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Abstract 
Interpretation of chemistry on an atomic scale improves with explainable artificial intelligence 
(XAI). The parts of the molecule with the most significant influence on the chemical property 
of interest can be visualized with atomwise and bondwise attributions. Nonetheless, the 
attributions from different XAI methods regularly disagree substantially, causing uncertainty 
about which explainability is correct. To determine a ground truth for attributions, we define 
chemical operations which avoid alchemical steps or approximations and allow extracting one 
attribution per atom or bond from existing datasets of chemical properties. This general 
procedure allows generating large datasets of ground truth attributions. The approach 
allowed us to create a ground truth explanation dataset with more than 5 million data points 
for the HOMO-LUMO gap chemical property. This open-source dataset of atomistic ground 
truth explainability may serve as a reference for XAI approaches. 
 
Background & Summary 
 
A wide range of machine learning (ML) approaches allows for explaining the chemistry of 
molecules, attributing which parts of the molecules are responsible for the chemical property 
of interest1-19, and lessening the black box challenge of machine learning20,21. Typical 
explainable ML approaches that provide atomwise attribution include dummy atoms22, 
classification of atoms by chemical intuition23, regression models24, graph neural network 
(GNN) attributions25-28 with gradients29, perturbations30, decompositions31, and surrogates32. 
In contrast, fragment-based explainability approaches generate importance values for groups 
of atoms or functional groups (subgraphs), e.g., Hammett equation33, matched molecular 
pairs34-36, molecular scaffolds18,37, and counterfactuals38. Due to the ambiguity in molecule 
fragment identification (e.g., overlapping fragments)39, this work considers only atomwise 
(nodes) and bondwise (edges) attributions, where one explainability value (attribution) is 
generated for each atom or bond.  
 
Although different explainability approaches qualitatively agree with chemical intuition, some 
differences between the explanations are observed for quantitative structure-activity 
relationships (QSAR)22,40 and GNNs41. The disagreement problem42 occurs when explanations 
for the same chemical property generated by different methods are inconsistent43, indicating 
uncertainty in the generated explanations of machine-learned models. Furthermore, 
inaccurate attribution can lead to unwarranted trust in models44-46. Reasons for the 
disagreement at the atomistic level include incorporating alchemical steps with limited 
chemical validity22, noise in the gradient estimation47,48, and bottlenecks in GNNs49-51. 
Currently, the best-performing method for different explanation tasks varies, and no single 
method performs well across various tasks52. 
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In order to resolve the disagreement problem, we need metrics to evaluate the accuracy and 
reliability53 of the explanation. Different metrics can be used18,53-60 to evaluate reliability. For 
example, by perturbing the molecules, one can measure the stability60 of the attribution and 
the consistency39 between attributions generated by different approaches. Meanwhile, 
faithfulness58 measures change in predictions when perturbing input features for important 
or unimportant attributions. 
 
Various metrics have also been proposed to quantify the accuracy of explanation values. Some 
metrics focus on characterizing post hoc explanations, such as Grad-Cam48, non-zero 
reference24, and the assumption of node explanation smoothness61. Other metrics focus on 
the accuracy of the explanations with respect to the ground truth41,61, which relies on the 
availability of ground-truth explanation datasets. The domain of XAI for molecular graphs is 
currently limited by the size of ground-truth datasets61. Although there are several multi-
million datasets of non-trivial molecular property values (e.g., QM962,63, OC2064, and 
PCQM4Mv265) suitable for testing the prediction accuracy, no ground-truth explanation 
dataset of comparable size exists for testing the explanation accuracy. Some existing ground-
truth datasets of atomistic explanations on molecular graphs explain trivial properties66 or are 
synthetic datasets30. Other datasets are based on hundreds of hand-crafted structural 
subgraph motifs considered ground truth, for example, MUTAG67 and Ames mutagenicity68,69. 
Further datasets consider other XAI methods as the reference, such as Crippen logP70.  
 
This paper describes a general method to generate large datasets of accurate atomistic ground 
truth explanations for molecular graphs. Further, we apply this method to the HOMO-LUMO 
gap, generating more than 5 million ground truth explanations. The HOMO-LUMO gap is the 
energy difference between the Highest Occupied Molecular Orbital (HOMO) and Lowest 
Unoccupied Molecular Orbital (LUMO) for the ground state of a molecule. Accurate ab initio 
calculations of the HOMO-LUMO gap are time-consuming, despite being one of the most 
straightforward properties to calculate in quantum chemistry. The HOMO-LUMO gap can 
show long-range information propagation49 across the molecular graph, as exemplified in 
molecular wires, where the HOMO-LUMO gap shows a distance dependency up to 20 bonds71. 
This dataset aims to fill the void of large datasets for explanation values on molecular graphs 
and is an opportunity to benchmark different XAI approaches and increase the accuracy and 
reliability of existing XAI methods. We anticipate the dataset will be useful for the resolution 
of the disagreement problem in explainable machine learning and for improving the reliability 
of explanations for chemical properties. 
 
 
Methods 
This method generates atomwise and bondwise attributions from any dataset of accurate 
values of a chemical property of interest for chemically valid molecules. The explanation e for 
the selected chemical property p for atom or bond i is here defined as the signed difference in 
chemical properties between the molecule M and paired molecule M’, shown in Eq. 1 and 
Figures 1-2. The paired molecule M’ is defined in Eq. 2 by applying the chemical operator 𝑜ො on 
atom or bond i in molecule M.  
 

𝑒(𝑝, 𝑀, 𝑖) = 𝑝(𝑀) − 𝑝(𝑀௜
ᇱ)             (1) 

              𝑀௜
ᇱ = 𝑜ො(𝑀, 𝑖)                         (2) 

 
The chemical operator changes only one atom (Figure 1) or bond (Figure 2) to ensure the 
explanation is defined for exactly one atom or bond. The molecules are represented as 
molecular graphs with implicit hydrogens, considering chemical validity is sufficient to 
determine the location and number of hydrogens. The decision trees of chemical operations 
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shown in Figures 1 and 2 ensure the application of only one chemical operation per atom or 
bond. For atoms, the decision tree (Figure 1) is as follows: if the atom is a heteroatom (non-
carbon), then convert this atom into a carbon atom; else remove the carbon atom if it is a 
terminal atom (methyl group). For non-terminal carbon atoms, there is no chemical operation 
to avoid breaking the molecule into several molecules. For bonds, the decision tree (Figure 2) 
is as follows: if the bond is unsaturated, then saturate this bond; else break the bond if the 
bond is in a ring. For saturated bonds not in rings, there is no chemical operation to avoid 
breaking the molecule into several molecules. The decision trees define pairs of molecules that 
are directional since the chemical operations have a direction. The paired molecule might not 
be found in the existing dataset. For larger datasets, the odds of finding the paired molecule 
are higher.  

 

 

Figure 1 legend: Schema for estimating ground truth atomwise attribution. Only one chemical 
operation applies for each atom, depending on the decision tree. For a representative 
molecule, the paired molecule and atomwise ground truth attributions are shown. 
Symmetrical attributions for neighboring methyl groups are observed. 

 

The different decision trees of chemical operations are the main differences between the 
approaches for atomwise and bondwise attributions. The explanation values for different 
atoms (or bonds) in one molecule can be identical, as visible in Figures 1 and 2, when the 
paired molecules are identical, for example, for neighboring methyl groups. 
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Figure 2 legend: Schema for estimating ground truth bondwise attribution. As presented in 
the decision tree, only one chemical operation applies for each bond. The paired molecule and 
bondwise ground truth explanations are shown for a representative molecule. 

 

Data Records 
Applying the above-described method to the PCQM4Mv2 dataset65, we generated a dataset 
of ground truth explanations for the HOMO-LUMO gap molecular property. This publicly 
available dataset on Figshare72 contains two csv files, one for atomwise and one for bondwise 
attributions. Table 1 summarizes the format of both csv files: each record of the explanation 
(a row of the csv) has five columns corresponding to the molecule index, the operation index 
(which of the four chemical operations was applied),  the index of the atom or bond where the 
chemical operation was applied, the paired molecule index, and explanation values. The unit 
of the explanation values depends on the investigated chemical property; for the HOMO-
LUMO gap, the unit is electronvolt (eV). 
 

csv column 1 2 3 4 5 
column 
name  

molecule 
index 

operation 
index 

atom index 
or 

bond index 

paired 
molecule index 

explanation 
value 

example 
data 

3 0 13 2213220 -0.2013642494 

 
Table 1 legend: Format of the csv files containing the ground truth explainability values. 
 
The chemical operation indices are defined as follows: index 0 is the atomwise conversion of 
a heteroatom into a carbon atom, index 1 is the atomwise removal of a terminal carbon atom, 
index 2 is the bondwise saturation, and index 3 is the bondwise removal of a saturated bond 
in a ring. The order of atom and bond indices for individual molecules has to be preserved to 
correspond to the correct atoms and bonds. The README and python script on Figshare72 
describe the order of atom and bond indices used during dataset generation. The python script 
can be used to extract ground truth explanations from any other chemical dataset similar to 
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PCQM4Mv2 or for different chemical properties, as illustrated in Figures 1 and 2. The 
generated ground truth explanation dataset does not consider the chirality, charge, or radicals 
of the molecules. 
  
 
Technical Validation 
The generated ground truth atomic explanation dataset includes 3,619,970 atomwise and 
1,555,262 bondwise explanation values. An explanation value was not generated for every 
atom, or bond, due to the option of no chemical operation (see Figures 1 and 2) or if the paired 
molecule was not found in the dataset. The distribution of the number of explanation values 
in each molecule is shown in the left panel of Figure 3. On average, each molecule with 
explanation values contains 1.82 atomwise and 1.98 bondwise values. The fraction of 
molecules with more than five explainability values per molecule is small. The distribution of 
explanation values (right panel of Figure 3) peaks at a value of 0 and does not show a 
dependency on the value of the chemical property, here the HOMO-LUMO gap. 

 

 

Figure 3 legend: Distribution of explanation values in the dataset. On the left is the distribution 
of the number of data points for each molecule. The distribution of explainability vs. HOMO-
LUMO gap value is shown on the right as kernel density estimation (KDE). 

 

The distribution of explanation values depends strongly on the atom type, as shown in Figure 
4. The distribution for most atom types is non-gaussian, asymmetric, and not centered at zero 
value due to the directional nature of the decision tree and chemical operations. For carbon 
atoms, the distribution of explanation values is substantially narrower than for other atom 
types and peaks at zero value, and the reason may be that only terminal carbons are eligible 
in this atomwise attribution definition. For boron, sulfur, and phosphorus, flatter and broader 
histograms are observed with negative average atomwise explanation values, indicating the 
diverse roles these elements play in impacting the HOMO-LUMO gap of different molecules 
and an overall tendency to decrease the gap. For germanium, arsenic, and selenium, the 
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histogram is sparse due to the limited number of molecules in the PCQM4Mv2 dataset. A 
heavy-tailed distribution for silicon, phosphorus, and sulfur could be caused by the range of 
possible oxidation numbers for these elements. 

 

Figure 4 legend: Histograms of atomwise attribution for different atom types. The average 
atomwise explanation values for different atom types differ. For each atom type, an example 
molecule is shown.  

The bondwise attribution depends on whether the bond is part of a ring and on the size of the 
ring, as shown in Figure 5. The average explanation value of bonds outside of rings is more 
negative (with a larger amplitude) than the average explanation value of bonds in rings, 
indicating that unsaturated bonds outside of rings impact the HOMO-LUMO gap more than 
bonds in rings. The difference can be explained by the different chemical operations, 𝑜ො, applied 
to find paired molecules, 𝑀௜

ᇱ, as defined in Eq. (2). For bonds outside of a ring, the valid 
chemical operation (changing to a single bond) only applies to unsaturated bonds. Hence, the 
statistics always reflect the impact on HOMO-LUMO gaps by unsaturated bonds, which 
correspond to degenerate molecular orbitals and smaller HOMO-LUMO gaps, leading to 
negative explanation values. In contrast, for bonds in rings, 𝑜ො applies in two situations: 
saturating an unsaturated bond in a ring (a big impact on the HOMO-LUMO gap) and removing 
a saturated bond in a ring (less impact on the HOMO-LUMO gap). The average impact of these 
two situations of bonds in rings leads to a smaller amplitude of the explanation value. Another 
observation is that the average bondwise attribution becomes more negative as the ring size 
increases. A possible explanation is that very small rings (3- or 4- membered rings) are more 
likely to be saturated, so removing a bond in the ring is likely to have less impact on the HOMO-
LUMO gap. 
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Figure 5 legend: Dependence of bondwise attribution on ring size. Two example molecules 
with rings of sizes 3 and 11 are shown.  

Neighboring atoms (or bonds) in a molecule can have similar attributions. This assumption of 
smoothness61 for neighboring attributions can be validated with the ground truth dataset. 
Here, we analyze our explanation dataset to investigate how the similarity of the explanation 
values for a pair of atoms (or bonds) in the same molecule depends on their closeness. For 
each pair of atoms (or bonds), the closeness is measured by their topological distance, the 
shortest path (number of edges) between them in the molecular graph. Then the similarity of 
pairs of explanations at a certain topological distance is measured in two ways. The first 
approach is the topological autocovariance73-75 ACL between atoms (or bonds) at a topological 
distance L. The topological autocovariance (Eq. 3) is the conditional expectation E of the 
product of the mean-subtracted explanation values for two atoms (or bonds) i and j in a 
molecule M, where the topological distance 𝑑௜௝ is L. 

AC୐ = 𝛦൫[𝑒(𝑝, 𝑀, 𝑖) − 𝑒̅] ⋅ [𝑒(𝑝, 𝑀, 𝑗) − 𝑒̅]ห𝑑௜௝ = 𝐿൯                (3) 

Here, 𝑒(𝑝, 𝑀, 𝑖) denotes the explanation for atom i in molecule M about property 𝑝 as defined 
in Eq. (1); 𝑒̅ is the mean of explanation values for all atoms in all molecules in the dataset. The 
second approach is the statistics of the absolute difference of explanation values between 
each pair of atoms (or bonds) in the same molecule. The results for both approaches are 
visualized in Figure 6. Only molecules with at least one topological distance of length six are 
included in the atomwise analysis to avoid bias from comparing small and large molecules. 
With this criterion, 503,508 molecules are included in this figure, with 3,887,724 atomwise 
explanation pairs and 996,081 bondwise explanation pairs. We observe the autocovariance 
decreases strongly after a distance of two bonds for atomwise explanation and a distance of 
one bond for bondwise explanation values, supporting the assumption of smoothness for 
neighboring attributions. Similarly, the absolute difference for bondwise attribution increases 
almost linearly with the distance up to a distance of four bonds, also confirming the 
abovementioned assumption.  

In contrast, for atomwise attribution, a substantial average absolute difference is observed 
even for neighboring atoms, but a lower absolute difference is present for a distance of two 
bonds. The ubiquitous methyl groups can explain this counterintuitive behavior in our dataset 
since adjacent carbon atoms (non-terminal) are not eligible for explanations, as demonstrated 
by a low count of atomwise pairs at a distance of one bond in Figure 6. The frequent 
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occurrence of neighboring methyl groups is also reflected in Figure 1, which explains the lower 
average absolute difference at a distance of two bonds since neighboring methyl groups have 
a topological distance of 2 and identical explanation values due to symmetry. 

 

 

Figure 6 legend: Dependence of the similarity between two explanation values in the same 
molecule with respect to the topological distance. The topological autocovariance, absolute 
difference, and counts for atomwise (left) and bondwise (right) attributions are shown. 
Examples of longer topological distance paths are highlighted in red. 

Code Availability 

The python script used to generate ground truth atomwise, and bondwise attribution from 
the PCQM4Mv2 dataset is available on Figshare72. 
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