclusion

We have developed the tinyIFD workflow to carry out pose refinement based on docking

results. The workflow enables modeling of induced-fit effects during docking, requires rela-

tively low computational cost, and can refine docked poses to those seen in crystal structures.

It also enables active learning when approaching new receptor families due to its ensemble

prediction paradigm, achieving progressively better performance as new ground truth data

become available.
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Data Availability

The input files for this workflow, a csv file that contains docking center for each of the 369

cases, structural files including both apo and holo forms of the cleaned template receptor, and

the target ligand are available on Zenodo server (DOI: 10.5281/zenodo.7401839). In addition,

the tinyIFD workflow code, user manual, and analysis script for both the main dataset and

Mpro dataset are available on GitHub (https://github.com/darrenjhsu/tiny IFD). A separate

set of structural coordinates for the Mpro dataset is also available in the same Zenodo deposit.

All software dependencies of this workflow are open-source.
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