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Abstract van derWaals dispersion-repulsion interactions, commonly represented in atomistic force fields
by the Lennard-Jones (LJ) potential, play an important role in the accuracy of molecular simulations. Train-
ing the force field parameters used in the LJ potential is challenging, generally requiring adjustment based
on simulations of macroscopic physical properties. The large computational expense of these simulations,
especially if many parameters are trained simultaneously, limits the size of training data set and number
of optimization steps that can be taken, often requiring modelers to perform optimizations within a local
parameter region. To allow for more global LJ parameter optimization against large training sets, we in-
troduce a multi-fidelity optimization technique which uses Gaussian process surrogate modeling to build
inexpensive models of physical properties as a function of LJ parameters. This allows for fast evaluation
of objective functions, greatly accelerating searches over parameter space and enabling the use of global
optimization algorithms. We use an iterative framework which performs optimization with differential evo-
lution at the surrogate level, followed by validation at the simulation level and surrogate refinement. Using
this technique on two previously studied training sets, containing up to 195 physical property targets, we
refit a subset of the LJ parameters for the OpenFF 1.0.0 (Parsley) force field. We demonstrate that this multi-
fidelity technique can find improved parameter sets compared to a purely simulation-based optimization
by searching more broadly and escaping local minima. In particular, this technique often finds significantly
different parameter minima that have comparably accurate performance. In most cases, these parameter
sets are transferable to other similar molecules in a test set. This multi-fidelity technique provides a plat-
form for fast optimization against physical properties that can be refined and applied in multiple ways to
the development of molecular models.

1 Introduction
1.1 Accurate force fields are important in computational biophysics
Accuratemolecular interaction potentials, usually referred to as force fields, are an essential part ofmodern
molecular dynamics workflows. For common applications such as simulations of proteins and computer
aided drug design (CADD), the simple fixed-charge force field functional form [1–3] is generally used. This
formulation splits the potential energy of molecules into discrete components, with separate energy terms
for each component [4]. Broadly, these can be divided into the bonded (or valence) components, which
comprise the energies of bond lengths, bond angles, and torsional angles, and the non-bonded components,
representing short-range dispersion repulsion interactions and longer-range Coulombic interactions.
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This type of force field has been successful in many applications because of its simplicity, interpretabil-
ity, and computational efficiency. Many studies have used these force fields to probe the mechanisms
of protein dynamics [5–8], and they have become widely adopted in the pharmaceutical industry as a
means of screening drug candidate molecules in silico [8–12]. While these force fields are quite simple
in their functional form, their accuracy is dependent on hundreds to thousands of parameters, which
dictate the strength of interactions in different chemical environments. Decades of effort from the com-
putational chemistry community has produced many different parameter sets to cover a wide range of
chemistries [3, 13–16], largely by fitting parameters to quantum mechanics (QM) calculations [17, 18] and
experimental physical properties [19, 20].
1.2 Non-bonded training is expensive and difficult
Over the years, fitting of the bonded parameters has perhaps received the most attention, due to their im-
portance in determining the internal structure ofmolecules andproteins, and the relative ease of generating
QM data for the molecules of interest. Fitting the atomic partial charges used in the Coulombic potential
has also received significant attention, but is slightly more difficult, as mapping an continuous electrostatic
potential onto a set of discrete atoms is conformation-dependent and involves a loss of fidelity. However,
modelers have achieved good results using QM-based methods such as RESP [21, 22] and semi-empirical
methods such as AM1-BCC [23, 24].

The dispersion-repulsion interactions, almost alwaysmodeledwith the Lennard-Jones (LJ) potential, have
received the least attention in fitting, as they are typically trained against experimental physical property
data [19, 20, 25], since obtaining dispersion-repulsion estimates from QM is difficult [26? ]. This leads to
challenges with curating appropriate sets of experimental physical property data from the literature, as well
as the computational cost of simulating sets of physical property data with molecular dynamics. Most phys-
ical properties used in training, which include densities [19], enthalpies of vaporization [19], enthalpies of
mixing [27], solvation free energies [20] and dielectric constants [28, 29], require equilibrium simulations in
one or more phases, and in some cases may require alchemical simulation techniques [30]. In conjunction
with the need to train against larger datasets to ensure accuracy and transferability, this makes optimiza-
tion of LJ parameters a difficult problem. Calculating a single objective function value in order to measure
parameter fitness requires a large number of simulations, which can be difficult to coordinate and execute,
especially depending on available computational resources. As a result, one can find many instances of LJ
parameters in major force fields that have remained unchanged for more than 20 years, despite significant
advancements in hardware, simulation software, and methodology in that time.

Recently, as part of theOpen Force Field (OpenFF) Initiative, we have examined newmethods of LJ param-
eter optimization. Central to these efforts is the development of the OpenFF Evaluator simulation workflow
driver [31], which provides a standardized set of workflows for automatically building and executing physical
property simulations for a given training or test data set. With the automation that this software provides,
we can apply parameter optimization techniques to LJ parameters with minimal human intervention. In
particular, this software enabled the application of the ForceBalance [32] parameter optimization package
to LJ parameters. Using regularized least squares optimization with the L-BFGS-B algorithm [33], we min-
imized an objective function that captures the ability of a parameter set to reproduce physical property
observables. Using this framework, we studied the benefits of including physical property data of mixtures
in training LJ parameters [27], then applied that training method to a production force field, OpenFF 2.0.0
(known also as Sage)[34].

While we have achieved improved parameter sets with simulation-based regularized least-squares op-
timization, it has significant limitations. A major drawback is that, regardless of the optimization algorithm
used, the number of objective function evaluations possible is limited by the computational cost of sim-
ulations. This limits the number of parameter sets that can be considered during optimization, making
it difficult to explore high-dimensional and complex parameter spaces. This also necessitates the use of
cheaper local optimization methods such as L-BFGS-B with termination after a set number of steps [27].
When coupled with a regularization term in the objective function, included both to ensure the stability of
the optimization and to guard against overfitting [32], local optimization methods have a high probability
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of remaining in any local minima dictated by its initial values. This means that our ability to explore new
areas of parameter space that may provide significant improvement is blunted because of the expense of
evaluating the objective.
1.3 Surrogate modeling can accelerate non-bonded training
To facilitate faster evaluation of complex objective functions, modelers often use surrogate models [35, 36],
which are meant to approximate an expensive function with a simpler alternative that captures most of the
important information. Surrogate modeling techniques have been developed in response to diverse sets
of scientific and engineering challenges, including geological modeling [37, 38], engineering design [39, 40],
and chemical process modeling [41, 42]. A popular technique for surrogate modeling is Gaussian process
(GP) surrogate modeling, which has seen adoption in many disciplines [43–45] due to its simplicity and
efficacy in data-sparse regimes. While these surrogates are not perfect imitations of the high-level response,
we can construct them to a reasonable level of accuracy with a limited number of expensive evaluations. In
the context of molecular simulation parameter optimization, Befort et al. [46] demonstrated a method of
optimizing LJ parameters by building GP surrogates based on physical properties and applied this method
to several hydrofluorocarbons as well as ammonium perchlorate.

In this paper, we build on this approach, as well as engineering optimization literature [47] and our
OpenFF Evaluator software, to introduce a multi-fidelity optimization framework based on the construction
of Gaussian process (GP) surrogate models that simultaneously approximate the response surface of many
physical properties with respect to changes in the LJ parameters. Using the accelerated objective evaluation
offered by the surrogates, we implement a global optimization algorithm to search broadly and propose can-
didate parameter sets. We then validate these parameter sets by evaluating the objective at the simulation
level, accepting candidates in good agreement. Iterating between global optimization over the surrogate,
and simulation-level validation and surrogate refinement, we can drive the optimizer to explore promising
regions of parameter space with a limited number of simulation evaluations.

We test this approach by performing multi-fidelity LJ optimization for 12 LJ parameters from the OpenFF
1.0.0 (Parsley) force field. In training, we use a set of 56 pure compound physical properties curated in
a previous paper [27]. We also benchmark the results against test sets curated in the same paper; while
newer versions of OpenFF exist, using OpenFF 1.0.0 allows a direct comparison to the results of our pre-
vious optimization. With this optimization problem, we characterize the optimization method, discussing
reproducibility, seed configurations, and optimization trajectories. We also show that this method can be
extended to larger problems, by applying it to a larger training set of 195 mixture properties from the same
paper.
2 Methods
2.1 Optimization Strategy
Our optimization strategy aims to minimize an objective function 𝜒(𝜃) as in Equation 1, where 𝜃 is a vector
of force field parameters, and 𝜒 is some measure of the quality of those parameters.

min
𝜃

𝜒(𝜃) (1)
In our applications, parameter fitness is described by the ability of a force field containing those parameters
to reproduce a specific training set of experimental physical properties, although we note that this strategy
could be also be applied to a training set containing quantities from QM simulations. The optimization
strategy we employ is adapted from the framework proposed by Dennis and Troczon [47] and features two
levels of fidelity for estimating the objective function for a parameter set:

• “Simulation level”, where the objective function is directly evaluated by using molecular dynamics to
simulate the training set with a force field containing the parameter set. This is considered to be the
“ground truth”, as it most accurately represents the force field’s performance, although there is some
level of statistical uncertainty due to the stochasticity in the molecular dynamics simulation.
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• “Surrogate level”, where the objective function is estimated by a collection of surrogate models that
approximate the result of a simulation level evaluation of the training set. The surrogate level evalu-
ation of the objective function has systematic uncertainty where the surrogates approximation devi-
ates from the simulation-level estimation of the training set. It may also have statistical uncertainty
depending on the type of surrogate used, although the surrogates that we use do not.

Our optimization strategy relies on the cheaper but less accurate surrogate level to perform most of
the optimization, using the more accurate and expensive simulation level only to build the surrogates and
validates proposed surrogate-level solutions. The optimization framework is illustrated in Figure 1.

Figure 1. Flowchart of multi-fidelity optimization strategy. Optimization is initialized by simulating an initial sample ofparameter vectors. Surrogate models for each of the physical properties in the training set are then built from this initialsample. Global optimization is then performed at the surrogate level, utilizing the speedup gained with surrogate-levelfast objective evaluation. Once this proposes a candidate vector of optimized parameters, the objective function forthat parameter vector is evaluated at the simulation level. If the simulation-level objective is lower than the simulationobjective for the previous parameter vector, the new parameter vector is accepted as an improved solution; if not, it isrejected. Regardless of acceptance or rejection, the surrogate model is rebuilt with the information from the simulationlevel evaluation. This process is then repeated until a maximum number of simulation optimizations is reached, a con-vergence criteria is met, or the optimizer cannot find an improved solution.

The advantage of this strategy is its use of the properties of both the surrogate and simulation level to
drive optimization. While surrogate level evaluation is much faster than simulation level evaluation, surro-
gates need simulation points in the region of interest to accurate reproduce the objective function. Since
parameter spaces are large and the region of interest is not known a priori, an exhaustive strategy would
require a very large number of simulation level evaluations to build globally accurate surrogates, negating
the speedup gained by using surrogates. We instead build a surrogate from a minimal initial set of evalua-
tions of the objective function and allow the surrogate to suggest new parameter vectors for the simulation
level to evaluate. We can therefore iteratively drive the optimization towards the region of interest with-
out incurring too much computational cost, acquiring more information to improve the surrogates along
the way. This allows us to pair the global optimization strategies available at the surrogate level with the
accuracy of simulation-level validation.

This strategy is sufficiently general to allow for the use of a large variety of objective functions, global
optimization techniques, and surrogate modeling strategies. In this particular study we focus on only sin-
gle combination: a weighted least-squares objective function, the differential evolution global optimization
algorithm, and Gaussian Process (GP) surrogate modeling.
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2.1.1 Objective Function
The objective function we use, shown in Equation 2, is adapted from the type used in the ForceBalance
optimization software package and used in our previous work [27]. While that objective included a regu-
larization term for stability and to prevent overfitting, we omit that term, allowing our algorithm to search
more broadly to find optimized parameter vectors.

𝜒(𝜃) =
𝑁
∑

𝑛=1

1
𝑀𝑛

𝑀𝑛
∑

𝑚=1

(

𝑦𝑟𝑒𝑓𝑚 − 𝑦𝑚(𝜃)
𝑑𝑛

)2

(2)
In this equation, we consider 𝑁 types of physical properties, each with some number 𝑀𝑛 of measure-

ments for that type. The quantity 𝑦𝑚 represents the value of the 𝑚th measurement for a physical property
type, and the denominator 𝑑𝑛 is a scaling coefficient for a given property. The scaling coefficients are set
so that each physical property type contributes equally to the objective function for OpenFF 1.0.0 [18], the
starting point of our optimizations.
2.1.2 Global Optimization
We use the differential evolution [48] global optimization algorithm, as implemented in the scipy Python
package version 1.7.0 [49]. Differential evolution is a stochastic direct search algorithm similar to other
genetic algorithm strategies [50]. In this strategy, a set of N initial vectors is proposed, and then “mutated”
by randomly increasing or decreasing elements of the vector, and recombined, by randomly replacing some
elements of the vector with elements of other vectors. The objective function is then evaluated for each
of the proposed vectors, and a new set of vectors is proposed based on the lowest objective functions.
This process is repeated until convergence, when new vectors no longer outperform the current solutions.
We use the default optimization parameters in scipy, with a population size of 180 vectors, an iteration-
dependent mutation constant selected from the range (0.5,1), and a recombination constant of 0.7. We
note that, depending on the problem, a single iteration of this algorithm requires between 103−104 objective
function evaluations per iteration, each of which depends on the value of 50-200 physical properties.

The bounds of the global optimization over the surrogate model are determined by the parameter
sets used to build the surrogate. For each parameter 𝜃𝑖 in the parameter vector 𝜃, the bounds for 𝜃𝑖 aredetermined by the minimum (min(𝜃𝑖)) and maximum value (max(𝜃𝑖)) of 𝜃𝑖 in the set of parameter vectors
Θ = [𝜃1, 𝜃2,… , 𝜃𝑁 ] used to build the surrogate. We then apply a small expansion factor 𝜂 to the parame-
ter range, so that the optimization algorithm can search outside of the initial simulation box (described in
Section 2.4.2). To expand the box, we multiply max(𝜃𝑖) by 𝜂, and divide min(𝜃𝑖) by 𝜂 to form the bounds box
[LB(𝜃𝑖),UB(𝜃𝑖)]. We chose the value of 𝜂 to be 1.1, expanding the box 10% in each direction, to allow the op-
timizer to search aggressively. This process is repeated for each parameter 𝜃𝑖 ∈ 𝜃 to form an N-dimensional
box, and is described in Equation 3.

LB(𝜃𝑖) =
1
𝜂
× min

𝜃∈Θ
(𝜃𝑖), UB(𝜃𝑖) = 𝜂 × max

𝜃∈Θ
(𝜃𝑖) (3)

2.2 Construction of Physical Property Surrogates
GP surrogate models are built with the botorch [51] software package, version 0.6.0, which provides a con-
venient and extensible framework for building a large number of surrogates. Surrogate are constructed
individually for each physical property in the test set, and objective functions are calculated from the sur-
rogates’ predictions of their respective physical properties; the surrogate does not predict the objective
function directly. Surrogates are constructed from all of the simulation level evaluations available; e.g. if
there are simulations of 20 physical properties with 10 different LJ parameters vectors, then our process
builds 20 individual surrogate models, each using all 10 parameter vectors in their construction. All surro-
gates use a constant mean function and RBF (radial basis function) covariance kernel; independent length
scales 𝑙 for each parameter are chosen using automatic relevance determination (ARD) [52]. The length
scales 𝑙 represent the variances in each parameter dimension of the radial basis function; essentially, the
diagonal of the covariance matrix; all off-diagonal elements (covariances) are set to 0. If a physical property
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simulated at a given set of parameters finishes with errors, that set is omitted from surrogate building; ad-
ditionally, any sets that have density measurements lower than 20% of the experimental value are omitted,
as this likely indicates that the parameters have induced a phase change. However, this restriction did not
affect the optimization, as parameters violating the density constraint were never produced through our
optimizations.

In cases where an optimization over a surrogate model failed to find a lower objective value than the
current simulation objective, surrogates are rebuild with constraints on the length scales 𝑙 used for the
variances of each parameter. This approach was chosen as we found in testing that optimizations may fail
because a surrogate was set with a length scale too low during ARD, producing a surrogate with poor quality.
If the optimizer cannot find a better objective value over the surrogate, it is first rebuilt with a length scale
constraint such that 𝑙 > 10−10; if this is not successful, a stricter length scale constraint of 𝑙 > 10−5 is imposed.
If this is still not successful, the optimization is terminated. The quality of the surrogate model is reduced
when length scale constraints are introduced, so constraints are not used unless an optimization fails.
2.3 Physical Property Simulations
Physical property simulationswere handledwith theOpenFF Evaluator[31] software package, version 0.3.4 [53],
using the default workflows [54] for all properties simulated. We performed simulations to estimate pure
density (𝜌𝐿), mixture density (𝜌𝐿(𝑥)), enthalpy of vaporization (Δ𝐻𝑣𝑎𝑝) and enthalpy of mixing (Δ𝐻𝑚𝑖𝑥(𝑥)).We perform all condensed-phase simulations in the NPT ensemble, with initial simulation boxes of 1000
molecules built using PackMOL [55]. After building the boxes, we perform an energy minimization on the
simulation boxes, followed by a 0.2 ns equilibration simulation and a 2 ns production simulation, which is
sufficient to converge these simple physical properties[31]. In the calculation of Δ𝐻𝑣𝑎𝑝, we use 30 ns sin-
gle molecular NVT simulations without periodic boundary conditions to estimate the gas phase energies.
All simulations use a 2 fs timestep and a Langevin integrator with BAOAB splitting [56]. More complete
simulation details are available in our previous work [27], which uses the same simulation workflows.
2.4 Optimization tasks
We focused on two separate optimization tasks, both initially developed in our previous study [27]. Both
tasks optimize the same set of 12 LJ parameters (𝑅𝑚𝑖𝑛∕2 and 𝜖 for 6 LJ SMIRKS types), and both use the
same small molecules (alkanes, alcohols, ethers, esters and ketones) in the their training sets. The tasks are
differentiated by the different types of physical property training data that are used in the evaluation of the
objective function:

1. “Pure only”: This task focuses on optimizing the LJ parameters against a set of 56 pure compound
measurements, 𝜌𝐿 and Δ𝐻𝑣𝑎𝑝 for each of 28 compounds in the training set. We used this task to test
the optimization strategy, as it represents the typical type of training set used in LJ optimization, and
has relatively low computational expense because of the number and types of physical properties that
need to be estimated.

2. “Mixture only”: This task optimizes the LJ parameters against a larger set of 195 physical properties
of binary mixtures, which include 195 total measurements of Δ𝐻𝑚𝑖𝑥 and 𝜌𝐿(𝑥). This task extends thestrategy to a significantly larger training set, and represents the type of training set that we determined
to perform best in our previous study.

While we reported optimized parameter sets for these tasks in our previous work, here we use those
results as a baseline to test our multi-fidelity strategy.
2.4.1 Parameters to be optimized
We optimize the LJ 𝑅𝑚𝑖𝑛∕2 and 𝜖 for 6 LJ types, which are described in Table 1. We also note that several LJ
types are exercised bymolecules in the training set, but are not optimized, due to either having very specific
chemical contexts that are not exercised widely enough to optimize, or, in the case of the [#1:1]-[#8]
(hydroxyl hydrogen) parameter, because the 𝜖 has been set to an arbitrary small non-zero value to avoid
unphysical effects [57].
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Refit SMIRKS Type Description
Refit parameters

[#1:1]-[#6X4] Hydrogen attached to tetravalent carbon
[#6:1] Generic carbon

[#6X4:1] Tetravalent carbon
[#8:1] Generic oxygen

[#8X2H0+0:1]
Divalent oxygen with no hydrogens

attached
[#8X2H1+0:1]

Divalent oxygen with one hydrogen
attached

Parameters exercised but not optimized
[#1:1]-([#6X4])

-[#7,#8,#9,#16,#17,#35]
Hydrogen attached to tetravalent carbon
attached to an electronegative atom

[#1:1]-[#6X3]
(∼[#7,#8,#9,#16,#17,#35])
∼[#7,#8,#9,#16,#17,#35]

Hydrogen attached to trivalent carbon
attached to 2 electronegative atoms

[#1:1]-[#8] Hydrogen attached to oxygen
Table 1. All LJ SMIRKS types adjusted in the training of OpenFF 2.0.0, along with descriptions of the chemical contextsthey describe. LJ 𝜖 and 𝑅𝑚𝑖𝑛∕2 are adjusted for each of these types.

2.4.2 Initial physical property simulations
To build an initial surrogate in each optimization, we simulate an initial set of 𝑁 parameter vectors, one of
which is always the parameter vector corresponding to OpenFF 1.0.0. We select these vectors from an initial
parameter space, described in Table 2. The size of this space is measured in percentage of the parameter
values from OpenFF 1.0.0, and is determined from the results of our previous optimization study, based
on how much each parameter was adjusted in that study. From this space, we select the remaining 𝑁 − 1
parameter vectors using Latin Hypercube Sampling (LHS), as implemented with the Surrogate Modeling
Toolbox [58] (smt) Python, library version 1.1.0.

Refit SMIRKS Type
𝜖 initial

parameter range
(% of OpenFF

1.0.0)

𝑅𝑚𝑖𝑛∕2 initialparameter range
(% of OpenFF

1.0.0)
Refit parameters

[#1:1]-[#6X4] (50%, 150%) (95%, 105%)
[#6:1] (90%, 110%) (95%, 105%)

[#6X4:1] (90%, 110%) (95%, 105%)
[#8:1] (95%, 105%) (95%, 105%)

[#8X2H0+0:1] (95%, 105%) (95%, 105%)
[#8X2H1+0:1] (95%, 105%) (95%, 105%)

Table 2. All LJ SMIRKS types adjusted in the training of OpenFF 2.0.0, along with descriptions of the chemical contextsthey describe. LJ 𝜖 and 𝑅𝑚𝑖𝑛∕2 are adjusted for each of these types.

2.4.3 “Pure only” optimization task
The “pure only” optimization task optimizes the LJ parameters against 56 physical properties (𝜌𝐿, Δ𝐻𝑣𝑎𝑝) fora set of 28 molecules, which are shown in Figure 2. A list of the molecules in the “pure only” training set are
available in the Supporting Information, Section S1.1.
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Figure 2. Molecules in the “pure only” training set. Physical properties in this set include one measurement each of 𝜌𝐿and Δ𝐻𝑣𝑎𝑝, and are sourced from either the NIST ThermoML Archive (𝜌𝐿) or hand-curated from literature (Δ𝐻𝑣𝑎𝑝).

The measurements here are either sourced from the NIST ThermoML Archive [59, 60] (𝜌𝐿) or hand-curated from literature (Δ𝐻𝑣𝑎𝑝) [61–72], because of the low number of Δ𝐻𝑣𝑎𝑝 data points in the ThermoML
Archive. All measurements are selected at temperatures and pressures close to ambient (∼1 atm, 273.15–
318.15 K).

For this optimization task, we performed optimizations using𝑁 = 5 and𝑁 = 10 initial points, in order to
test the effect of the number of initial simulation points on the performance of the algorithm. We performed
5 replicates for both𝑁 = 5 and𝑁 = 10 initial points, in order to assess the consistency of the algorithm. For
the 𝑁 = 10 replicates, a different set of 9 LHS initial points is selected each time; for the 𝑁 = 5 replicates,
each set of initial points is formed by subsampling 4 LHS points from one of the𝑁 = 10 replicate initial sets,
in order to minimize simulation expense.
2.4.4 “Mixture only” training set
The “mixture only” optimization task optimizes the LJ parameters against a set of 195 physical properties
(𝜌𝐿(𝑥),Δ𝐻𝑚𝑖𝑥(𝑥)) for the set of molecular pairs shown in Figure 3. These molecule pairs are drawn from the
same set of molecules as used in the “pure only” training set. All measurements here are selected from the
NIST ThermoML archive, and are selected at temperatures and pressures close to ambient (∼ 1 atm, 273.15–
318.15 K). We select measurements at concentrations with 0.05 mole fraction of 3 target concentrations
for each mixture, where available: (𝑥1 = 0.25, 𝑥2 = 0.75), (𝑥1 = 0.5, 𝑥2 = 0.5), (𝑥1 = 0.75, 𝑥2 = 0.25). If no
measurements are available within 0.05 mole fraction of any target concentration, no data point is selected
for that target concentration. A list of the mixtures in the “mixture only” training set is available in the
Supporting Information, Section S1.2.

O

O
O

O O

O

O
OH OH OH OH OH

OH OH OH OH
O

O
OO

O

O O

O
O

O

OO

O

O

O O

O
O

OH
O

O

O

O

O

O

OH

O

OH
OH OH

O
O

OH

O

O

O

O OH

O
O

O

O

OHO
O

O

O

OHO
O

O

O

OH
O

O
OH

O

O

Figure 3. Molecules in the “mixture only” training set. Physical properties in this set include measurements of 𝜌𝐿(𝑥)and Δ𝐻𝑚𝑖𝑥(𝑥) at conditions close to ambient (∼1 atm, 273.15–318.15 K), and several concentrations (𝑥1 = 0.25, 𝑥2 = 0.75,
𝑥1 = 0.5, 𝑥2 = 0.5, 𝑥1 = 0.75, 𝑥2 = 0.25), where available, yielding a total of 195 measurements. All measurements aresourced from the NIST ThermoML Archive.
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For this optimization task, we performed an initial optimization using 𝑁 = 20 initial points, due to the
increased complexity of the training set. After this optimization, we performed a second optimization using
𝑁 = 10 initial points, in order to test whether a more data-sparse optimization could be successful. For the
𝑁 = 10 replicate, 9 initial points are subsampled from the 19 LHS points used in the 𝑁 = 20 replicate to
minimize simulation expense.
2.5 Benchmarking
To assess the quality and transferability of the parameter sets produced by our optimization, we tested
them on a set of physical properties (29 𝜌𝐿, 318 𝜌𝐿(𝑥), 29Δ𝐻𝑣𝑎𝑝, and 236Δ𝐻𝑚𝑖𝑥(𝑥)) for a new set of molecules
and molecular pairs, which serves as the test set. This data set was curated for our previous work, and its
selection and composition are discussed there. Physical properties in this set are either hand-curated from
literature (𝜌𝐿, Δ𝐻𝑣𝑎𝑝), or are selected automatically from the NIST ThermoML Archive. Benchmarking simu-
lations are performed using the same OpenFF Evaluator workflows as simulations used in the optimization
process.
3 Results & Discussion
3.1 Pure training set
3.1.1 Optimization
Optimization was generally successful with𝑁 = 5 and𝑁 = 10 initial parameter vectors, as it reached signifi-
cantly lower objective function values than the initial force field in every case. Additionally, when comparing
training set RMSE forΔ𝐻𝑣𝑎𝑝, all optimization replicates significantly outperform the regularized least squares
optimization.

Out of the 10 optimizations run, 4 of them terminated early after the surrogate optimizer could not find
an improved solution. This is related to the issues with ARD noted in section 2.2. This suggests that further
research is needed to improve the robustness of the surrogate model. Optimizations used between 15–25
total simulations, compared to the 12 used in the simulation-only optimization.

The optimization trajectories of the replicates starting from 𝑁 = 5 initial points are shown in Figure 4,
with the evaluated objective function of the previous simulation-only regularized least-squares optimization
for comparison.

Figure 4. Performance of the multi-fidelity optimization algorithm on the “pure only” training set, for replicates run with
𝑁 = 5 initial parameter vectors. Left panel shows the objective function at each iteration of the optimization. Righttwo panels show the RMSE for Δ𝐻𝑚𝑖𝑥 and 𝜌𝐿(𝑥) for the two optimizations, as well as OpenFF 1.0.0 and the previouslysimulation-only optimization (labeled “sim only” in the graphs). Error bars represent 95% confidence intervals, computedwith bootstrapping over the set of molecules in the training set.

We see that in most cases, the optimizer struggles initially, with a high percentage of solutions proposed
and rejected in the first 8 steps. While these steps do not immediately yield an improved force field, the
parameter vectors they propose are added to the pool of parameter vectors used to build surrogates, even-
tually “exploring” enough space to find an improved solution, with an average objective of 0.039 vs. an initial

9 of 26



objective of 0.16, an average 𝜌𝐿 training set RMSE of 0.016 g/mL (initial RMSE 0.027 g/mL), and an average
Δ𝐻𝑣𝑎𝑝 RMSE of 2.75 kJ/mol (initial RMSE 7.15 kJ/mol).

In order to find these improved solutions, the optimization algorithm searches widely and finds a num-
ber of qualitatively distinctminima. The optimization trajectories, as well as the optimization trajectory from
the simulation-only optimization against the same training set, are shown in Figure 5.

Figure 5. Optimization trajectories for each of the replicates run with 5 initial parameter vectors, as well as the trajectoryfor the previous simulation-only optimization (brown). Trajectories show that our optimization technique searcheswidelyand finds many separate solutions for this optimization problem.

In comparison to the simulation-only optimization, shown in brown, the replicates of our multi-fidelity
optimization searches the parameter space much more broadly. Particularly, the values of oxygen and
carbon parameters stay within a narrow range in the simulation-only optimization, but vary widely with our
multi-fidelity technique.

The training set RMSEs and objective functions for the 𝑁 = 10 runs are shown in Figure 6.
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Figure 6. Performance of the optimization algorithm on the “pure only” training set, for replicates run with𝑁 = 10 initialparameter vectors. Left panel shows the objective function at each iteration of the optimization. Right two panels showthe RMSE for Δ𝐻𝑚𝑖𝑥 and 𝜌𝐿(𝑥) for the two optimizations, as well as OpenFF 1.0.0 and the previous simulation-only opti-mization (labeled “sim only” in the graphs. Error bars represent 95% confidence intervals, computed with bootstrappingover the set of molecules in the training set.
.
We note that the optimization initialized with 𝑁 = 10 initial parameter vectors improve the objective

function with fewer iterations that the 𝑁 = 5 optimizations. These optimizations leverage the additional
initial information to find improved parameter sets sooner, with the trade-off that more simulations are
required upfront to achieve this result. The effectiveness of the optimization is also slightly improved over
the 𝑁 = 5 optimizations, with an average objective function of 0.031 (𝑁 = 5: 0.039), an average 𝜌𝐿 trainingset RMSE of 0.014 g/mL (𝑁 = 5: 0.016), and an average Δ𝐻𝑣𝑎𝑝 RMSE of 2.38 kJ/mol (𝑁 = 5: 2.75 kJ/mol).

Interestingly, the parameter trajectories in the𝑁 = 10optimizations explore awider range of parameters
than the𝑁 = 5optimizations, as shown in Figure 7. Onemight expect that an optimizerwith less information
would take larger jumps as it attempts to find a minima, but it is likely here that optimization with a less
specified initial surrogate (𝑁 = 5) proposes more solutions that are rejected and therefore finds more
conservative minima.

Figure 7. Optimization trajectories for each of the replicates run with 10 initial parameter vectors. Trajectories show thatour 𝑁 = 10 initial parameter vector optimization technique searches more widely than our 𝑁 = 5 technique, but is alsomore likely to drastically alter a parameter while deeply “exploring” a promising candidate, as shown for runs 3 and 4.
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Particularly in the oxygen parameters for runs 3 and 4, we can see that this optimization setting can
make some very large parameter changes; run 3 has the lowest overall objective, but more than doubles
the hydroxyl oxygen 𝜖. This may suggest that adding some regularization could benefit the transferability
of the optimization, but it also reflects that the ratio of optimization targets to inputs (56:12) leads to an
optimization where many solutions can be found.
3.1.2 Parameter Interpretation
Since the optimizations find a large number of separate and diverse solutions, and the set of parameters
is small enough to be reasonably interpretable, it is worth examining some of the parameter changes to
understand their physical basis and inform future optimizations. Here we analyze some of themost notable
changes from the 𝑁 = 10 replicates, which had larger parameter changes relative to the 𝑁 = 5 replicates.
The change in parameters from the original OpenFF 1.0.0 is shown in Figure 8.

Figure 8. Changes in parameter values after optimization against the ”pure only” data set, relative to OpenFF 1.0.0(the initial values of the optimization), for the 𝑁 = 10 optimization replicates, as well as the simulation-only solutionpreviously obtained. Parameter changes are typically larger in multi-fidelity optimization compared to the simulation-only optimization, indicating improved exploration of the parameter space; however, this also leads to outliers (hydroxyloxygen 𝜖, ether oxygen 𝑅𝑚𝑖𝑛∕2.

To identify what points in the training dataset the parameter changes are affecting, we examine the bias
of the physical properties training dataset, as measured by mean signed error (MSE). The bias before and
after training, as a function of chemical group, is plotted for multi-fidelity run 1, shown in Figure 9. Run 1 is
shown as an example as it has one of the best objective functions and no unusual parameter changes (such
as occurred in runs 3 and 4), and MSE values are similar for all optimization runs. Similar plots of RMSE and
MSE for all 5 runs are available in the Supporting Information, Section S2.2.

12 of 26



Figure 9. Bias in training set Δ𝐻𝑣𝑎𝑝 and 𝜌𝐿 by chemical functionality, as measured by the mean signed error (MSE), forOpenFF 1.0.0 and retrained parameters from𝑁 = 10multi-fidelity run 1. Training withmulti-fidelity optimization reducesor eliminates bias in several chemical functionalities, including alkanes, ketones, and ethers, where MSE is near 0 kJ/mol.Reduction in MSE shown for run 1 is typical of all “pure only” 𝑁 = 10multi-fidelity runs; training set MSEs and RMSEs forall multi-fidelity optimization are available in Supporting Information, Section 2.1-2.3. Error bars represent bootstrapped95% confidence intervals

One consistent trend in most optimizations is the significant overall reduction of 𝜖. By decreasing the
𝜖s, cohesive forces in the liquid phase are reduced, lowering the barrier for “liberating” a molecule from the
gas phase and thereby lowering the enthalpy of vaporization. In OpenFF 1.0.0, the enthalpy of vaporization
measurements in the training set have a mean signed error (MSE) of 5.03 kJ/mol, with all moieties except
alcohols having a positive deviation from experiment. After multi-fidelity optimization, the training sets
have an average MSE (across all multi-fidelity runs) of 0.22 kJ/mol.

The trend of reduced 𝜖’s is strongest for the [#1:1]-[#6X4] (hydrogen attached to tetravalent carbon)
and [#8X2H0+0:1] (divalent oxygen with 0 hydrogens attached) atom types. The [#1:1]-[#6X4] type is exer-
cised in all molecules in the training set, so reducing the 𝜖 for this type helps to reduce this overall bias. For
the alkanes in the set, [#1:1]-[#6X4] is one of two parameters exercised (along with [#6X4:1]), and alkane
Δ𝐻𝑣𝑎𝑝 training set MSE is reduced from 4.75 kJ/mol in OpenFF 1.0.0 to an average of -0.01 kJ/mol, virtually
eliminating the error. The [#8X2H0+0:1] type is exclusive to ether oxygens in this training set, and reducing
its 𝜖 helps to correct a significant overprediction of ether Δ𝐻𝑣𝑎𝑝 in OpenFF 1.0.0, reducing the ether MSE
from 7.95 kJ/mol to an average value of 0.54 kJ/mol after training. This reduction is much larger than the
reduction observed after simulation-only optimization.

The 𝜖’s for [#6:1] and [#8:1] present an interesting case in multidimensional optimization. We see sig-
nificant changes in the 𝜖’s for both [#6:1] and [#8:1], which represent generic hydrogens and oxygens.
However, the presence of more specific types in the training set means that these two types are only ex-
ercised together in a C=O double bond (a ketone, ester, or carboxylic acid). In all optimizations but run 3,
we see a large reduction in [#6:1] 𝜖 and a slight increase in [#8:1] 𝜖. The adjustment of these parameters,
alongwith an increase in the [#6:1]𝑅𝑚𝑖𝑛∕2, corrects an overprediction in the ester and ketoneΔ𝐻𝑣𝑎𝑝. Notably,simulation-only optimization against the same training set was not able to achieve the same correction for
esters.

Interestingly, run 3 takes an opposite approach, increasing 𝜖 for [#6:1] and decreasing 𝜖 for [#8:1] but
achieving a similar reduction in bias. This suggests that, for the purpose of this optimization, [#6:1] and
[#8:1] are treated as a unit. This is not desirable in a larger context, as these parameters are not inherently
coupled and will probably lead to significant errors if used in different contexts.
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For 𝑅𝑚𝑖𝑛∕2, the most consistent changes are in [#6:1] and [#6X4:1], which are generally increased. Over-
all, the effect of increasing 𝑅𝑚𝑖𝑛∕2 should be to decrease density, as it increases inter-atomic distances and
leads to higher molecular volume. Overall, densities are slightly overpredicted in OpenFF 1.0.0, but those
overpredictions are concentrated in ethers and esters. For [#6:1], the increase in 𝑅𝑚𝑖𝑛∕2 helps to reduce asignificant overprediction of ester densities.
3.1.3 Surrogate Analysis
Given that the optimizations used in this process vary widely in the sets of parameters that they produce, it
is useful to characterize the quality of the surrogate models over the parameter space. Specifically, wemea-
sure their global accuracy by comparing the generated surrogate models. We also measure the roughness
over the surrogatemodels by runningmultiple minimizations on the final surrogatemodels. We performed
this analysis for the 𝑁 = 10 optimization runs.

To assess the ability of the surrogate to make accurate predictions outside its the region of the mini-
mization, we calculated objective functions with the surrogate produced in each 𝑁 = 10 optimization for
the parameter sets produced from all other 𝑁 = 10 optimizations. If the surrogates were globally predic-
tive, we would observe low prediction error for the other minima; with high error, surrogates are likely only
locally predictive. Results are shown in Figure 10.

Figure 10. Cross-validation demonstrates that surrogates produced in the multi-fidelity optimization process are onlylocally highly predictive. Figure shows % deviation between surrogate-predicted objective functions and simulation ob-jective functions for each of the five surrogate models and five optimization minima produced for the𝑁 = 10 “pure only”optimization runs.

This analysis indicates that surrogates produced as a part of a multi-fidelity optimization are usually
only locally predictive, as many have very large prediction errors for objective functions at some of the
other minima. The surrogate that performs best is the surrogate from run 1; which estimates the objective
to within 20% of the simulation value for all cases besides the optima from run 3, which is far away from
the region where other surrogates generally have samples.

We also assessed the robustness of the surrogate by performing repeated L-BFGS-B optimization on
the final produced surrogates, starting from random points within the final parameter bounds box used
in the optimization. This characterizes the smoothness and multimodality of the produced surrogates, as
a smooth, unimodal surrogate would lead to a highly consistent local optimization, whereas a rough and
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multi-modal surrogate would produce different outcomes.
For each surrogate produced in each optimization, we ran 100 L-BFGS-B optimizations from random

starting points. For each of these optimizations, we calculated the standard deviation of the objective at the
minimum (𝑆𝐷𝜒 ) and the percentage of optimization within 5% of the best objective (𝑂5%). The results areshown in Table 3, along with the number of simulations used to build each surrogate (𝐾𝑠𝑖𝑚).

Surrogate 𝑆𝐷𝜒 𝑂5% 𝐾𝑠𝑖𝑚Optimization Run 1 0.0002 99 25
Optimization Run 2 0.017 63 20
Optimization Run 3 0.001 72 24
Optimization Run 4 0.005 94 16
Optimization Run 5 0.003 49 17

Table 3. Metrics of optimization consistency for 100 L-BFGS-B optimizations starting from random points within thebounds box for the surrogates produced in each of the 5 𝑁 = 10 “pure-only” optimizations. 𝑆𝐷𝜒 is standard deviationof resulting minimized objective functions, Δ𝜒 indicates the difference between best and worst objective function, 𝑂5%indicates the percentage of optimizations within 5% of the best objective for that surrogate, and 𝑁𝑠𝑖𝑚 indicates numberof simulations used to build the optimization.

The results vary widely based on the surrogate, indicating that some surrogates are more robust than
others. Particularly, the surrogates fromoptimizations 1 and 3 have themost consistent optimizations, even
though optimization 3 produces a large parameter value outlier, with low standard deviations and ranges.
These two surrogates also use the most simulation data and come from optimizations that more deeply
explored their local optima, indicating that more sampling in the region of interest leads to a smoother,
unimodal surrogate. Conversely, optimizations 2, 4 and 5 spend less time exploring the target region and
have rougher surfaces, with L-BFGS-B optimizations less likely to converge. This indicates that exploring the
target region in detail builds a more robust surrogate.
3.1.4 Benchmarking
We performed benchmarking on the test set described in Section 2.5 for OpenFF 1.0.0, the simulation-only
optimization against the “pure only” set, and the 5 multi-fidelity optimization runs with𝑁 = 10 initial points.
The benchmarking set is described in Section ??We focused on the𝑁 = 10 runs because they generally had
better objective function performance compared to the 𝑁 = 5 runs, and they also had larger parameter
changes, meaning that they would be more susceptible to overfitting. RMSE statistics for all of these force
fields are plotted in Figure 11.
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Figure 11. Test set RMSE for OpenFF 1.0.0, the simulation-only optimization, and the 5 𝑁 = 10 multi-fidelity runs for“pure only“ targets. Benchmarking shows that some runs (such as runs 1 and 2) are transferable and outperform thesimulation-only optimization, but that other runs (runs 3 and 4) have poor performance on the test set, likely due tolarge parameter changes in the optimization. Error bars represent 95% confidence intervals, bootstrapped over the setof molecules in the test set.

These results highlight the need to test for transferability, as run 3, which had the lowest objective func-
tion over the training set, performsworse that OpenFF 1.0.0 in three of the four physical property data types
in the test set. This is caused by the very large changes in the [#8X2H1+0:1] (hydroxyl oxygen) parameters,
as this force field performs worse. Similarly, run 4 performs poorly on the test set after significant changes
to the [#8X2H0+0:1] 𝑅𝑚𝑖𝑛∕2 parameter.

For optimization runs without these outlier changes to parameters, such as run 1, the results are im-
proved, with a decrease in test set Δ𝐻𝑣𝑎𝑝 from an initial value in OpenFF 1.0.0 of 7.52 kJ/mol (95% CI 6.42,
8.53) to a value after fitting of 3.41 kJ/mol (95% CI 1.94, 4.68), outperforming the simulation-only optimiza-
tion value of 5.25 kJ/mol (95% CI 4.31, 6.16). This improvement in Δ𝐻𝑣𝑎𝑝, following the improvement in the
training set, suggests that the more aggressive multi-fidelity optimization was able to adjust parameters in
a way that results in better prediction of Δ𝐻𝑣𝑎𝑝. For the other properties in the test set, run 1 improves over
OpenFF 1.0.0 in each case, and is slightly improved over the simulation-only optimization for 𝜌𝐿 and 𝜌𝐿(𝑥).The optimization does perform slightly worse than the simulation-only optimization for Δ𝐻𝑚𝑖𝑥, which likelyreflects the lack of regularization and stronger focus on Δ𝐻𝑣𝑎𝑝.We also see that some of the functional-group specific reductions in the training set RMSE translate to
the test set; indeed, most of the reduction in test set RMSE comes from improved treatment of ethers and
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esters, indicating that the parameter changes that led to these changes, such as significant reduction of
ether 𝜖, are transferable. Plots of the test set RMSE for all functional group categories are available in the
Supporting Information, Section 3.1.

These results demonstrate that we can find improved parameter sets usingmulti-fidelity global optimiza-
tion, but that caremust be taken to avoid overfitting. We performed 5 optimization runs that all significantly
improved the objective, but with large variations in the parameter vector solutions. There are a wide range
of parameter vectors that are able to satisfy this optimization problem, but their transferability is not guar-
anteed. This is probably due to the training set which was chosen, as the set contains 56 target points and
12 parameters; additionally, the parameter set is “segmented” in that some parameters and targets are in-
dependent from the other parameters/targets. For example, the [#8X2H0+0:1] (ether oxygen) parameters
are only dependent on the measurements of 𝜌𝐿 and Δ𝐻𝑣𝑎𝑝 for ethers. This leads to an optimization where
overfitting is a significant concern. We could address overfitting by using a regularization scheme, as many
others have done, but this many prevent us from escaping local minima in parameter space, as we hoped
to do.

However, and more physically, we can also address overfitting by broadening the training set, as more
physical property targets will further constrain the optimization. In addition, including mixture data in the
training set helps to guard against overfitting, given that the set becomes less “segmented”, as physical
properties of mixtures exercise a wider range of parameters than pure physical properties.
3.2 Mixture training set
Implementing multi-fidelity optimization with the mixture training provides us with an opportunity to test
whether we can better constrain the training data without implementing regularization, since our set of
mixture data is much larger, containing 195 physical property measurements. We ran an optimization with
N=20 initial points, as well as one with 𝑁 = 10 initial points, to determine what level of initial information
was required to produce a successful optimization.

Optimization against the “mixture-only” training was successful for both the 𝑁 = 10 and 𝑁 = 20 runs
set, achieving significant reductions in objective function and training set RMSE, as shown in Figure 12. The
𝑁 = 20 optimization uses a total of 34 simulation evalutions to find its optimum, whereas the 𝑁 = 10
optimization uses only 17.

Figure 12. Performance of the multi-fidelity optimization algorithm on the “mixture only” training set, for runs with
𝑁 = 10 (blue) and 𝑁 = 20 (orange) initial parameter vectors, indicating improved performance on Δ𝐻𝑚𝑖𝑥 targets whencompared to simulation-only optimization. Left panel shows the objective function at each iteration of the optimization.Right two panels show the RMSE for Δ𝐻𝑚𝑖𝑥 and 𝜌𝐿(𝑥) for the two optimizations, as well as OpenFF 1.0.0 and the previoussimulation-only optimization. Error bars represent 95% confidence intervals, computed with bootstrapping over the setof molecules in the training set.

In both optimizations we observe a large drop in objective, followed by incremental progress until the
end of the optimization. The performance is slightly improved compared to the regularized simulation-only
optimization; for the𝑁 = 20 run the training set Δ𝐻𝑚𝑖𝑥 RMSE is 0.19 kJ/mol (95% CI 0.16, 0.22) vs 0.24 kJ/mol
(0.21, 0.29) for the simulation-only optimization. For 𝜌𝐿(𝑥), the RMSE is 0.011 g/ml (0.01, 0.013) vs 0.013
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(0.011, 0.015). Both optimizations are significantly improved when compared to OpenFF 1.0.0, with Δ𝐻𝑚𝑖𝑥RMSE of 0.62 kJ/mol (0.54, 0.69) and 𝜌𝐿(𝑥) RMSE of 0.23 g/ml (0.02, 0.026).
While the performance is slightly improved, the parameter changes aremore significantwhen compared

to the simulation-only optimization. The changes in parameter value fromOpenFF 1.0.0 are shown in Figure
13.

Figure 13. Changes in parameter values after optimization against the “mixture only” data set, relative to OpenFF 1.0.0(the initial values), for optimizations with both 𝑁 = 10 and 𝑁 = 20 initial points, as well as the simulation-only solutionpreviously obtained. Multi-fidelity optimizations show larger parameter changes, particularly in 𝜖, when compared to thesimulation-only optimization over the same training set, but smaller changes in parameter values when compared to the“pure-only” multi-fidelity optimizations.

Again, the changes in parameters are larger for the multi-fidelity optimizations when compared to the
simulation-only optimization, particularly for the values of 𝜖. However, when compared to the multi-fidelity
optimization against “pure only”, the changes are smaller and there are not significant outliers. We see
some of the same parameter trends as in the “pure only” optimizations, like reduced values of 𝜖 for the
[#1:1]-[#6X4] and [#8X2H0+0:1] atom types. A notable difference is the increased𝑅𝑚𝑖𝑛∕2 for the [#8:1] type,
which is likely related to mixture properties better capturing the hydrogen bond donor/acceptor behavior
of alcohol/ester mixtures.
3.2.1 Benchmarking
We assessed the performance of the refit force fields on the test set. Plots of RMSEs for the four types of
physical property data in the test set are shown in Figure 14.
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Figure 14. Test set RMSE for OpenFF 1.0.0, the simulation-only optimization, and both multi-fidelity runs, against the“mixture only” target. Benchmarking on the test set shows the transferability of the optimizated parameters; notablyRMSE for both Δ𝐻𝑚𝑖𝑥 and Δ𝐻𝑣𝑎𝑝 are significantly improved compared to OpenFF 1.0.0, despite Δ𝐻𝑣𝑎𝑝 not being includedin the training, In contrast, simulation-only optimization does not improve Δ𝐻𝑣𝑎𝑝. Error bars represent 95% confidenceintervals, bootstrapped over the molecules in the test set.

Between the simulation-only and multi-fidelity optimizations, performance is similar on pure and mix-
ture densities (𝜌𝐿 and 𝜌𝐿(𝑥), and not significantly improved when compared to OpenFF 1.0.0; densities are
already well-predicted in OpenFF 1.0.0. ForΔ𝐻𝑣𝑎𝑝 andΔ𝐻𝑚𝑖𝑥, themulti-fidelity optimizations significantly im-
prove both properties, whereas the simulation-only optimization only improvedΔ𝐻𝑚𝑖𝑥. The𝑁 = 20optimiza-
tion has a Δ𝐻𝑚𝑖𝑥 RMSE of 0.24 kJ/mol (95% CI 0.22, 0.26), similar to 0.25 (0.23, 0.27) for the simulation-only
optimization. For Δ𝐻𝑣𝑎𝑝, the 𝑁 = 20 optimization has an RMSE of 4.83 kJ/mol (3.75, 5.82), significantly im-
proved over the simulation-only optimization value of 7.87 kJ/mol (6.61, 9.14), which has slightly regressed
prediction of Δ𝐻𝑣𝑎𝑝 compared to the original force field. It is notable that we are able to achieve signifi-
cantly improved performance on both types of enthalpy data in the test set, indicating that parameters
found with the multi-fidelity optimization process achieve better transferability than a simulation-only opti-
mization against the samedata set. Examining the test set results for the𝑁 = 20 run separated by functional
group, as shown in Figure 15, helps to better understand how parameter changes influence force field per-
formance.
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Figure 15. Test set RMSE for OpenFF 1.0.0, the simulation-only optimization, and bothmulti-fidelity runs, against the “mix-ture only” target and separatedby function groupor functional grouppair. Benchmarking highlights important parameterchanges and opportunities to tune the atom types in themodel, including an apparent improvement of densities of estermixtures at the expense of ketone mixture densities. Error bars represent 95% confidence intervals, bootstrapped overthe molecules in the test set.

A notable result is that esters and ketones perform better on Δ𝐻𝑚𝑖𝑥 and Δ𝐻𝑣𝑎𝑝 in this refit force field
compared to their performancewith the simulation-only refit. Thismay bedue to changes in the parameters
(bigger increases in 𝑅𝑚𝑖𝑛∕2) for the [#8:1], which is exercised only by carbonyl oxygens in both the training
and test sets. However, this parameter change has an interesting effect on densities; while ester densities
and densities of ester-containingmixtures are largely improved, the ketone densities regressed significantly
(bothwithmulti-fidelity optimization and simulation-only optimization). This, alongwith parameter gradient
evidence from our previous work, suggests that splitting LJ types responsible for ketones and esters may
yield improved prediction of densities.
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An area where the multi-fidelity optimization struggles is in the prediction of alcohols, where outside
of mixtures with the improved esters/ketones, predictions are either slightly improved or degraded. While
the simulation-only optimized parameters perform slightly better on alcohols, they see similar regressions
in the predictions of alcohol and alcohol-mixture densities. This may due to deficiencies in the AM1-BCC
charge model for alcohols [29], leading to compensation in LJ parameters and reduced transferability.

Another typewhere splittingmay yield improved results is the [#6:1] generic carbon type. In the training
set; this type is only exercised by carbonyls, but in the test set this type is exercised by both carbonyls and
alkenes. While the changes introduced in the multi-fidelity optimization significant improve performance
of carbonyl-containing molecules, binary densities of alkene mixtures are significantly degraded, indicating
that the type may no longer be suitable for describing both contexts. This is sensible as carbonyls and
alkenes are quite different in their chemistry.
4 Conclusions
We present a new approach for large-scale optimization force field parameters against physical property
data, based on equilibrium simulations and Gaussian process surrogate modeling. Our multi-fidelity strat-
egy uses an iterative process of global optimization over the cheap surrogate surface and validation per-
formed at the simulation level. We demonstrate that for reasonably sized sets of physical property data,
multi-fidelity optimization can find improved parameter sets while exploring more widely than traditional
local optimization techniques. Particularly, we find that larger changes for parameters changes related to
ethers and carbonyls yield transferable improvements, improvement test set measurements of both Δ𝐻𝑣𝑎𝑝and Δ𝐻𝑚𝑖𝑥 when training against binary mixture data; training against the same dataset using only local
simulation-based optimization was able to achieve comparable improvements on Δ𝐻𝑚𝑖𝑥, but not Δ𝐻𝑣𝑎𝑝.Through examination of the training and test data, we are also able to identify targets for parameter split-
ting.

While this strategy shows promise, challenges in implementation remain; one of the largest being the
stochastic nature of the method. The improved parameters found are highly dependent on the set of
initial parameter simulations used to build the surrogate model; the parameter space is rough and high-
dimensional, meaning that Latin hypercube sampling struggles to find good starting sets of parameters.
Building a better initial surrogate also requires more initial simulations, incurring higher computational
expense. Analysis of the surrogates produced in the multi-fidelity process indicates that they are locally
predictive models best suited to accelerating optimization, rather than global models accurate across the
entire parameter space.

A potential route to improvement for this strategy is to incorporate Bayesian optimization[73] into the
parameter search strategy in order to acquire test pointsmore efficiently. Bayesian optimization is generally
efficient at solving black-box optimization problems, which is essentially what this parameter optimization
is. Starting with a smaller and more restricted set of initial parameters and allowing Bayesian optimization
to acquire samples, could lead to a more efficient and reproducible optimization.

Another target area for improvement is the robustness of the surrogate building process; roughly 50%of
the optimization terminate early, as issues with automatic relevance determination (ARD) cause surrogates
to sacrifice accuracy to the point where they can no longer find an improved solution. While all optimization
runs still led to improved parameters overall, this suggests that parameter quality could be higher with
improved surrogates. Potential solutions include different choices of GP covariance kernel, or implementing
alternative methods of ARD.

The production of some parameter sets with drastic changes that improve training set RMSE, but are
not transferable, demonstrates that overfitting is a significant risk in parameter optimization. Typically, this
risk is mitigated with regularization, penalizing solutions that stray too far from the initial solution. In this
study, since we are interested in escaping local minima, we did not regularize the optimization; this led to
the discover of some significantly improved parameters (lower values of 𝜖 for ether oxygens, higher values
of 𝑅𝑚𝑖𝑛∕2 for carbonyl oxygens) that represented much larger changes that what regularized optimizations
produced. Results from multi-fidelity optimizations on mixture properties indicates that a more complex
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training target can also serve to constrain an optimization and improve transferability, while allowing pa-
rameters to vary considerably.

This surrogate-based global optimizationmethod is able to improve force field LJ parameters by escaping
local minima, leading to chemical insight and improved parameters. The success of the strategy is due to
its multi-fidelity approach, using a cheaper surrogate to apply an otherwise prohibitively expensive global
optimization algorithm. While already useful in its current form, the flexibility of the framework allows
for significant improvement of the strategy in the future. We believe that this technique can help modelers
perform better optimizations against physical property data in the future, leading to force fields whichmore
accurately predict the behavior of molecular systems of interest.
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openforcefield, and note the availability of several introductory examples.
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