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Abstract: Structural diversification of lead molecules is a key component of drug discovery to explore 

close-in chemical space. Late stage functionalizations (LSFs) are versatile methodologies capable of 

installing functional handles on richly decorated intermediates to deliver numerous diverse products in a 

single reaction. Predicting the regioselectivity of LSF is still an open challenge in the field. Numerous 

efforts from chemoinformatics and machine learning (ML) groups have made significant strides in this 

area. However, it is arduous to isolate and characterize the multitude of LSF products generated, limiting 

available data and hindering pure ML approaches. We report the development of an approach that 

combines message-passing neural network and an 13C NMR-based transfer learning to predict the atom-

wise probabilities of functionalization. We validated our model retrospectively and with a series of 

prospective experiments, showing that it accurately predicts the outcomes of Minisci-type and P450 

transformations, outperforming state-of-the-art Fukui-based reactivity indices. 

 Late-stage functionalization (LSF) is a powerful technique in medicinal chemistry. The "magic 

methyl effect" is one whereby the addition of a single methyl group, even one distal to the binding motif, 

can dramatically improve (or reduce) potency, solubility, and metabolic stability.[1] However, methyl 

groups are not the only motif that can radically change pharmacological properties. Fluoro,[2] chloro,[3] 

trifluoromethyl,[4] and hydroxyl groups[5] are known beneficial motifs and/or functional handles in 



generating beneficial motifs. Over the past several decades, numerous methods have been developed to 

diversify lead compounds and selectively install these biologically privileged motifs directly.[6] One 

methodology commonly utilized in LSF is the Minisci-type functionalizations, whereby a radical species 

adds to an electron deficient (hetero)arene (Figure 1A).[7] However, the promiscuity of these single 

electron methods in conjunction with the inherent structural complexity of LSF molecules make 

regioselectivity prediction challenging. Regiochemical predictions for Minisci-type reactions were first 

summarized by O'Hara et al. who developed a set of guidelines to determine sites of reactivity based upon 

the nucleophilicity of the alkyl radical species, pH of the reaction, solvent effects, and electronics of the 

heteroarene.[8] These observations were later formalized when they were noted to correlate well with the 

indices from Fukui functions, i.e. functions that describe the change in electron density upon the addition 

or removal on an electron. We hypothesized that an ML model can offer improvement upon this state-of-

the-art technique (Figure 1B).[9] A consistent and broadly applicable LSF predictive framework would 

facilitate more rapid and facile access to a diverse array of drug-like compounds, expanding the known 

possible scope for chemical space exploration. 
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Figure 1. A) Mechanistic differences between the one-electron based transformations of the two major types of reactions in the dataset: Minisci and P450. 
B) Graphical overview of the basic MPNN model. C) Distribution of reaction sites per molecule and molecule size in the dataset. 



 There are two main approaches in the literature for regiochemical predictions: quantum chemical 

and data-driven. Quantum chemistry-based approaches predict reactivity and regioselectivity by 

computing energy barriers using techniques such as DFT or machine learning (ML) approximations of 

DFT-energies.[10] Data-driven approaches to work directly with experimental data, fitting statistical 

models to correlate known chemical features to real world observed outcomes in regioselectivity.[11] 

Whilst real-word data is often noisier and not as readily available as computational DFT data, the utility 

of ML models built upon experimental data usually outweighs the downsides. Indeed, some of 

experimentally-based reactivity models can reach human expert performance in their predictions and can, 

on occasion, surpass them.[11a] However, ML-based regiochemical prediction is still difficult. Due to the 

challenges of rigorously characterizing the regiochemical outcomes of thousands of reactions, 

experimental data-based models must often operate in lower data environments, and if gathered from the 

literature, often with data that contains few negative datapoints, i.e. molecules that don't react. In contrast, 

datasets which include easily extractable yield information often contain ten-fold more data.[12] This 

makes it more difficult for ML to find relationships between the molecular structure and LSF outcomes. 

Herein, we report a solution to this problem: the utilization of open-source 13C NMR data in conjunction 

with LSF data. Our model is a graph-based model which used no pre-computed molecular properties nor 

any 3D molecular information. As a proof of concept, we highlight our framework's predictive ability on 

both Minisci and P450 LSFs which outperformed the state-of-the-art Fukui function-based index 

predictions on retrospective evaluations and a set of prospective experiments. 

 Data were sourced from Pfizer's internal medicinal chemistry dataset which consisted of 2,613 

reactions, 647 unique molecules, and 823 unique LSF conditions which included traditional Minisci 

functionalizations, Minisci reactions performed with the Baran Diversinates™,[13] P450 mediated 

oxidations, metalloenzymatic reactions, electrochemical LSF, photoredox alkylations, and even two-

electron based LSF such as chlorinations from Palau’chlor.[14] Importantly, our dataset includes reaction 

condition screening data which contain unsuccessful conditions that led to no significant product 

formation (zero reactive sites). Given the limited size of the dataset, reactions that yielded oxidative 

cleavage or hydrolyzed side products were kept in hopes that they would provide the model a deeper 

understanding of chemical reactivity. When deciding the correct method to split the data in training and 

testing sets, we opted for scaffold-based instead of a random split. It has been hypothesized that a random 

split encourages the model to simply memorize the inherent reactivity of a molecule, instead of applying 

its learned chemical knowledge to new scaffolds.[15] A scaffold split, where every molecule in the test set 

is an unseen molecule, provides a more challenging target. The retrospective test set consisted of 25 



reactions which was comprised of 5 

unique molecules and 17 unique 

reaction conditions. Of the reaction 

conditions, 22 were Minisci-type 

functionalizations with 4 utilizing 

the Baran Diversinates™, one was a 

P450 oxidation, and one was a 

metalloenzyme oxidation (Figure 

2A). The first challenge to overcome 

was to establish automated 

extraction of reactive sites, which 

were the labels for the ML task at 

hand. A notoriously challenging area 

of research,[16] it was observed that 

the product structure of successful 

LSF reactions is nearly identical to 

the reactant's, different only in the 

substitution at one or more carbon 

atoms. Thus, simple automated 

reaction site extraction could be 

achieved by treating the product and 

reactant as graphs and performing an 

exhaustive subgraph search, 

identifying the correct site of 

reaction indices. This was performed 

by the open-source Glasgow 

Subgraph Solver.[17] One AI 

architecture that has seen impressive 

performance has been message 

passing neural networks (MPNNs), a 

subset of graph convolutional neural networks (GCNNs), first utilized by Duvenaud et al., Li et al., and 

Gilmer et al. in the mid-2010s.[18] MPNNs are a robust and versatile way to predict macro properties (i.e. 
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solubility, compound assay activity, IR spectra, energy)[18c, 19] and micro properties (i.e. 13C and 1H NMR 

shifts, regioselectivity)[11b, 20] of molecules by representing molecules as graphs. Graphs, in mathematics, 

are structures made up by "nodes" and "edges"; nodes are concrete entities (events, people, atoms, etc.) 

and edges indicate that two things have a connection (these events happened due to the same cause, these 

people all know each other, these atoms share a bond). Briefly, MPNNs work by transmitting information 

from one node to another via the edge "highway". Each message pass transmits the atoms' information 

one bond further away, radially, with the intention that after a sufficient number of message passes, each 

atom will have a comprehensive understanding of its local environment (Figure 1B).[18c]  

 We developed an MPNN that sits at ~100 lines of code making it is fast, easy to work with, and 

highly flexible.[21] This MPNN was only given basic atomic information: atomic number, atomic symbol, 

if the atom was a hydrogen acceptor or donor, its hybridization, if the atom was aromatic or not, and the 

number of explicit hydrogens, to predict a given atom's probability of functionalization. If the chemist 

would not know molecular property X by looking at the structure, that information would not be given to 

the model either. Rather the model must infer relevant chemical and spatial information from the structure. 

For simplicity, the reaction components were one-hot encoded. A random forest regressor was trained on 

one-hot encoded reaction features and Morgan fingerprints was used as a baseline model. Random forests 

are known to be excellent predictors of molecular features (e.g. compounds increasing the lifespan of C. 

elegans, IC50 measurement prediction of drug-like molecules, excitation energies and associated oscillator 

strengths of fluorophores) especially in low-data environments.[22] Comparison of different model 

variants against any test set was performed with the well-established F-score, which incorporates both 

precision and accuracy in its calculation.[23] F-scores range from 0 to 1, independent of the number of 

reactions in a test set, where a score of 1 is a perfectly accurate model. When optimizing model 

performance, it became apparent that the loss function was critical in model performance. The loss 

function evaluates how well the model is performing during its training and directs the model to 

emphasize or deemphasize any given (embedded) molecular features. Exploration of variations on the 

Binary Cross Entropy Loss revealed several promising avenues (Eq. S1-S4), however the top model's 

performance was unable to break the 0.5 F-score barrier (Figure 2B). Evaluation of the predictions 

revealed that the model seemed to be especially challenged with extended conjugated systems, such as 

those present in loratadine (2) and imatinib (5). We hypothesized that this was due to the difficulty of 

atoms in one hemisphere of the molecule "seeing" atoms on the other hemisphere in the MPNN. Whilst 

increasing the number of bonds that every atom's information travels between (the "range" of the atom's 

message) did not improve performance, the incorporation of a universal node did. This universal node, as 



described by Gilmer et al. (used the term 

"master node"), is an all-seeing node - 

information from every atom is given to 

the universal node, which in turn gives 

information to every atom about distant 

atoms.[18c] Implementation of a 

universal node MPNN led to a model 

with a modest F-score of 0.46 (Figure 

2B).  

 At this point, we suspected that 

we were running up against the limit of 

the data. Ideally, this would be solved 

by the performing additional LSF 

reactions, however this data is laborious 

and expensive to generate. Every 

regioisomer must be isolated and 

characterized for every new substrate, 

which can be cost and/or time 

prohibitive. Another obvious solution 

would be to increase the amount 

information of each atom, which would 

hopefully lead to the model gaining a 

deeper understanding of the local 

chemical environments. However, 

given the poor performance of QM-derived atomic descriptors for MPNN regioselectivity prediction in 

LSF, this was deemed an unsuitable solution.[11b] Thus, transfer learning was employed. This is a 

technique whereby a model is trained on off-task data before being trained on the desired-task data to 

boost performance.[24] It was crucial to choose a transfer learning task that had significantly more data 

than our current training set, which would allow for more complex correlations between structure and 

reactivity to be inferred. However, it was also imperative that this off-task bore some relationship to 

atomic reactivity. We hypothesized that 13C NMR shift prediction would be uniquely suited for our goal. 

Although these two ML tasks at first glance have little in common with each other, they are two sides of 
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the same coin. Whereas NMR is a measurement of electron density, Minisci LSF (and the state-of-the-art 

Fukui-derived predictions) are highly predicated on differences of electron density. In addition, the 

inherent symmetry of a molecule is represented in NMR spectra as atoms with identical chemical 

environments have identical NMR shifts.[25] This would transfer to atoms with identical chemical 

environments have identical reactivity. Thus, ~27,000 open-source 13C NMR shifts were obtained from 

Jonas et al.'s previous work (originally sourced from NMRShiftDB) and transfer learning from 13C NMR 

shift to LSF regioselectivity prediction commenced.[20] This step enabled a massive improvement in 

model performance with the top performing model, MPNNLSF, yielding a top model F-score of 0.62 (4% 

of reaction sites incorrect) and an average model performance over 5 initializations of 0.57 (Figure 2B). 

Interestingly, we observe that negative data is important for model performance. Removing the entries 

with zero reactive sites (unproductive reaction conditions) led to a substantial decrease in model 

performance (Figure S3). We hypothesize that this is because the  negative data allows the model to infer 

similarities between different one-hot encoded reaction conditions. 

 To highlight this training technique's performance, we devised a different regioselectivity task: 

P450 oxidation. P450 oxidation plays a central role in drug metabolism, determining the efficacy and 

duration of a pharmaceutical. Additionally, the interactions of some drugs with human P450s are known 

to inhibit and/or induce P450 activity leading to drug-drug interactions.[26] Due to its inherent 

promiscuity,[27] P450 oxidations are a promising LSF and an excellent test for our framework. 

Mechanistically distinct from Minisci functionalizations, the crux of a P450 oxidation occurs when an 

Fe(IV)-oxo complex abstracts a hydrogen atom from a bound substrate, followed by radical rebound to 

form the newly oxidized product (Figure 1B).[27c] Site of metabolism (SoM) prediction, which deduces 

the most likely positions for P450 oxidation on a given compound, has seen great strides in the past two 

decades.[28] We offer this framework as a jumping off point to develop a broadly applicable, isoform-

independent SoM methodology. Fukui-based indices have also been shown to be effective at determining 

the regiochemical outcomes P450 oxidations and thus the indices will continued to be used as the model 

to beat.[29] Thus, a P450-only test set of 31 reactions and 19 unique molecules (Figure S5), reacting with 

18 unique P450s ranging from human to dog to mouse liver extracts was curated. Gratifyingly, our model 

architecture outperformed the random forest baseline and Fukui predictions, despite only 25% of the 

training data containing P450 reactions (Figure 2C). The best model, MPNNP450, achieved comparable F-

score performance to MPNNLSF on its P450-only test set (Figure 3D). 

 A lingering question is whether incorporating 3D information and/or quantum mechanical features 

as input to the graph would help model performance. Conformer generation and quantum chemistry 



calculations add computational overhead, which would limit this model's applicability in practice. 

However, many MPNNs utilize QM-derived information including 3D atomic coordinates and find a 

significant performance improvement. We implemented a MPNN with atomic features built upon 

molecular dynamics (MD) simulations and atomic density representations with implicit 3D atomic 

information. We found no significant improvement over the non-MD model (Figure S4). This observation 

is congruent with Nippa et al. which independently and concurrently published a MPNN for LSF C-H 

borylation regiochemical and yield prediction.[11b] They noted that similar augmentation of their atomic 

information with quantum mechanical features did not lead to noticeable improvement of regioselectivity 

prediction, and incorporation of 3D atomic coordinates only yielded a modest improvement over 2D 

molecular representations (scaffold splits). It is possible that the lack of improvement with 3D atomic 

featurization stems from the difficulty in characterizing properties of the LSF reaction transition state 

with descriptors that refer to an unperturbed substrate molecule. 

 With the success of our architecture in a variety of LSF regiochemical predictions, we turned our 

attention to assessing its ability in a completely unbiased setting through prospective prediction. Three 

maximally structurally different molecules were selected from the Enamine's High Throughput 

Experimentation catalogue via Butina Clustering.[21] The three compounds were confirmed to not be 

present within the training or testing data and none had a Tanimoto similarity score over 0.35 with any 

molecule in the training/testing datasets, indicating low structural similarity between the three prospective 

compounds and the training/testing data. Each molecule was subjected to CF2H-, CF3-, and cBu- 

functionalization (Figure 3A) and these experimental results were compared to the Fukui-derived indices 

and MPNNLSF predictions (Figure 3B & 3C). Gratifyingly, MPNNLSF once again outperformed Fukui 

predictions (Figure 3D), and the random forest baseline, even with remarkable performance of Fukui on 

this prospective test set. All of MPNNLSF's predictions made chemical sense, with predicted 

functionalizations occurring at known inherently reactive sites or probable sites of oxidation. Specifically, 

difluoromethylation on compound 8 is likely predicting the major product to be an oxidation byproduct, 

where the benzylic hydrogen is extracted from the generated alkyl radical and subsequently quenched via 

TBHP.[30] A prediction of this nature is most likely due to the decision to include byproduct reactions in 

the training data and lends credence to the hypothesis that the model understands general chemical 

reactivity trends. Fukui-based reactivity index predictions performed moderately well on 6 and 7, 

identifying the two correct, non-obvious, trifluoromethylations sites at the 2-ethoxyphenylacetamide 

moiety. However, Fukui predictions often yielded functionalizations at fully oxidized carbons, something 

that is rarely seen in these LSFs. This is perhaps due to the mechanistically agnostic behavior of Fukui-



based predictions, which highlight the site(s) of highest probability for nucleophilic / radical attack, 

regardless of whether or not those sites lead to productive pathways. 

 The regiochemical outcomes of LSF radical-based transformations are governed by many factors: 

the nucleophilicity of the radical, the BDE of the molecule's atoms, and the steric and electronic landscape 

to name a few. Interestingly, it has been observed that additional QM-derived or MD-derived data does 

not yield appreciable improvements in regiochemical outcome prediction. We showcase a transfer 

learning methodology on 13C NMR shift prediction which boosts performance well above the current 

state-of-the-art. Model performance was also highly contingent on the inclusion of negative data in the 

training set. This paradigm yielded models that outperformed Fukui-based predictions for all three test 

sets, laying the groundwork for future applications in other LSF regiochemical predictions. Our 13C NMR 

data is open-source and we anticipate that the incorporation of larger proprietary 13C NMR datasets as the 

first step in this transfer learning methodology will further improve the regiochemical predictions. 

 

[1] H. Schönherr, T. Cernak, Angewandte Chemie International Edition 2013, 52, 12256-12267. 

[2] H. L. Yale, Journal of Medicinal and Pharmaceutical Chemistry 1959, 1, 121-133. 

[3] E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, Journal of Medicinal 

Chemistry 2015, 58, 8315-8359. 

[4] D. Chiodi, Y. Ishihara, ChemRxiv preprint 2022, DOI: 10.26434/chemrxiv-2022-5mbcp. 

[5] S. N. Charlton, M. A. Hayes, ChemMedChem 2022, 17, e202200115. 

[6] a) J. D. Lasso, D. J. Castillo-Pazos, C.-J. Li, Chemical Society Reviews 2021, 50, 10955-10982; 

b) T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chemical Society Reviews 

2016, 45, 546-576; c) L. Guillemard, N. Kaplaneris, L. Ackermann, M. J. Johansson, Nature 

Reviews Chemistry 2021, 5, 522-545; d) M. Moir, J. J. Danon, T. A. Reekie, M. Kassiou, Expert 

Opinion on Drug Discovery 2019, 14, 1137-1149. 

[7] a) J. M. Smith, J. A. Dixon, J. N. deGruyter, P. S. Baran, Journal of Medicinal Chemistry 2019, 

62, 2256-2264; b) R. S. J. Proctor, R. J. Phipps, Angewandte Chemie International Edition 2019, 

58, 13666-13699; c( M. S. Lall, A. Bassyouni, J. Bradow, M. Brown, M. Bundesmann, J. Chen, 

G. Ciszewski, A. E. Hagen, D. Hyek, S. Jenkinson, B. Liu, R. S. Obach, S. Pan, U. Reilly, N. Sach, 

D. J. Smaltz, D. K. Spracklin, J. Starr, M. Wagenaar, G. S. Walker, Journal of Medicinal 

Chemistry 2020, 63, 7268-7292. 

[8] F. O’Hara, D. G. Blackmond, P. S. Baran, Journal of the American Chemical Society 2013, 135, 

12122-12134. 



[9] a) C. A. Kuttruff, M. Haile, J. Kraml, C. S. Tautermann, ChemMedChem 2018, 13, 983-987; b) 

Y. Ma, J. Liang, D. Zhao, Y.-L. Chen, J. Shen, B. Xiong, RSC Advances 2014, 4, 17262-17264. 

[10] a) L.-C. Yang, X. Li, S.-Q. Zhang, X. Hong, Organic Chemistry Frontiers 2021, 8, 6187-6195; 

b) K. Jorner, T. Brinck, P.-O. Norrby, D. Buttar, Chemical Science 2021, 12, 1163-1175; c) X. Li, 

S.-Q. Zhang, L.-C. Xu, X. Hong, Angewandte Chemie International Edition 2020, 59, 13253-

13259. 

[11] a) C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H. Green, R. Barzilay, K. F. 

Jensen, Chemical science 2019, 10, 370-377; b) D. F. Nippa, K. Atz, R. Hohler, A. T. Müller, A. 

Marx, C. Bartelmus, G. Wuitschik, I. Marzuoli, V. Jost, J. Wolfard, 2022; c) T. J. Struble, C. W. 

Coley, K. F. Jensen, Reaction Chemistry & Engineering 2020, 5, 896-902; d) K. Hasegawa, M. 

Koyama, K. Funatsu, Molecular Informatics 2010, 29, 243-249; e) N. Ree, A. H. Göller, J. H. 

Jensen, Digital Discovery 2022, 1, 108-114; f) E. Caldeweyher, M. Elkin, G. Gheibi, M. 

Johansson, C. Sköld, P.-O. Norrby, J. Hartwig, 2022; g) Y. Guan, C. W. Coley, H. Wu, D. 

Ranasinghe, E. Heid, T. J. Struble, L. Pattanaik, W. H. Green, K. F. Jensen, Chemical Science 

2021, 12, 2198-2208. 

[12] A. Thakkar, T. Kogej, J.-L. Reymond, O. Engkvist, E. J. Bjerrum, Chemical Science 2020, 11, 

154-168. 

[13] Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, 

B. Herlé, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran, Nature 2012, 492, 95-99. 

[14] R. A. Rodriguez, C.-M. Pan, Y. Yabe, Y. Kawamata, M. D. Eastgate, P. S. Baran, Journal of the 

American Chemical Society 2014, 136, 6908-6911. 

[15] K. V. Chuang, M. J. Keiser, Science 2018, 362, eaat8603. 

[16] a) E. E. Litsa, M. I. Peña, M. Moll, G. Giannakopoulos, G. N. Bennett, L. E. Kavraki, Journal of 

Chemical Information and Modeling 2019, 59, 1121-1135; b) A. Lin, N. Dyubankova, T. I. 

Madzhidov, R. I. Nugmanov, J. Verhoeven, T. R. Gimadiev, V. A. Afonina, Z. Ibragimova, A. 

Rakhimbekova, P. Sidorov, A. Gedich, R. Suleymanov, R. Mukhametgaleev, J. Wegner, H. 

Ceulemans, A. Varnek, Molecular Informatics 2022, 41, 2100138; c) W. L. Chen, D. Z. Chen, K. 

T. Taylor, WIREs Computational Molecular Science 2013, 3, 560-593. 

[17] C. McCreesh, P. Prosser, J. Trimble, in International Conference on Graph Transformation, 

Springer, 2020, pp. 316-324. 

[18] a) D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R. 

P. Adams, Advances in neural information processing systems 2015, 28; b) Y. Li, D. Tarlow, M. 



Brockschmidt, R. Zemel, arXiv preprint 2015, DOI: arXiv:1511.05493. c) J. Gilmer, S. S. 

Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, in International conference on machine learning, 

PMLR, 2017, pp. 1263-1272. 

[19] a) M. Withnall, E. Lindelöf, O. Engkvist, H. Chen, Journal of cheminformatics 2020, 12, 1-18; b) 

C. McGill, M. Forsuelo, Y. Guan, W. H. Green, Journal of Chemical Information and Modeling 

2021, 61, 2594-2609; c) I. Batatia, D. P. Kovács, G. N. Simm, C. Ortner, G. Csányi, arXiv preprint 

2022, DOI: arXiv:2206.07697. 

[20] E. Jonas, S. Kuhn, Journal of Cheminformatics 2019, 11, 50. 

[21] git@github.com:emmaking-smith/SET_LSF_CODE.git. 

[22] a) S. Kapsiani, B. J. Howlin, Scientific Reports 2021, 11, 13812; b) V. Svetnik, A. Liaw, C. Tong, 

J. C. Culberson, R. P. Sheridan, B. P. Feuston, Journal of Chemical Information and Computer 

Sciences 2003, 43, 1947-1958; c) B. Kang, C. Seok, J. Lee, Journal of Chemical Information and 

Modeling 2020, 60, 5984-5994. 

[23] Y. Sasaki, Teach tutor mater 2007, 1, 1-5. 

[24] L. Torrey, J. Shavlik, in Handbook of research on machine learning applications and trends: 

algorithms, methods, and techniques, IGI global, 2010, pp. 242-264. 

[25] M. Kruszyk, M. Jessing, J. L. Kristensen, M. Jørgensen, The Journal of Organic Chemistry 2016, 

81, 5128-5134. 

[26] a) Z. Bibi, Nutrition & Metabolism 2008, 5, 27; b) G. R. Wilkinson, New England Journal of 

Medicine 2005, 352, 2211-2221. 

[27] a) N. D. Fessner, ChemCatChem 2019, 11, 2226-2242; b) C. N. Stout, H. Renata, Accounts of 

chemical research 2021, 54, 1143-1156; c) E. King-Smith, C. R. Zwick, III, H. Renata, 

Biochemistry 2018, 57, 403-412. 

[28] a) A. R. Finkelmann, A. H. Göller, G. Schneider, ChemMedChem 2017, 12, 606-612; b) A. R. 

Finkelmann, D. Goldmann, G. Schneider, A. H. Göller, ChemMedChem 2018, 13, 2281-2289; c) 

T.-w. Huang, J. Zaretzki, C. Bergeron, K. P. Bennett, C. M. Breneman, Journal of chemical 

information and modeling 2013, 53, 3352-3366; d) Y. Djoumbou-Feunang, J. Fiamoncini, A. Gil-

de-la-Fuente, R. Greiner, C. Manach, D. S. Wishart, Journal of cheminformatics 2019, 11, 1-25; 

e) S. L. Robinson, M. D. Smith, J. E. Richman, K. G. Aukema, L. P. Wackett, Synthetic Biology 

2020, 5, ysaa004; f) Z. Mou, J. Eakes, C. J. Cooper, C. M. Foster, R. F. Standaert, M. Podar, M. 

J. Doktycz, J. M. Parks, Proteins: Structure, Function, and Bioinformatics 2021, 89, 336-347. 



[29] a) M. E. Beck, Journal of chemical information and modeling 2005, 45, 273-282; b) M. M. Fashe, 

R. O. Juvonen, A. Petsalo, J. Vepsäläinen, M. Pasanen, M. Rahnasto-Rilla, Chemical Research in 

Toxicology 2015, 28, 702-710; c) P. W. Gingrich, J. B. Siegel, D. J. Tantillo, Journal of Chemical 

Information and Modeling 2022, 62, 1979-1987. 

[30] J. Tan, T. Zheng, Y. Yu, K. Xu, RSC Advances 2017, 7, 15176-15180. 

 

Acknowledgements  

Financial support for this work was generously provided by Pfizer and the Royal Society (Newton 

International Fellowship to EKS and University Research Fellowship to AAL). We wish to thank Rokas 

Elijošius, William McCorkindale, and Oliver P. King-Smith for their enlightening discussions. We are 

grateful to Hans Renata and Roger M. Howard for assistance in manuscript preparation. The authors 

would like to acknowledge several Pfizer colleagues and Spectrix vendor partners who have contributed 

to this work including: Manjinder Lall, Gregory Walker, R. Scott Obach, and Douglas Spracklin for their 

leadership and execution of the Lead Diversification Platform (LDP), and Danial Morris for LDP product 

generation, isolations, bioanalytical support, and anyone else who has contributed to the LDP from the 

date of its inception.


