
Assessment of chemistry knowledge in large language models that generate code

Andrew D. White,1, ∗ Glen M. Hocky,2, 3, † Heta A. Gandhi,1 Mehrad Ansari,1 Sam Cox,1 Geemi P.
Wellawatte,4 Subarna Sasmal,2 Ziyue Yang,1 Kangxin Liu,2 Yuvraj Singh,2 and Willmor J. Peña Ccoa2

1Department of Chemical Engineering, University of Rochester
2Department of Chemistry, New York University

3Simons Center for Computational Physical Chemistry, New York University
4Department of Chemistry, University of Rochester

(Dated: December 9, 2022)

In this work, we investigate the question: do code-generating large language models know chem-
istry? Our results indicate, mostly yes. To evaluate this, we produce a benchmark set of problems,
and evaluate these models based on correctness of code by automated testing and evaluation by
experts. We find recent LLMs are able to write correct code across a variety of topics in chemistry
and their accuracy can be increased by 30 percentage points via prompt engineering strategies, like
putting copyright notices at the top of files. These dataset and evaluation tools are open source
which can be contributed to or built upon by future researchers, and will serve as a community
resource for evaluating the performance of new models as they emerge. We also describe some good
practices for employing LLMs in chemistry. The general success of these models demonstrates that
their impact on chemistry teaching and research is poised to be enormous.

SIGNIFICANCE STATEMENT

Large language models (LLMs) can generate functional
computer code. We assess the inherent ability of these
models to solve problems in the domain of chemistry, and
also investigate whether intrinsic “knowledge” of chem-
istry is contained within LLMs. All the models evaluated
here show some ability to solve chemistry problems, in-
cluding equations, chemical structures, units, and princi-
ples. As LLMs become more available, it leads us to ask
what more will researchers be able to do, and what more
can we ask from students in classes, if repetitive tasks
are easily solved using these approaches.

I. INTRODUCTION

Large language models (LLMs) are multi-billion pa-
rameter transformer neural networks1 that are trained
on enormous collections of documents (corpus) without
supervision or labels.2 LLMs can do multiple tasks like
classifying natural language, translating text, and doc-
ument search. Perhaps the most remarkable task of
LLMs is to complete an input string of text; via this
mechanism (called causal language modeling), LLMs can
write unit tests, document function, write code from a
doc string, answer questions, and complete stoichiomet-
ric equations.3,4

We previously discussed the outlook of LLMs in
chemistry.5 In the few months since then, LLMs have
been both developed for specific chemistry problems6,7

and general LLMs have been applied in chemistry.8,9 An

∗ andrew.white@rochester.edu
† hockyg@nyu.edu

open question for LLMs such as GPT-3,3 T5,10 or GPT-
neo11 that are trained on very large and varied textual
data is if they can be applied in domains like chemistry,
which have specialized language and knowledge. In our
initial work,5 we found relationships between SMILES
and natural language is possible with GPT-3. SMILES
is the the standard method of representing molecules as
strings.12 It is even possible to loosely edit structures via
natural language (see Fig. 6).13,14 However, the extent
to which LLMs can be directly applied in chemistry in
the broad context of research and teaching is unexplored.
The large amount of specific domain knowledge required
to solve chemistry problems may limit applicability of
general LLMs. For example, recent work has found that
knowledge of the periodic table of elements requires very
high parameter counts.4
Recent comparisons of LLMs that generate code can

be found Ref 15. Here, we focus our study on whether
LLMs that generate code16 can be applied to chemistry
tasks of a computational nature (both computational
chemistry problems, and general tasks which can be ex-
pressed as simple computer programs, such as ranking
elements by ionic radius). Most LLMs that generate com-
puter code are causal decoder-only models16–18—a user
provides a sequence of text (called the prompt) and it
proposes a continuation of the text (the completion).19

There are LLMs trained on code that can infill or match
encoder/decoder natural language to code like Code-
BERT,20 but they are typically used for embedding code
for tasks like classification, document retrieval, or trans-
lating code to natural language. Because it is not rea-
sonable to use encoder-decoder or encoder-only models
to generate code or answer questions with open-ended
length, this paper explores solely decoder-only causal lan-
guage models.
Evaluating LLMs’ knowledge of chemistry should

be distinguished from capability to reason or under-
stand. LLMs can make compelling completions, but

2

are incapable of reasoning and demonstrate superficial
understanding.21,22 Our goal is to evaluate LLMs’ abil-
ity to correlate natural language, equations, code, and
heuristics of chemistry.

II. METHODS

We have compiled a categorized set of chemistry
and related example prompts for benchmarking code-
generating LLMs in a public repository.23 To generate
these problems, we first decided upon a list of categories
of chemistry and chemical engineering knowledge, listed
in Tab. I, and set a goal of having at least 10 examples in
each category for our initial database of problems. Mem-
bers of our research groups (the authors on this paper),
who we consider to have sufficient expertise in these ar-
eas due to formal schooling, research, and teaching expe-
rience, contributed the prompts and reference solutions
for these categories.

The examples in this table span a range of topics that
we consider common questions across chemistry fields.
There is some representation of computational chemistry
research topics (categories corresponding to performing
chemical simulations (sim), analyzing molecular dyan-
mics simulations (md), chemical informatics (cheminf),
and some of quantum mechanics (qm)), but this con-
stitutes less than half of the initial prompts created by
us. The rest correspond to typical questions that one
might encounter in general chemistry (genchem), bio-
chemistry (bio), physical chemistry (thermodynamics,
quantum mechanics, spectroscopy), and in laboratory
classes (plotting and statistics).

Within this set of topics, some examples were labeled
as only expert evaluable, where automated evaluation is
infeasible or insufficient (e.g. plotting). The total num-
ber of examples is 84, of which 25 were expert evaluable,
and the accuracy is 72% for the best performing model.

There is a strong correlation between model parame-
ter count and accuracy,24 so we focus only on the largest
models with more than 1B parameters. The architec-
tures of models are all decoder-only like GPT-33 with
the ability to insert completions,25 (except when noted).
The first model is a GPT-3 12B fine-tuned on code
(Codex) abbreviated as “cushman.” It is known as code-
cushman-001 in the OpenAI API26. This is modified
from the original Austin et al.16 somewhat and is de-
scribed as “a stronger, multilingual version of the Codex
12B model.”27. We also used code-davinci-002, ab-
breviated as “davinci.” This model is part of the cate-
gory of “GPT-3.5” models that are derived from GPT-
3.28 The number of parameters in davinci-class models
is not public information, but may match the 175B pa-
rameters of the model described in the GPT-3.5 paper.29

Finally, we also considered the recent text-davinci-
003 model which is derived from code-davinci-002
with a reinforcement-learning adaption from human user
feedback29 – although this model became available only

after human evaluation (below) was complete, so that
our analysis is reported only on automated evaluations.
This model is denoted as ‘davinci3’ here.
The “incoder” models are two models from Fried et

al.17 trained on code only. We chose incoder because it is
able to infill code in addition to completing code prompts,
which gives a more direct comparison, and it has gener-
ally good performance. Lastly, we consider the ‘codegen’
model,30 which is another decoder-only model trained on
a similar dataset to ‘incoder’. It was not trained for in-
filling, because it was designed for back-and-forth code
synthesis with natural language. Although it is not ex-
actly analogous to the other models, it is one of very few
competitive models that can generate working code, and
so we include it here for comparison.30

Recent benchmarks show davinci is best or nearly the
best on general programming tasks.15,31 Incoder was used
as implemented in HuggingFace transformers.32 To avoid
library changes since 2021 influencing accuracy, our eval-
uations are done using the python version and packages
from June 2021. The chosen date was based on reported
training range from Ref. 31 and comes before training
time of Ref. 17.
When developing example prompts and solutions,

the prompts were tested and modified using davinci.
Some prompt engineering was inevitable through this
process.3,33,34 However, prompts were not designed to get
a correct answer and some prompts (e.g., two atom har-
monic oscillator) were never correctly completed. We do
emphasize that the reported accuracy is not one would
expect of the first prompt constructed on-the-fly for a
given problem. Rather, they are constructed to answer
“how much chemistry do these LLMs know?” These fig-
ures should not be construed as upper bounds either,
as recent work on prompt engineering shows that multi-
ple steps (sometimes known as using “scratchpads”)18 or
eliciting multiple steps can further improve accuracy.28

Following Chen et al.,31 a prompt completion is ac-
curate if the code functions correctly, not if it matches
a reference implementation. Most examples have both
a prompt and unit tests. Expert evaluable prompts for
which there are not unit tests are not reported in the
accuracy, unless specified. Five completions were gen-
erated via top-k sampling35 and multiple temperatures
at T = 0.05, 0.2, 0.5 (softmax scaling). We explored nu-
cleus sampling,36 but found it to be no different than
adjusting temperature for balancing diversity and cor-
rectness of completions. We chose k = 5 for all models,
except for incoder-6B where GPU memory limitations
prevented sampling more than k = 1. Thus, those re-
sults may be slightly inflated since accuracy is reported
on only a most likely output. Error bars in all plots
are 95% confidence intervals generated from bootstrap
resampling across top-k.
Expert evaluation was performed on k = 3 outputs of

davinci (T = 0.2, “insert” context) and accessed through
a web interface.37 Each example contains a link to a cus-
tom Google form which could be used to evaluate that

3

Prompt
import numpy as np

def run_mc(n_steps, T, k):
 """
 This function performs metropolis monte carlo sampling of a harmonic
 potential at temperature T and returns the trajectory
 """
 [insert]
 return traj

Inserted code - output (1)
 traj = np.zeros(n_steps)
 traj[0] = np.random.uniform(-1, 1)
 for i in range(1, n_steps):
* x_new = np.random.uniform(-1, 1)
 dE = 0.5*k*(x_new**2 - traj[i-1]**2)
 if dE < 0:
 traj[i] = x_new
 else:
 if np.random.uniform(0, 1) < np.exp(-dE/T):
 traj[i] = x_new
 else:
 traj[i] = traj[i-1]

(2) x_new = traj[i-1] + np.random.randn()
(3) x_new = np.random.normal(traj[i-1], 1)

FIG. 1. Example prompt and code generated for database example ‘mc_harmonic’. Full output is the prompt with ‘[insert]’
replaced by code in lower box. The asterisk indicates a line that is faulty. Inset box shows equivalent lines from two other
solutions that are correct, if not necessarily optimal. This example is discussed in Sec. III A.

Topic N expert incoder codegen davinci davinci3
bio 13 2 0% 29% 43% (0%)1 86%
cheminf 10 0 20% 20% 50% 50%
genchem 11 0 29% 86% 86% 86%
md 11 3 0% 13% 63% (81%) 88%
plot 10 10 – – – (57%) –
qm 8 3 20% 60% 100% (59%) 100%
sim 8 5 0% 0% 100% (64%) 100%
spect 11 1 30% 20% 50%(12%) 40%
stats 11 1 40% 80% 70% (88%) 60%
thermo 10 0 10% 10% 80% 70%
total 842 23 17% 35% 72% (57%) 75%

TABLE I. The number of prompts by topic and best accuracy
achievable in this work. “expert” is the number within a topic
that must be evaluated by an expert. We used the “copy-
right” context for incoder-6B, “authority” for codegen-16B,
and “insert” for davinci and T = 0.2 (best for all models).
Results are averaged across top-k sampling and/or multiple
expert evaluators. 1expert evaluator scores are in parentheses.
2some prompts appear in multiple topics. The abbreviations
of topics are biochemistry (bio), cheminformatics (cheminf),
general chemistry (genchm), molecular dynamics & simula-
tion (md), quantum mechanics (qm), methods of simulation
(sim), spectroscopy (spect), statistics (stats), and thermody-
namics (thermo).

example, with results saved in a spreadsheet. The multi-
ple choice questions in the form were: “Is this question:
Easy; Medium; Hard”, “Is the solution: Perfect; Correct
but not perfect; Runs and is almost correct; Does not
run but is almost correct; Is far from correct.” There
was also a box for extra comments. This evaluation did
breakout more detailed information like alignment be-

tween prompt and completion or hazards of completion,
like recently proposed in Khlaaf.38 The full set of evalu-
ations, with personally identifiable information (student
emails) removed, is available as a comma separated value
(CSV) file in the Supporting Information. To make a
numerical evaluation of this data in Fig. 3, we assigned
scores from 1–5 with 5 being the best (“Perfect”) and 1
being the worst (“Is far from correct”). To compute an
overall accuracy as reported in Tab. I, we assigned “Per-
fect”, and “Correct but not perfect” a value of 1.0, and
all others 0.0, then computed the mean score for each
prompt separately. It should be noted that each assessor
had a different level of expertise on each topic, as well
as a different level of python programming experience,
although we feel all were sufficiently expert to evaluate
each prompt with sufficient authority.

III. RESULTS

A. Example problems

To illustrate the kinds of tasks and impressive (if not
always correct) results produced by LLMs, we show the
output for one ‘sim’ category tasks in Fig. 1. To stan-
dardize our tasks, each tasks is phrased as a function to
be filled in, as in the top box. This prompt includes a first
line which loads the numerical python (numpy39) library,
which gives additional ‘context’ (see below). The rest of
the information for the LLM is contained in two places,
the names of the variables given as inputs ‘n_steps’, ‘T’,
‘k’, and a comment string which says what the function

4

Prompt

Inserted code - output (4)

import math
import sys

def claussius(HVap, T1, P1, T2):
 """
 This function returns the phase
 transition pressure at temperature T2
 given a heat of vaporization HVap,
 and and reference temperature and
 pressure T1 and P1
 """
 [insert]
 return P2

 P2 = P1*math.exp((HVap/8.314)*
 ((1/T1)-(1/T2)))

FIG. 2. Example prompt and code generated for the database
example ‘claussius’. Full output is the prompt with ‘[insert]’
replaced by code in lower box. Davinci passed our automated
check for this example on three out of five tries.

does/should do. In this case, the function should perform
Metropolis Monte Carlo for a harmonic potential. Im-
plicit in the instruction by the creator is that k represents
the spring constant, and so this code should produce sam-
ples from the energy function U(x) = 1/2k(x−x0)

2, with
x0 = 0 since it was not specified as an input, and also
that reduced units are used, such that Boltzmann’s con-
stant kB = 1.0. We can see that—with quite minimal
instruction—the code in the output is correct except for
an error on the line indicated with a ‘*’; in this line,
the position of the particle is completely resampled from
scratch on the range [-1,1). This code would actually be
fine if the system were constrained to be within a box of
length 2, and in the limit of k >> 1 it will also appear
to give correct results. The inset shows the equivalent
line in two other outputs of the model, both of which
are acceptable; one displaces the position by a Gaussian
random number with µ = 0 and σ2 = 1, and the sec-
ond chooses a new position from a Gaussian with mean
centered at the current position and σ2 = 1. Note that
neither of these is optimized for the choice of (k,T), as
σ2 = 1 may be too large or too small to be efficient, de-
pending on the spring constant and temperature. Finally,
in one of the other two outputs for this example (available
in the SI or on the results website), k is interpreted as
Boltzmann’s constant, and the harmonic system is given
a spring constant of 1.0 implicitly; this is a reasonable re-
sult of the model. It illustrates how the author must be
careful about what is implicit in their prompt and what
is stated explicitly (e.g. here, that T is temperature).

Fig. 2 shows an additional example to highlight how
the davinci-codex model internally contains knowledge
of chemistry topics (in this case, general chemistry per-
taining to phase equilibrium). The output shows that
the model “knows” the relevant rearrangement of the
Claussius-Clapeyron equation, and returns the appro-
priate result, assuming that the heat of vaporization

(‘Hvap’) was given in joules/mol.

B. Expert evaluations

Davinci, the best performing model, does have broad
knowledge of equations and common calculations across
multiple domains of chemistry. Table I gives the overall
accuracy across the topics, models, and expert evaluable
topics. Both models can correctly answer prompts across
a range of topics, with davinci doing best. About 30 per-
centage points of accuracy is from prompt engineering,
which is discussed further below.

On average, the accuracy on human evaluable topics is
lower, reflecting their increased difficulty. These prompts
include tasks like writing an input file for NWChem,40

implementing a Monte Carlo simulation of a harmonic
oscillator (Fig. 1), and generating a complex multi-panel
plot. Fig. 3 shows a breakdown of difficulty from the
individual evaluations. There is a balance of easy and
hard prompts in the dataset, as judged by experts. Our
primary result here is that the accuracy of the model is
negatively correlated with perceived prompt difficulty, as
might be expected but did not necessarily have to be the
case. We did not do any randomization or controls; each
evaluator was able to see all prompts and all outputs, and
so we acknowledge that scores could be biased by factors
such as the order of the prompts on the website, and the
order that results for a given prompt were presented on
the website. In the rest of this article, we focus only on
prompts whose correctness can be evaluated by compar-
ison with an expected solution in an automated fashion.

Easy Medium Hard
Is this question

0

2

4

6

R
e
s
u
l
t

q
u
a
l
i
t
y

n=300 n=242 n=108

FIG. 3. 650 evaluations of davinci completions by the nine
coauthors who are postdoctoral scholars or Ph.D. students
in chemistry or chemical engineering. Scoring is described in
Sec. II. We find that the typical result quality (white dot)
drops from ‘Perfect,’ to ‘Correct but not perfect’, to ‘Runs
and is almost correct’ as perceived difficulty increased.

5

0

1
A
c
c
u
r
a
c
y

stats thermo cheminf bio spectroscopy

no
ne

cu
st
om

in
se
rt

co
py
ri
gh
t

au
th
or
it
y

0

1

A
c
c
u
r
a
c
y

md

no
ne

cu
st
om

in
se
rt

co
py
ri
gh
t

au
th
or
it
y

genchem

no
ne

cu
st
om

in
se
rt

co
py
ri
gh
t

au
th
or
it
y

qm

no
ne

cu
st
om

in
se
rt

co
py
ri
gh
t

au
th
or
it
y

sim

model
codegen-16B
incoder-6B
cushman
davinci
davinci3

FIG. 4. A comparison of accuracy of the LLMs compared in this study across different contexts, broken down by category.
Adding context – short comments/imports – generally improves accuracy across topic and model. Error bars are 95% confidence
intervals from bootstrapping across individual prompts, temperature, and from multiple completions.

C. How to improve performance

There is a large accuracy gain when using basic prompt
engineering strategies. Fig. 4 shows the effect of different
“contexts” on accuracy across models. A context here is
code prepended before all prompts, or all prompts within
a topic. The contexts are given both in the Supporting
Information and our accompanying code. “Custom” in-
cludes two pieces: some imports related to the topic (e.g.,
rdkit41 for cheminf) and a single example to teach the
model how to indicate the end of a prompt completion.
The imports are not just to prevent errors due to failure
to include relevant libraries — they influence the com-
pletions and give context. For example, a “structure”
after importing rdkit means a bonded arrangement of
atoms; in contrast, a structure after importing openmm42

(a molecular dynamics simulation code) would implicitly
mean a 3D arrangement of atoms, e.g. obtained from a
PDB file.

The completion example is a one line statement (e.g.,
printing version number of imported package) with a
comment above and #end below. This causes the LLM to
end completions with #end. We tried to ad-hoc look for
certain keywords such as new function defs, returns, or
comments as completion ends, but these heuristics were
often violated. The completion example is significant for
the cushman model, which can only do completions but
not insertions. For davinci and the incoder models, we
can replace this with the “insert” contexts which have
the same imports but use a model capability to infill at
a special insert token (as in Fig. 1). Avoiding our com-
pletion example in the context seems to be insignificant
for davincni, but important for incoder.

LLMs seem to be very very very susceptible to condi-
tioning contexts like adding the word “very” many times
to improve a completion43 or stating that the code “has
no bugs.” We explored this in our benchmarks in two
ways. We tried inserting copyright notices and found
in Figs. 4 and 5 that it does significantly improve accu-
racy at higher temperatures. This makes intuitive sense;
lowering temperature makes the LLM choose more likely

completions and a copyright notice would more often be
included with standard/quality code, thus giving a simi-
lar effect to lowering temperature. The best performing
model/temperature combination was not improved be-
cause it already had a low temperature. We also tried
inserting the statement “This is written by an expert
Python programmer” as suggested by Austin [44], and
saw slightly less improvement. Similar recent work has
found context or specific phrases (e.g., “let’s think step by
step”) that elicit chain-of-thought outputs can give large
accuracy improvements.28,45 Fried et al. [17], Wei et al. [34]

have recently explored using metadata, including popu-
larity of code, as a mechanism to condition completions,
so that we do not need to use ad-hoc prompt engineering.
Interestingly, the results from davinci3 show that the im-
provements to the NLP model through human feedback
removed some of the observed sensitivity29 to prompt
engineering on our examples.

0.0

0.5

A
c
c
u
r
a
c
y

codegen-16B model incoder-6B model

no
ne

cu
st
om

in
se
rt

co
py
ri
gh
t

au
th
or
it
y

cushman model

no
ne

cu
st
om

in
se
rt

co
py
ri
gh
t

au
th
or
it
y

0.0

0.5

A
c
c
u
r
a
c
y

davinci model

no
ne

cu
st
om

in
se
rt

co
py
ri
gh
t

au
th
or
it
y

davinci3 model

temperature
0.05
0.2
0.5

FIG. 5. Comparison of context effect across models and tem-
peratures. Having a custom context is most important. Note
that insert, copyright, and authority include the “custom”
context. Error bars are 95% confidence intervals from boot-
strapping across individual prompts, temperature, and from
multiple completions. Cushman and codegen cannot do in-
sertions.

6

Aside from contexts, there are a few strategies to en-
sure a prompt aligns the intent of a user with the com-
pletion. If the prompt contains programming mistakes or
spelling mistakes, then the completion will be of similar
quality. So a correctly spelled and intelligible prompt is
necessary.

The LLM tries to agree with each word in the prompt.
If a prompt is a function declaration and uses the phrase
“compute the moment”, the model will probably not re-
turn the value. Thus, the word “return” should be used.
If a package is imported in the prompt, the model will
try to make use of it. This can lead to problems if many
packages are imported – it can be unexpected as to which
packages the model will use, or the model thinks it must
use all of them.

A major source of the errors in some of the categories
such as ‘md’ is the proper use of functions from a package
such as mdtraj, in particular, improper knowledge of how
many and what type of values are returned by that func-
tion; this could be a simple error or due to training on an
earlier version of the module; these results may be able
to be improved in the future by ‘fine tuning’ the LLM
on examples from a particular package that is frequently
used in one’s work, or by adding additional context.

D. Molecular structures

Our goal is to evaluate how much chemistry LLMs
know. Besides evaluating tasks that can be expressed
as programs, we also explored whether LLMs can con-
nect natural language directly with molecular structures.
We tested both InstructGPT29 and davinci in these ex-
amples, but found InstructGPT to work better. Nei-
ther could convert from molecular SMILES to name of
molecule, as demonstrated with 0% accuracy on 100 ran-
dom molecules from pubchem46 when we tried SMILES
length of less than 60 characters (relatively small/simple
molecules). The attempt from InstructGPT is shown in
the Supporting Information. InstructGPT was able to
convert a sentence describing a molecule into SMILES,
as shown with examples in Fig. 6. InstructGPT is able
to connect functional groups from SMILES to natural
language. The molecules are not exact matches, but
there is some correlation (e.g., oxygen near ring for
phenol, amine). It is also able to correlate molecular
properties like lipophilicity with SMILES. InstructGPT
rarely generates invalid SMILES; only the first molecule
in Fig. 6 had a single invalid character (see Supporting
Information for SMILES). It appears that InstructGPT
or other LLMs could be trained/fine-tuned on the con-
nection between natural language and chemical struc-
tures. Recently, specific models that can translate be-
tween molecular structure and natural language have also
been trained from scratch.47

FIG. 6. Generating molecules with InstructGPT (text-
davinci-002). Prompts are shown in annotations. The
strongly lipophilic molecule is C505, a polystyrene that is in-
deed strongly lipophilic. Most examples contain mistakes, but
were mostly valid. The top-left example had an ambiguous
ring indicator index which was removed prior to drawing. All
structures do not match prompt exactly (indicated by crossed-
icon), but do have details correlated with the prompt.

E. Discussion

Davinci seems to not reason well about computational
chemistry. If we prompt davinci to use to a “highly ac-
curate single-point” quantum calculation in pyscf,48 it
will frequently use relativistic Hartree-Fock regardless of
the property being computed because it has memorized
that “relativistic” is associated with accurate. Another
example is in the “force constant” prompt which is meant
to compute the force constant for a two-atom harmonic
oscillator with different masses given a wavelength. Per-
haps because this is an unusual variant of a common
question (converting between force constant and wave-
length), davinci always fails on this question and is un-
able to rearrange the equation to take a harmonic mean
of masses.
Davinci may also hallucinate functions that do not ex-

ist. If a difficult prompt is given, for example “return
the residual dipole couplings given a SMILES string,”
the model will simply try to use a non-existent method
MolToRDC. As reported previously,21 LLMs are not able
to do chemical reasoning when completing prompts.
We’d like to anecdotally note that the LLMs could per-

form many of the benchmark problems if the natural lan-
guage was in Chinese, German, or Spanish. We did not
explore this in depth, but a few example prompts written
in Mandarin can be found in the Supporting Information.
The use of LLMs with prompts that are not in English

7

may be a valuable tool for lowering the barrier to em-
ploying computational tools for those who are not native
English speakers, and who therefore may have a harder
time interpreting documentation and programming fo-
rums.

IV. CONCLUSIONS

LLMs are now easily available via tools like tabnine49

or copilot.50 We’ve found high accuracy on computa-
tional chemistry questions, and it is inevitable that stu-
dents and researchers will begin using these tools. From
our results, high accuracy should be expected with rea-
sonable prompts. Tricks like inserting copyright notices
at the top of a source file seems to be another way
to improve accuracy, although fine-tuning with human
feedback mitigates this effect29 as seen in davinci3. We
found that humans are able to gauge accuracy for easy
to medium prompts, but care should be taken if using
completions of difficult prompts. The seeming inability
to generate syntactically invalid code means LLMs of-
ten produce something, but it is up to the user to assess
it. We also found somewhat unexpected capabilities like
generating molecules from natural language and accurate
completions with non-English prompts. For a broader
discussion of what impact this will have on education,
we refer the interested reader to our earlier perspective
article.5

ACKNOWLEDGMENTS

Research reported in this work was supported by
the National Institute of General Medical Sciences of

the National Institutes of Health under award number
R35GM137966 (to ADW) and R35GM138312 (to GMH).
HAG was supported by NSF award 1751471. MA, SC,
and ZY were supported by NIH award R35GM137966.
GPW was supported by NSF award 1764415 SS and YS
were partially supported by NIH award R35GM138312,
WJPC by R35GM138312-02S1, and KL partially by De-
partment of Energy award DESC0020464. SS and KL
were also partially supported by the Simons Foundation
Grant No. 839534. We thank Drs. Sanjib Paul, David
Gomez, and Navneeth Gokul who also contributed some
examples to the repository.

AUTHOR CONTRIBUTIONS

ADW and GMH wrote NLCC software and designed
nlcc-database, website, and human evaluation form.
They contributed examples to the nlcc-data repository
and performed data analysis. All other authors con-
tributed examples to the nlcc-data repository, partici-
pated in the expert evaluation, and assisted in writing
the manuscript.

V. SUPPORTING INFORMATION

Supporting figures, tables, and text are included in
the Supporting Information. Accuracy data is avail-
able as comma separated value files. Contexts are avail-
able as a markup file. The completions as HTML
presented to expert evaluators is available at DOI:
10.5281/zenodo.6800475.

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
Attention is all you need, Adv. Neural Inf. Process Syst.
30 (2017).

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, arXiv preprint arXiv:1810.04805
(2018).

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al., Language models are few-shot learners,
Adv. Neural Inf. Process Syst. 33, 1877 (2020).

[4] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb,
A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta,
A. Garriga-Alonso, et al., Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models, arXiv preprint arXiv:2206.04615 (2022).

[5] G. M. Hocky and A. D. White, Natural language process-
ing models that automate programming will transform
chemistry research and teaching, Digital Discovery 1, 79
(2022).

[6] S. Wang, Y. Guo, Y. Wang, H. Sun, and J. Huang,
Smiles-bert: large scale unsupervised pre-training for
molecular property prediction, in Proceedings of the 10th
ACM international conference on bioinformatics, com-
putational biology and health informatics (2019) pp.
429–436.

[7] N. Frey, R. Soklaski, S. Axelrod, S. Samsi, R. Gomez-
Bombarelli, C. Coley, and V. Gadepally, Neural scaling
of deep chemical models, ChemRxiv 10.26434/chemrxiv-
2022-3s512 (2022).

[8] D. Flam-Shepherd, K. Zhu, and A. Aspuru-Guzik, Lan-
guage models can learn complex molecular distributions,
Nat. Commun. 13, 1 (2022).

[9] J. Ross, B. Belgodere, V. Chenthamarakshan, I. Padhi,
Y. Mroueh, and P. Das, Do large scale molecular lan-
guage representations capture important structural in-
formation?, arXiv preprint arXiv:2106.09553 (2021).

[10] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, P. J. Liu, et al., Exploring
the limits of transfer learning with a unified text-to-text
transformer., J. Mach. Learn. Res. 21, 1 (2020).

8

[11] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe,
C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima,
et al., The pile: An 800gb dataset of diverse text
for language modeling, arXiv preprint arXiv:2101.00027
(2020).

[12] D. Weininger, Smiles, a chemical language and informa-
tion system. 1. introduction to methodology and encod-
ing rules, J. Chem. Inf. Comput. Sci. 28, 31 (1988).

[13] C. Nantasenamat, “would be cool to have gpt-3 generate
new chemical structures in smiles notation?”, Twitter ,
1516794237391863810 (2022).

[14] A. D. White, “as suggested by @thedataprof, gpt-3 can
actually generate molecules. very clever idea! prompt was
”the smiles for this drug-like molecular are:”, Twitter ,
1516795519284228106 (2022).

[15] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, A
systematic evaluation of large language models of code,
in Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming (2022) pp. 1–10.

[16] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski,
D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le, et al.,
Program synthesis with large language models, arXiv
preprint arXiv:2108.07732 (2021).

[17] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wal-
lace, F. Shi, R. Zhong, W.-t. Yih, L. Zettlemoyer, and
M. Lewis, Incoder: A generative model for code infilling
and synthesis, arXiv preprint arXiv:2204.05999 (2022).

[18] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong, A conversational
paradigm for program synthesis, arXiv preprint (2022).

[19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al., Language models are unsupervised
multitask learners, OpenAI blog 1, 9 (2019).

[20] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, et al., Codebert: A pre-
trained model for programming and natural languages,
arXiv preprint arXiv:2002.08155 (2020).

[21] E. M. Bender and A. Koller, Climbing towards nlu: On
meaning, form, and understanding in the age of data, in
Proceedings of the 58th annual meeting of the association
for computational linguistics (2020) pp. 5185–5198.

[22] E. M. Bender, T. Gebru, A. McMillan-Major, and
S. Shmitchell, On the dangers of stochastic parrots: Can
language models be too big? , in Proceedings of the
2021 ACM Conference on Fairness, Accountability, and
Transparency (2021) pp. 610–623.

[23] https://github.com/ur-whitelab/nlcc-data.
[24] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu,

M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu, A. Ku-
mar, et al., Holistic evaluation of language models, arXiv
preprint arXiv:2211.09110 (2022).

[25] M. Bavarian, H. Jun, N. Tezak, J. Schulman,
C. McLeavey, J. Tworek, and M. Chen, Efficient training
of language models to fill in the middle, arXiv preprint
arXiv:2207.14255 (2022).

[26] Openai.com.
[27] Https://beta.openai.com/docs/model-index-for-

researchers.
[28] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwa-

sawa, Large language models are zero-shot reasoners,
arXiv preprint arXiv:2205.11916 (2022).

[29] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wain-
wright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, et al., Training language models to fol-

low instructions with human feedback, arXiv preprint
arXiv:2203.02155 (2022).

[30] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong, A conversa-
tional paradigm for program synthesis, arXiv preprint
arXiv:2203.13474 (2022).

[31] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brock-
man, et al., Evaluating large language models trained on
code, arXiv preprint arXiv:2107.03374 (2021).

[32] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,
et al., Huggingface’s transformers: State-of-the-art natu-
ral language processing, arXiv preprint arXiv:1910.03771
(2019).

[33] S. H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel,
N. V. Nayak, A. Sharma, T. Kim, M. S. Bari, T. Fevry,
et al., Promptsource: An integrated development envi-
ronment and repository for natural language prompts,
arXiv preprint arXiv:2202.01279 (2022).

[34] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi,
Q. Le, and D. Zhou, Chain of thought prompting elic-
its reasoning in large language models, arXiv preprint
arXiv:2201.11903 (2022).

[35] A. Fan, M. Lewis, and Y. Dauphin, Hierarchical neu-
ral story generation, arXiv preprint arXiv:1805.04833
(2018).

[36] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi,
The curious case of neural text degeneration, arXiv
preprint arXiv:1904.09751 (2019).

[37] https://ur-whitelab.github.io/nlcc-data/.
[38] H. Khlaaf, A hazard analysis framework for code

synthesis large language models, arXiv preprint
arXiv:2207.14157 (2022).

[39] C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gom-
mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, et al., Array programming with
numpy, Nature 585, 357 (2020).

[40] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P.
Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha,
E. Aprà, T. L. Windus, et al., Nwchem: A comprehensive
and scalable open-source solution for large scale molecu-
lar simulations, Comp. Phys. Comm. 181, 1477 (2010).

[41] G. Landrum et al., Rdkit: A software suite for chemin-
formatics, computational chemistry, and predictive mod-
eling, Greg Landrum (2013).

[42] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon,
Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C. Sim-
monett, M. P. Harrigan, C. D. Stern, et al., Openmm
7: Rapid development of high performance algorithms
for molecular dynamics, PLoS Comp. Biol. 13, e1005659
(2017).

[43] P. Isola, “language-conditional models can act a bit like
decision transformers, in that you can prompt them with
a desired level of “reward”. e.g., want prettier #dalle
creations? ”just ask” by adding ”[very]^n beautiful”:”,
Twitter , 1532189616106881027 (2022).

[44] J. Austin, “we found that code models get better when
you prompt them with i’m an expert python program-
mer. the new anthropic paper did something similar,
prefixing the model’s response with i’ve tested this
function myself so i know that it’s correct:, Twitter ,
1515063524258627586 (2022).

9

[45] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. Das-
Sarma, D. Drain, S. Fort, D. Ganguli, T. Henighan,
et al., Training a helpful and harmless assistant with rein-
forcement learning from human feedback, arXiv preprint
arXiv:2204.05862 (2022).

[46] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He,
Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, et al.,
Pubchem 2019 update: improved access to chemical
data, Nucleic Acids Res. 47, D1102 (2019).

[47] C. Edwards, T. Lai, K. Ros, G. Honke, and H. Ji, Trans-
lation between molecules and natural language, arXiv

preprint arXiv:2204.11817 (2022).
[48] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth,

S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova,
S. Sharma, et al., Pyscf: the python-based simulations of
chemistry framework, Wiley Interdiscip. Rev. Comput.
Mol. Sci. 8, e1340 (2018).

[49] https://www.tabnine.com/.
[50] https://github.com/features/copilot.

