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ABSTRACT: The first synthesis of various N-metallocenyl ynamides has been developed and two strategies for the oxidative cycliza-
tion of N-ferrocenyl ynamide into ansa[3]-ferrocenylamide are also reported. The mechanism for the iodine(III)-triggered transfor-
mation has been studied by means of DFT calculations, showing that it proceeds through a Concerted Iodination Deprotonation 
step. 

In the last 10 years, ynamides, have emerged as very at-
tracting reagents and building blocks for organic synthe-
sis.1,2 Thanks to their highly polarized triple bond, ynamides 
have become partners of choice for a myriad of reactions, 
including cyclizations3 or asymmetric transformations,4 
through a variety of activation modes.5–9 In parallel, effi-
cient and robust methods for the synthesis of a broader 
range of ynamides have been developed.1,2,10 Taking into 
consideration the recent surge of interest for redox strate-
gies in synthetic chemistry,11–13 we sought to design original 
ynamide derivatives that could be redox-activated under 
mild conditions, to trigger unprecedented reaction path-
ways. Because of its highly interesting structural and elec-
trochemical properties,14 ferrocene (Fc) is a privileged moi-
ety for such an endeavor. To the best of our knowledge, 
only two ferrocene-containing ynamides have been re-
ported in the literature: acridinone derivative 1 by Robinson 
et al. 15 and N-tosylynamide 2 by Anderson et al.16 (Figure 
1). In both cases, the metallocene is connected to the triple 
bond and no chemical reactivity was explored, although the 
group of Robinson did perform some spectroelectrochem-
istry studies on 1. At our end, we decided to tackle the syn-
thesis of ynamides, where the ferrocene moiety would be 
borne by the nitrogen (3 and 4) and to explore their reac-
tivity, under oxidative conditions. As ferrocenyl derivatives 

have a low potential of oxidation of about 0.4 V (vs SCE), a 
mild oxidation could be sufficient to trigger reactivities, 
with the Fc acting as an internal redox relay.17–19 Most 
methods to access ynamides start from the preparation of 
the corresponding amide, tosylamide or carbamate upon 
which the triple bond is then grafted. Both N-methylferro-
cenylamine and aminoferro- 

 

 
Figure 1. Previously reported ferrocenyl ynamides and 
objective of the study. 

-cene can be obtained through described procedures, from 
ferrocenecarboxaldehyde20 and bromoferrocene,21 respec-
tively (see the Supporting Information for details). While 
their tosylation went smoothly,22 appending the triple bond 
turned out to be far from trivial. Starting from N-methylfer-
rocenyl,N-tosylamide 5a, electrophilic alkynylation23 using 
iodonium salts24 proved unsuccessful (see SI for details). We 



 

then focused on the Ullmann-type copper-catalyzed cou-
pling developed by Hsung and coworkers.25 Tosylamide 5a 
was thus reacted with a bromoalkyne, in the presence of a 
catalytic amount of copper (II) sulfate pentahydrate, with 
potassium phosphate as the base,26 in toluene at reflux. N-
methylferrocenyl,N-tosylynamide 3a was successfully ob-
tained in 59% yield. The yield was improved to 92% 
(Scheme 1) when the solvent was carefully degassed to pre-
vent the formation of oxidation side-products. Performing 
the reaction on gram-scale, a 78% yield of 3a was obtained 
after 48 h of reaction. From 3a, desilylation using tetrabu-
tylammonium fluoride gave 3b with 72% yield. The Ullmann 
coupling was also performed with bromophenylacetylene 
and 3c was isolated with 68% yield when the reaction was 
run on a small scale and 62 % on gram-scale. To achieve the 
synthesis of N-Boc ynamides, the best coupling conditions 
were the ones developed by the group of Danheiser using 
CuI and KHMDS.27 Ynamides 3d and 3e have been obtained 
in this fashion in 64% and 35%, respectively.  

Scheme 1. Synthesis of N-methylferrocenyl-ynamides 3.  

 
Conditions A: CuSO4 5H2O (11 mol %), 1,10-phenanthroline (20 
mol %), K3PO4 (2.0 eq), toluene (0.1 M), reflux, 24 h - 48 h; Condi-
tions B: CuI (30 mol %), 1,10-phenanthroline (30 mol %), KHMDS 
(1.4 eq), toluene (0.5 M), 60 °C, 12 h; [a] Isolated yields. [b] Reac-
tion was performed with 1 g of 5a. 

Unfortunately the Cu-catalyzed cross coupling with 
bromo-alkynes could not be successfully applied for N-fer-
rocenyl,N-tosylamide 6. To overcome this issue, we used 
the strategy developed by Anderson, which relies on a dich-
loroenamide as the key intermediate.16,28 Thus, 1,2-dichlo-
roenamide intermediate 7 was obtained in 97% yield 
through the reaction of amide 6 with dichloroacetylene ge-
nerated in situ by deprotonation of trichloroethylene (TCE, 
Scheme 2a). The synthesis of ynamide 8 was then achieved 
through a lithium base-mediated deprotonation followed 
by Cl-Li exchange using an excess of PhLi. The resulting lithi-
ated ynamide was quenched with water or D2O to provide 
8a or 8b, respectively, with excellent yields (Scheme 2b). 
Among group 8 metallocenes, ruthenocene is close to fer-
rocene in terms of structure 29 and chemical reactivity,30 yet 
it possesses very different biological properties.31 To ex-
pand the scope of our study, we thus envisioned the syn-
thesis of N-ruthenocenyl-ynamides. After redesigning and 
optimizing the synthesis of aminoruthenocene,[32] the 

same sequence was applied to 9 to obtain first dichloroena-
mine 10 and then N-ruthenocenyl ynamide 11 with very 
good yields. The range of N-ferrocenylynamides 8 at-
tainable using Anderson’s method could be broadened 
since the intermediate lithiated ynamide can be transme-
tallated with copper to undergo cross-coupling with Grig-
nard reagents (Scheme 2b, bottom). In this fashion, alkyl 
(8c-e), cyclopropyl (8f), aryl (8g,h) and vinyl (8i) groups 
could be incorporated with good to excellent yields.  

With this original and diverse library of N-metallocenyl y-
namides in hand, we first went on to probe their behavior 
under oxidative reaction conditions, using hypervalent io-
dine(III) reagents.24 The reaction between 8a and 2 equiva-
lents of (diacetoxyiodo)benzene (PIDA) in acetonitrile led to 
the isolation of ansa-ferrocene derivative 12a with 25% 
yield (Scheme 3). The unique structure of 12, quite different 
from previously reported nitrogen-containing fer-
rocenophanes,32–34 encouraged us to optimize its synthesis 
(see SI for details).  

 

Scheme 2. Synthesis of N-metalocenyl dichloroenamides 7 
and 10 and of N-ferrocenyl ynamides 8a-i and N-rutheno-
cenyl ynamide 11. 

  
 
 
 



 

The best results were obtained ethanol by decrease the 
amount of PIDA to 1.1 equivalents and the reaction time to 
30 minutes, which allowed to isolate 12a quantitatively.Fer-
rocenophane 12a could be crystallized and subjected to X-
ray analysis, which confirmed the proposed structure. The 
analysis showed a slightly tilted metallocene with a 13.0° 
dihedral angle between the two Cp rings, the C1-C6 dis-
tance being 2.970 Å and the C3-C8 distance 3.507 Å (com-
pared to a 3.290-3.298 Å Cp-Cp distance measured for the 
Fc-ynamides 3a, 8c and 8e, which could also be crystallized 
and subjected to X-ray analysis, see SI). Despite numerous 
attempts, when submitted to these optimized conditions, 
none of the ynamides 8c-i bearing a substituent on the 
triple bond reacted. In all cases, the starting material was 
recovered as the major compound. Yet, when N-methylfer-
rocenyl 3b, homologous to 8a, was subjected to PIDA in 
ethanol, a reaction occurred. Although no cyclization was 
observed, α-acyloxy amide 13 was readily isolated in 89% 
yield (Scheme 3). This transformation is analogous to the 
one originally described by Hou with alkynes,35,36 and can 
readily be applied to N-phenyl- and N-benzyl-N-tosylynami-
des to give the corresponding α-acyloxy-amides quantita-
tively (see SI). This highlights the singularity of the cycliza-
tion observed for 8a as a net deviation from the otherwise 
apparently favored α-acyloxy-oxidation. Of note, a slightly 
different outcome was observed for N-ruthenocenyl yna-
mide 11. To proceed, the reaction required heating to 50 °C 
and a slightly longer reaction time, eventually yielding 

amino-vinylacetate 16 with 75% yield, the structure of 
which was confirmed by X-ray analysis. 

Scheme 3 Reactivity of N-metallocenyl ynamides 8a, 3b 
and 11 with PIDA. 

 

The formation of 13 and 14 can be rationalized by extra-
polating from the mechanistic proposal initially made by 
Hou for the formation of α-acyloxy ketones from alkyne.35 
Yet the formation of 12a appeared to stem from a very spe-
cific mechanism.  

Scheme 4. Computed Gibbs Energy Profile from 8a to 12 (PBE0D3-def2-TZVPP//M06-def2-SVP (SMD); ΔG298, kcal/mol; 
CID = Concerted Iodination Deprotonation; selected geometries with distances in Å). 



 

To gain further insight into the peculiar cyclization leading 
to ferrocenophane 12a, some deuterium labeling experi-
ments were performed (see SI) that did not allowed us to 
conclude on the nature of the mechanism at this stage. We 
thus used a computational approach inspired by a recently 
implemented method describing hypercoordinated iodine 
species.37 Our first hypothesis was that the peculiar reactiv-
ity observed for 8a was induced by a specific reaction taking 
place between the iodine(III) reagent and the ferrocene 
moiety. In particular, Single-Electron Transfer (SET) events 
were considered (see SI for details). However, this pathway 
eventually led to an endo cyclization that required a prohib-
itively high activation energy of 46.0 kcal/mol to reach the 
transition state. A diradical cation pathway eventually led 
to a more stable cyclization transition state but still lying 
quite high on the Gibbs energy surface (30.4 kcal/mol).  A 
more likely pathway starting with the exergonic iodination 
of A by PIDA to give complex B and AcOH was computed 
(Scheme 4, -8.1 kcal/mol). Although the hydroacyloxylation 
of the alkyne moiety was exergonic (-23.4 kcal/mol), it only 
converged toward the cyclized product via a high energy TS 
(43.0 kcal/mol, see SI for details). Thus, instead of consider-
ing the hydroacyloxylation of complex B, we envisaged its 
hydration to give complex C, located at -19.3 kcal/mol on 
the Gibbs energy surface. With the ferrocene moiety in 
close vicinity, a concerted iodination-deprotonation (CID) 
then takes place through TSCD (-16.7 kcal/mol). This step re-
quires only 2.6 kcal/mol of Gibbs energy of activation. The 
resulting ferrocene/AcOH adduct D (-20.8 kcal/mol) then 
gives E after elimination of the acetic acid residue (-28.6 
kcal/mol). The reductive elimination faces a 22.0 kcal/mol 
barrier to reach TSFG (-6.6 kcal/mol). This step leads to ad-
duct F (-106.8 kcal/mol) and then 12 after elimination of PhI 
(-114.2 kcal/mol). The difference in reactivity between 8a 
and ruthenocenyl-ynamide 11 is probably due to the larger 
size of the metallocene. Analysis of the X-ray structure of 11 
shows a Cp-Cp distance of 3.613 Å (compared ≈ 3.30 Å for 
its ferrocenyl counterparts), which precludes the formation 
of a metallocephane. 

We reasoned that if we wanted to expand the scope ferro-
cenophanes we could access to, an oxygen donor able to 
react with the triple bond was needed. We took inspiration 
from the work of Ohshiro, showing that N-phenyl 
ketenimine could react with diphenylnitrone 15 to yield ox-
indoles through cyclization.38 We surmised that a similar ac-
tivation could be applied to ynamides if the zwitterionic 
form G (Scheme 5) was favored. Using HFIP as the solvent,39 
we found that ferrocephane 12a could be obtained from 8a 
using nitrone 15 as the oxygen donor. After optimization 
(see SI for details) an 85% yield could be attained, using 4 
equivalents of the nitro. We were delighted to see that with 
these conditions substituted ynamides could be cyclized 
and ferrocenophanes 12c, 12d and 12e could also be iso-
lated in good yields. We suppose that the high polarity of 
HFIP favors the zwitterionic G form of the ynamide, which 
can be protonated by the solvent to give keteniminium H. 

From there, by analogy with what has been proposed with 
ketenimines and ketenes,38,40–42 O-addition of the nitrone 
would lead to enol intermediate I. Cyclization of the ferro-
cene ring would liberate imine 16 (which was observed in 
the crude reaction) and intermediate J, which would quickly 
rearomatize to 12 through deprotonation by the alco-
holate. Interestingly, for N-benzyl or N-phenyl ynamides, 
rather than a cyclization an oxoarylation (with the incorpo-
ration of an imine moiety) takes place. This latter reactivity 
had been previously reported but using a Pt(II) catalyst,43 
whose used can thus be bypassed by using HFIP.  

Scheme 5. Formation of ferrocenophanes using nitrones 
as oxygen donors 

 

It was possible to efficiently cleave the sulfonamide group 
of 12a, 12d and 12e using sodium-naphthalene to access 
the unprotected amide 17a,d,e in 68% to 88% yield 
(Scheme 6).  

 

Scheme 6. Deprotection of 12 and reduction of amides 
17. 

 
 
Further reduction with LiAlH4 gave the corresponding a-
mine 18a and 18d in 68% and 78% yield, respectively, 
further demonstrating the robustness of this ansa[3]-fer-
rocene moiety. Both structures could be confirmed by X-ray 
analysis of 17a and 18a.  



 

In this work, we have been able to synthesize the first exa-
mples of N-metallocenyl ynamides and to study their reac-
tivity. The presence of the metallocene moiety clearly mo-
dulates the chemical behavior of these ynamides and a 
straightforward access to ansa[3]-ferrocenyl amides and a-
mines was developed using hypervalent iodine(III) reagent 
or nitrones as the oxygen donor. In both cases the reactivity 
drastically differs from the one that can be observed when 
reacting non-metallocenyl ynamides. Moreover, our ap-
proach  offers a complementary metal-free strategy for re-
mote C-H-functionalization of ferrocenes. To the best of our 
knowledge, despite many advances in transition-metal-ca-
talysis for the C–H bond functionalization of ferrocenes,44–

46 there is only one example of such a remote C-H functio-
nalization catalyzed by a transition metal.47 Further studies 
are underway to fully explore the exciting chemistry of 
these original ynamides. Moreover, taking into considera-
tion the potential of ferrocene31 and more particularly of 
ferrocenophane48–50 for medicinal chemistry, incorporation 
of this cyclic ferrocene moiety onto known drugs will also 
be sought after. 
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