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Abstract 25 

Empirical models, previously called land-use regression (LUR), are used to understand and predict spatial 26 

variability in levels of outdoor air pollution at unmeasured locations, for example, to conduct health risk 27 

assessment, environmental epidemiology, or environmental justice analysis. Many methods are used to 28 

generate empirical models, yet almost no research compares models generated by separate research 29 

groups. We intercompare six national-scale empirical models for year-2010 concentrations of PM2.5 in the 30 

US, each generated by a different research group. Despite substantial differences in the statistical methods 31 

and input data used to build the models, our main finding is a relatively high degree of agreement among 32 

model predictions. For example, in pairwise intercomparisons, the average Pearson correlation coefficient 33 

is 0.87 (range: 0.84 to 0.92); the RMSD (root-mean-square-difference; units: μg/m3) is 1.1 on average 34 

(range: 0.8 to 1.4), or ~12% of the average concentration; and many best-fit lines are near the 1:1 line. 35 

The underlying reason for this agreement is likely that, while the methods and the independent variables 36 

differ among the models, in all cases the models are built using, and are calibrated to, the same 37 

information: publicly available measurement at US EPA regulatory monitoring stations. Findings here 38 

suggest that future improvements to national empirical models will come not from further refinements to 39 

the methods (e.g., more-advanced models) but from employing a fundamentally different set of 40 

observations, in addition to regulatory monitoring data. 41 

Key Words 42 

Land use regression, exposure assessment, air quality models, empirical model comparison, point-based 43 

models, gridded models 44 

Synopsis 45 

Model predictions of six national-scale empirical models in the contiguous US have a high degree of 46 

agreement. 47 

 48 
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1. Introduction 49 

Empirical models can be used to understand and predict levels of outdoor air pollution, including at 50 

unmeasured locations. The name (“empirical”) emphasizes that the models reflect empirical 51 

measurements. Such model results have been used, for example, in health risk assessment, environmental 52 

epidemiology, and environmental justice analysis.  53 

Generating empirical-model results typically involves three steps: (1) Model building: generating an 54 

empirical model to predict measured concentrations (i.e., the dependent variable; the model is calibrated 55 

to and attempts to predict these), using several parameters that might correlate with concentrations (i.e., 56 

the potential independent variables). (2) Model testing, to quantify parameters such as uncertainty, 57 

robustness, error, and bias. If multiple models were built by a research group, the model-testing phase 58 

could involve a model-selection process. Hold-out cross-validation typically occurs in this step. (3) Model 59 

application, wherein the final selected model(s) is used to estimate concentrations throughout the domain 60 

of interest (e.g., at all Census Block centroids in the continuous US). 61 

Early empirical models were developed at the urban-scale, using land-use variables (e.g., road locations, 62 

industrial locations) and linear regression, and hence were called “land-use regression” (LUR) (Brauer et 63 

al, 2003; Jerrett et al., 2005; Hoek et al., 2008; Marshall et al., 2008; Su et al., 2008; Eeftens et al., 2012). 64 

Subsequent developments include (1) adding many more independent variables, including microscale 65 

point-of-interest sources (Wu et al., 2017; Lu et al., 2019), satellite-derived estimates for pollution (e.g., 66 

atmospheric column totals) or land-cover (Knibbs et al., 2018; Bechle et al., 2015; de Hoogh et al., 67 

2016),  and predictions from chemical transport models (Bechle et al., 2015; Goldberg et al., 2019), (2) 68 

deriving independent variables from imagery (Google Street View images or satellite images) or using 69 

images directly via machine learning rather than first obtaining specific independent variables (Hong et 70 

al., 2019; Weichenthal et al., 2019; Ganji et al., 2020; Lu et al., 2021; Qi & Hankey, 2021; Qi et al., 71 

2022), (3) employing more-advanced mathematics rather than linear regression (Beckerman et al., 2013; 72 

Weichenthal et al., 2016; Di et al., 2019; Lautenschlager et al., 2020; Wong et al., 2021), (4) quantifying 73 
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temporal variability (Wu et al., 2018; Masiol et al., 2019), and (5) using a national or international, rather 74 

than urban, spatial domain (Hoek et al., 2015; Hystad et al., 2011; Novotny et al., 2011; Knibbs et al., 75 

2014; Larkin et al., 2017; Saha et al., 2021). For the dependent variable, early models often employed 76 

purposefully-placed passive NO2 samplers (Aguilera et al., 2008; Wang et al., 2013; Lee et al., 2017); 77 

subsequent developments include using regulatory monitoring data (Hystad et al., 2011; Novotny et al., 78 

2011; Larkin et al., 2017), mobile monitoring (Larsen et al., 2007; Thai et al., 2008; Hankey & Marshall, 79 

2015; Weichenthal et al., 2016; Messier et al., 2018; Minet et al., 2018; Hankey et al., 2019), and freely-80 

available data from ubiquitous low-cost sensors already deployed by the public (Bi et al., 2020; Lu et al., 81 

2022). 82 

Studies to intercompare empirical models are scarce, especially for large geographies. Some studies have 83 

compared empirical models with mechanistic models (e.g., CMAQ) (Marshall et al., 2008; Samoli et al., 84 

2020), satellite-based models (e.g., aerosol optical depth, AOD) (Yu et al., 2018; Cowie et al., 2019), or 85 

hybrid models (Michanowicz et al., 2016; Zhang et al., 2021). Other studies have compared results using 86 

different methods for model-building (e.g., LUR vs. machine learning vs. kriging vs. hybrid empirical 87 

models) (Adam-Poupart et al., 2014; Jain et al., 2021; Dharmalingam et al., 2022). However, most prior 88 

comparisons were at the city or region level, and comparisons were generally within a single research 89 

team. We identified only one study that compared empirical models nationwide (Lu et al., 2021). 90 

This paper adds to the literature by comparing concentration predictions from six annual-average PM2.5 91 

empirical models for the contiguous US. Each model was generated by a different research group; they 92 

differ in their approaches. Our analysis compares the predictions from these models at three spatial scales: 93 

nationally, regionally, and urban/rural. 94 

2. Methods 95 

2.1.  General 96 
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Our approach is to intercompare a sample of six national empirical models for annual-average ambient 97 

PM2.5. We focused on annual-averages for fine particles (PM2.5) for several reasons: PM2.5 is an 98 

important criteria-pollutant, regulated by the US EPA through a health-based National Ambient Air 99 

Quality Standard (NAAQS); millions of people in the US live in areas that exceed the NAAQS (US EPA, 100 

2022a); and the health effects associated with annual-average PM2.5 are large. Importantly, multiple 101 

national empirical models predict annual-average PM2.5 available for this pollutant. 102 

In general, one way to intercompare models would be for all modelers to pre-agree to a set of model-103 

building and model-testing observations. (Or, if there were a set of measurements that no model included 104 

in model-building — e.g., a dataset that was unknown or otherwise unused — then the outcome would be 105 

similar: a dataset that could be used to test all of the models.) In this case, it would be possible to compare 106 

each method against the held-out cross-validation measurements. However, in the current 107 

intercomparison, each research group used their own held-out data, comparison metrics, and approach to 108 

investigate model uncertainty. Furthermore, the models incorporate the monitoring data in different ways 109 

(e.g., via a kriging component); for that reason, simply comparing the six models against observations 110 

(which were used during model-building) may not shed light on model reliability at locations without 111 

measurements. 112 

Instead, we directly intercompare the models, without comparing against held-out measurements. We do 113 

not have “gold-standard” observations to compare against. Nevertheless, we believe that useful insights 114 

can be gained from the intercomparisons conducted. 115 

2.2  Input data 116 

We obtained year-2010 predicted PM2.5 concentrations for six empirical models (see Table 1) via data 117 

download or direct request from researchers. Three models are “point based” (their predictions apply to a 118 

specific spatial location): (1) The CACES EPA ACE center model is based on universal kriging with 119 

partial least squares data-reduction (PLS-UK) (Kim et al., 2020). (2) The EPA downscaler provides a 120 
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Bayesian space-time “fuse” of monitoring data and 12 km CMAQ model outputs (US EPA, 2022b). (3) 121 

The MESA-Air models use space-time PLS and expectation-maximization to fill in missing observations 122 

(Keller et al., 2015). The other three models are “gridded models” (predictions are for grid locations, 123 

reflecting the average concentration in that region [e.g., in a ~ 1 km2 area]): (4) The Harvard/MIT EPA 124 

ACE center model employes a generalized additive model to integrate multiple machine-learning 125 

algorithms (Di et al., 2019). (5) The SEARCH EPA ACE center model is based on a fusion of WRF-126 

Chem, satellite data (MAIAC AOD), and a kriging of EPA monitor data (Goldberg et al., 2019). (6) The 127 

model by van Donkelaar et al. (2019) statistically “fuses” a chemical transport model (GEOS-Chem), 128 

satellite observations of aerosol optical depth, and ground-based observations using a geographically 129 

weighted regression. 130 

To make direct intercomparisons, we aligned spatiotemporal aspects of the models to be annual-average 131 

and by Census Tract (n ~ 74,000). When sub-annual (e.g., monthly) predictions were provided, we 132 

calculated annual averages. When sub-tract (e.g., block) predictions were provided, we calculated Tract 133 

means. When predictions were gridded, we converted to Census geographies by extracting values at block 134 

locations and then population weighting to the tract level. 135 

One of the models (SEARCH model) is only available for the eastern half of the contiguous US (90° W 136 

longitude), which includes US cities as far west as Chicago. The other five models are available for the 137 

entire contiguous US. 138 

2.3  Analysis 139 

We conducted three pairwise comparisons of the model-predictions: (1) scatterplot matrices, (2) 140 

Pearson’s r, and (3) root mean square difference (RMSD) between predictions. We also generated 141 

boxplots showing distribution of predictions, and calculated the two values in each tract to indicate the 142 

range of model predictions: range (i.e., max minus min), and trimmed range (second-highest value minus 143 

second-lowest value). 144 
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To assess factors that may modify model agreement, we conducted comparisons for the following 145 

geographies: (1) all locations, (2) urban vs. rural (urban defined as all tracts intersecting with Census 146 

urbanized areas, all remaining tracts are considered rural), (3) by region (using the 9 NOAA climate 147 

regions), and (4) stratified by population density (using the 2010 tract-level population density). 148 

3. Results and discussion 149 

Pairwise scatterplots of model predictions (Figure 1) indicate a relatively high degree of agreement. The 150 

average Pearson correlation coefficient (“r”) is 0.87 (range: 0.84 to 0.92), RMSD (units: μg/m3) is 1.1 on 151 

average (range: 0.8 to 1.4), and many best-fit lines are near the 1:1 line. The population average 152 

concentration of PM2.5 in 2010 was ~9.3 μg/m3 (mean), ~9.5 μg/m3 (median), so the RMSD (1.1 μg/m3) 153 

represents ~12% of the average concentration. Thus, at the national level, the models agree well. 154 

Model-model comparisons by geography (Figure 2) suggests modest differences among most regions, and 155 

minor differences between urban/rural locations. Pearson correlation coefficients indicate that model-156 

model agreement is slightly lower in the Midwest and South than in other regions. RMSDs indicate 157 

agreement is slightly lower in the West.  158 

Figure 3 shows the prediction variability by concentration and location. Two aspects stand out: first, the 159 

relative agreement among the models, across the range of concentrations (Figure 3D). In locations for 160 

which the median predicted concentration is comparatively low (less than 6 μg/m3), EPA predictions tend 161 

to be slightly higher than the other models. For the very lowest-concentration locations, with median 162 

predicted concentrations less than 3 μg/m3, the Martin2019 predictions too tend to be slightly larger than 163 

the other models. The SEARCH model is only available for the eastern half of the contiguous US and so 164 

therefore excludes lower-population-density lower-concentration regions found in the western half of the 165 

contiguous US. The CACES and Harvard models tend to agree with each other and to be near the median 166 

prediction, for each concentration range (Figure 3D). 167 
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Second, the range of model predictions (a measure of between-model disagreement) exhibits a potentially 168 

surprising relationship with concentration level (see Figure 3E, 3F). We might have expected that the 169 

range of predictions would be wider for higher-concentration locations (e.g., consistent with the models 170 

having a certain percent-error in their predictions). Instead, the range of model predictions is 171 

approximately constant across levels of pollution (Figure 3E, 3F). This is consistent with an additive 172 

rather than multiplicative error model. To the extent that there is a pattern (more so for Figure 3E than 173 

Figure 3F), the range of predictions is greater in lower- than in higher-concentration locations. The 174 

finding reflects the patterns mentioned in the previous paragraph: below 5 or 6 μg/m3, the EPA predictions 175 

(and, below 3 μg/m3, the Martin2019 predictions too) are larger than the other models’ predictions; it 176 

suggests that predicting concentrations in low-concentration locations might be more challenging (greater 177 

model-model difference) than in medium- or high-concentration locations. 178 

Overall, while some model-model differences are revealed in Figure 3, the main finding is relative 179 

agreement. Model-model comparisons can identify the level of model agreement/disagreement, but not of 180 

accuracy or error. In cases where the models agree (or disagree), it’s possible all of the models are 181 

incorrect. Thus, a useful step for future research would be to compare against held-out measurements --- 182 

either via a coordinated effort by the researchers to hold out a consistent set of measurements, or via an 183 

independent dataset of concentrations that none of the researchers employed in model-building. 184 

Limitations of this research include the following. (1) We considered one set of spatiotemporal 185 

comparisons (annual-average; national/regional/urban-rural) and one set of metrics (RMSE, correlation), 186 

but did not compare all possible comparisons (e.g., did not investigate seasonal or daily models, nor sub-187 

regional or local/community model results) or metrics. Other metrics or spatiotemporal representations of 188 

the models too may be useful for health, environmental justice, or risk analysis. (2) We have not 189 

specifically investigated the fitness of these models for specific purposes, including epidemiological 190 

studies, environmental justice studies, public outreach, regulatory analysis, or risk assessment. (3) As 191 

mentioned above, we did not compare against measurements; this paper presents only a model-model 192 
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comparison. Model-model agreement is not the same as a model being “correct”. (4) We have identified 193 

that the empirical models are relatively consistent with each other, but we have not investigated, within 194 

the models themselves, why. For example, it may be that the models use the same or similar independent 195 

variables; or, it may be that the similarities in model-prediction are despite large differences in 196 

independent variables employed. 197 

Strengths of this research include the following. We inter-compared several models, and shed light on 198 

similarities and differences nationally, regionally, for urban/rural differences, by pollution level, and by 199 

population density. This is, to our knowledge, the first intercomparison of national empirical models. As 200 

noted above, we did not compare against monitors; however, that aspect can partially be viewed as a 201 

strength, because the monitoring network is not evenly distributed spatially. Comparisons of models at 202 

monitor locations may or may not shed light on concentrations at unmonitored locations; the comparisons 203 

here are at Census geographics (Tracts) and so reflect locations where people live. 204 

The models employ different techniques for model building. Some are closer to a linear model, some use 205 

machine learning or highly complex mathematical relationships that would be difficult for a human to 206 

create or understand. They employ a wide variety of independent variables. However, all of the models 207 

use EPA monitoring station data as the model-building dataset. Whatever strengths or weaknesses exist in 208 

using EPA monitors (and their locations) for empirical models, those likely impact all of the models.  209 

We conducted several sensitivity analyses. First, reflecting that SEARCH results are only available in the 210 

eastern half of the US, we generated pairwise scatterplots for only the eastern half of the US (Figure S1). 211 

Next, we generated separate scatterplots for urban-only (Figure S2) and urban-only in the eastern half of 212 

the US (Figure S3) and for rural-only (Figure S4) and for rural-only in the eastern half of the US (Figure 213 

S5). We find, for example, that the maximum RMSD is slightly larger for rural areas than for urban areas, 214 

a finding that may differ from expectations but is consistent with results described above (Figure 3E) and 215 

may reflect the lower density of monitors in rural areas or that the correlation between concentrations and 216 

land use may be lower in rural than in urban areas.  217 
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We repeated the analyses in Figure 3 but for the eastern half of the US (Figure S6 and S7). The findings 218 

are generally consistent with results above: the models generally agree with each other. The range of 219 

predictions (a measure of model-model disagreement) is greater at lower-concentration locations than at 220 

high-concentration locations. 221 
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 436 

 437 
Figure 1: Scatterplot matrix for 2010 tract-level PM2.5. Scatterplots in the upper right show pairwise 438 
tract-level predictions from each model (µg/m3). Grey dashed line shows 1:1 line, red solid line shows 439 
linear trendline. Corresponding boxes in the bottom left show Pearson’s correlation (r; unitless) and root 440 
mean squared difference (RMSD; µg/m3) between model predictions. 441 
 442 
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 443 
 444 
Figure 2: Summary of pairwise Pearson correlation coefficients (top) and root mean square 445 
difference (bottom) for all locations, urban and rural locations, and NOAA climate regions. 446 
Horizontal bar shows the median, box shows the interquartile range, and vertical lines show max and min 447 
values among model comparisons. The six NOAA regions denoted with an asterisk (“*”) exclude 448 
SEARCH predictions as they were unavailable geographically. The results for those six regions reflect 10 449 
pairwise comparisons of five models; results for the other regions (without an asterisk) reflect 15 pairwise 450 
comparisons of six models. 451 

 452 
  453 
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 454 
 455 
Figure 3: Variability by concentration and location. Maps show median concentration among model 456 
predictions within each tract (A) and within-tract variability of model predictions calculated as the max 457 
minus min (B) and 2nd max minus 2nd min (C). Boxplots show (y-axis) range of tract-level model 458 
predictions (D) and within-tract variation calculated as either max minus the min (E) or 2nd max minus 2nd 459 
min (E) of model predictions within each tract as a function of the median concentration among model 460 
predictions within each tract, binned to 1 µg/m3 bins (x-axis). In the boxplots, horizontal bar shows the 461 
median, box shows the interquartile range, and vertical lines show the 5th and 95th percentiles of the 462 
variability for tracts within each bin. 463 
 464 



20 

 

Table 1: Summary of models and processing steps465 
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a  CACES and EPA downscaler ozone modeled as 5-month (May-Sept) ozone season average of daily 8-hr max. 468 

*Tract centroid predictions may be publicly released at a later date. 469 
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