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ABSTRACT

Chemists can be skeptical in using deep learning (DL) in decision making, due to the lack of inter-
pretability in “black-box” models. Explainable artificial intelligence (XAI) is a branch of AI which
addresses this drawback by providing tools to interpret DL models and their predictions. We review
the principles of XAI in the domain of chemistry and emerging methods for creating and evaluating
explanations. Then we focus methods developed by our group and their application to predicting
solubility, blood-brain barrier permeability, and the scent of molecules. We show that XAI methods
like chemical counterfactuals and descriptor explanations can both explain DL predictions and give
insight into structure-property relationships. Finally, we discuss how a two step process of highly
accurate black-box modeling and then creating explanations gives both highly accurate predictions
and clear structure-property relationships.

1 Introduction

Deep learning (DL) is advancing the boundaries of computational chemistry because it can accurately model non-linear
structure-function relationships. [1–3] Applications of DL can be found in a broad spectrum spanning from quantum
computing [4,5] to drug discovery [6–10] to materials design. [11,12] The rationale of DL predictions is not always apparent
due to the architecture and large parameter count of DL models. [13,14] DL models are thus often termed“black box”
models. We can only reason about the input and output to DL model, not the underlying process that leads to a specific
prediction.

The black box nature has practical consequences and is a limitation of DL. Users are more likely to trust and use
predictions from a model if they can understand why the prediction was made. [15] Explaining predictions can help
developers of DL models ensure the model is not learning spurious correlations. [16,17] Infamous examples are neural
networks that learned to recognize horses by looking for a photographer’s watermark [18] and neural networks that
predicted a COVID-19 diagnoses by looking at font choice on medical images. [19] It is routine in chemistry now for DL
to exceed human level performance — humans are not good at predicting solubility from structure for example [20] [21]

— and so understanding how a model makes predictions can guide hypotheses. This is in contrast to a topic like finding
a stop sign in an image, where there is little new to be learned about visual perception by explaining a DL model.
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Finally, there is an emerging regulatory framework for when any computer algorithms impact humans. [22–24] Although
we know of no examples yet in chemistry, the use of AI in predicting toxicity, carcinogenicity, and environmental
persistence may require rationale for the predictions to have regulatory consequences.

EXplainable Artificial Intelligence (XAI) is a field of growing importance that aims to address these limitations of
DL. The main goals are to provide model interpretations of DL predictions. Miller [25] defines that interpretability of
a model refers to the degree of human understandability intrinsic within the model. Murdoch et al. [26] clarify that
interpretability can be perceived as “knowledge” which provide insight to a particular problem. Justifications are
quantitative metrics tell the users “why the model should be trusted,” like test error. [27] Justifications are evidence
which defend why a prediction is trustworthy. [25] An “explanation” is a description on why a certain prediction was
made. [9,28] Interpretability and explanation are often used interchangeably. Arrieta et al. [13] distinguish that inter-
pretability is a passive characteristic of a model, whereas explainability is an active characteristic which is used to
clarify the internal decision-making process. Namely, an explanation is extra information that is attached to each
prediction and gives the context and a cause for the prediction. [29] We adopt this nomenclature: interpretability is
intrinsic attribute of a model and an explanation is additional information for a prediction (or occasionally a group of
predictions).

There is often a trade-off between model accuracy and interpretability. For example, linear regression is interpretable
but inaccurate. DL models are accurate but not interpretable. [28,30] XAI provides a way to avoid that trade-off in
chemical property prediction. We develop an accurate but uninterpretable DL model first. Then add explanations
to predictions. If the DL model is correctly capturing the data generating process, then the explanations should
give insight into the underlying mechanism. In the remainder of this article, we review recent approaches for XAI
of chemical property prediction and then focus on specific examples with our own recent XAI work based around
creating local chemical spaces with SELF-referencing embedded string (SELFIES). [31–33] We show how in various
systems, this two step approach of developing an accurate DL model first and then explaining it yields explanations
that are consistent with known and mechanism supported structure-property relationships.

2 Theory

There is a lack of consensus on how to classify and evaluate XAI. [34,35] Das and Rad [36] propose a taxonomy based
on three XAI classifications. The first is what is being explained: the entire model (global interpretations) or an
individual outcome (instance interpretations). The second is the relation between the model and the interpretation:
post-hoc (extrinsic) or intrinsic to the model. [36,37] The last is the methodology used. For example, if backpropagation
or perturbations are used.

An intrinsic XAI method is part of the model and thus may not generalize. [36] An extrinsic method is one that can
be applied post-training to any model. [37] Sometimes these are called model agnostic. Intrinsic models are self-
explanatory. Two examples are linear models and decision trees. These are also referred to as white-box models due
to contrast them with uninterpretable black box models. [28] Post-hoc methods found in literature focus on interpreting
models through (1) training data [38] and feature attribution [39] (2) surrogate models [10] and (3) counterfactual [9] or
contrastive explanations. [40]

There is a lack of consensus how do assess correctness in XAI. What is a “good” explanation and what are the required
components of an explanation are debated. [36,41]Palacio et al. [29] state the lack of a standard framework for XAI has
caused the inability to agree if a model is interpretable or not. For example, Shapley values are Jin et al. [41] argue
that explanations fundamentally for humans and their evaluation depends on “complex human factors and application
scenarios.” In physical sciences, we may instead consider if the explanations somehow reflect the underlying physics.
For example, Oviedo et al. [42] propose that a model explanation can be evaluated by considering its agreement with
the underlying physical system, which they term “correctness.”

Therefore, we can expect a trade-off between the degree of understandability and completeness of an explanation. For
example, an explanation can be described through the trainable parameters, but the understandability reduces with
increasing non-linearity. Additionally, authors propose that “correctness” should be another property to evaluate an
explanation. [42] However, this is an intrinsic property of the model which measures its scientific accuracy.

Another challenge in XAI is the lack of an agreed-upon framework to evaluate an interpretation or explanation. [36,41,43]

Some attributes of an explanation are:

• Actionable. Is it clear how we could change the input features to modify the output?

• Complete. Are all contributing features explained?

• Correct. Does the explanation agree with hypothesized or known underlying physical mechanism? [42]
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• Domain Applicable. Does the explanation use language and concepts of domain experts?

• Fidelity/Faithful. Does the explanation agree with the black box model?

• Robust. Does the explanation change significantly with small changes to the model or instance being ex-
plained?

• Sparse/Succinct. Is the explanation succinct?

For example, Shapley values are proposed as an explanation method because they offer a complete explanation. [44]

Completeness is a clearly measurable and well-defined metric and yields explanations with many components. Yet
Shapley values are not actionable nor sparse. Ribeiro et al. [39] proposed a surrogate model method that aims to
provide sparse/succinct explanations that have high fidelity to the original model. We argued in Wellawatte et al. [9]

that counterfactuals are more useful explanations because they are actionable. Jin et al. [41] posit that explanations
are fundamentally for humans and their evaluation depends on “complex human factors and application scenarios.” In
physical sciences, we consider if the explanations somehow reflect the underlying physics. Oviedo et al. [42] proposed
that a model explanation can be evaluated by considering its agreement with the underlying physical system, which
they term “correctness.”

2.1 Self-explaining models

A self-explanatory model is one that is intrinsically interpretable to an expert. [45] Two common examples found in
literature are linear regression models and decision trees (DT). A linear model is described by the equation 1 where,
W ′s are the weight parameters and x′s are the input features associated with the prediction ŷ. The trained parameters
provide a complete explanation of the model. Accodring to Molnar et al. [45], trained weights quantify the importance
of each feature, thereby uncovering the rational for a prediction.

ŷ = ΣiWixi (1)

DT models are another type of self-explaining models which have been used in classification and high-throughput
screening tasks. Gajewicz et al. [46] used DT models to classify nanomaterials that identify structural features respon-
sible for surface activity. In another study by Han et al. [47], a DT model was developed to filter compounds by their
bioactivity based on the chemical fingerprints.

Intrinsic interpretability can also be improved by regularizing the input gradients as they can identify which feature
descriptors contributed towards a prediction. [48] Regularization techniques such as EXPO [49] and RRR [50] are designed
to enhance the black-box model interpretability. Although one can argue that “simplicity” of models are positively
correlated with interpretability, this is based on how the interpretability is evaluated. For example, Lipton [35] argue
that, from the notion of “simulatability” (the degree to which a human can predict the outcome based on inputs),
self-explanatory linear models, rule-based systems, and DTs can be claimed uninterpretable. A human can predict
the outcome given the inputs only if the input features are interpretable. Therefore, a linear model which takes in
non-descriptive inputs may not be as transparent. Based on the correctness of a model, a linear model is not inherently
accurate as they fail to capture non-linear relationships in data limiting is applicability. Similarly, a DT is a rule-
based model which may lack physics informed knowledge. However, intrinsic models are commonly accepted as
transparent models They can be found in other XAI applications in interpreting black-box models acting as surrogate
models (proxy models). [51,52]

2.2 Attribution methods

Feature attribution methods explain black box predictions by assigning each input feature a numerical value which
indicates its importance or contribution to the prediction. These atom-based numerical assignments are commonly
referred to as heatmaps. [53] Recently, Rasmussen et al. [54] showed that Crippen logP models serve as a benchmark for
heatmap approaches. However, some argue if these heatmaps (attribution methods) provide actual explanations. [35]

Feature attributions provide local explanations, but can be averaged or combined explain multiple instances. The Most
widely used feature attribution approaches in literature are gradient based methods, [55,56] Shapley Additive exPlana-
tions (SHAP), [57] and layerwise relevance propogation. [58]

Gradient based approaches are based on the idea that gradients for neural networks are analogous to coefficients for
regression models. [59] Class activation maps (CAM), [60] gradCAM, [61] smoothGrad,, [62] and integrated gradients [59]

are examples of gradient methods for feature attribution. The principle of feature attributions with gradients is that:
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∆f̂(x⃗)

∆xi
≈ ∂f̂(x⃗)

∂xi
(2)

where f̂(x) our black box models and ∆f̂(x⃗)
∆xi

are used as our attributions. The left hand says that we attribute each
input feature xi by how much one unit change in it would affect the output of f̂(x). You can also view this as
assuming a linear surrogate model and this can be reconciled with LIME. [39] For DL models, ∇xf(x), suffers from
something called the shattered gradients problem [59] – which means directly computing it leads to numeric problems.
The different gradient based approaches are mostly distinguishable about how they approximate this gradient.

Gradient based explanations have been used widely to interpret chemistry predictions. [56,63–67] McCloskey et al. [56]

used graph convolutional networks (GCNs) to predict protein-ligand binding and explained the binding logic for these
predictions using integrated gradients. Pope et al. [63] and Jiménez-Luna et al. [64] show application of gradCAM and
integrated gradients to explain molecular property predictions from trained graph neural networks (GNNs). Sanchez-
Lengeling et al. [65] present comprehensive, open-source XAI benchmarks to explain GNNs and other graph models.
They compare the performance of class activation maps (CAM), [60] gradCAM, [61] smoothGrad,, [62] integrated gradi-
ents [59] and attention mechanisms for explaining outcomes of classification as well as regression tasks. They concluded
that CAM and integrated gradients perform well for graph models. Another attempt at creating XAI benchmarks for
graph models was made by Rao et al. [67]. They compare these gradient based methods to find subgraph importance
when predicting activity cliffs and conclude that gradCAM and integrated gradients provided the most interpretability
for GNNs. GNNExplainer [66] focuses on identifying the most influential subgraph and node feature contributions that
maximize mutual information between the GNN prediction and the distribution of possible subgraphs. Ying et al. [66]

show that GNNExplainer can be used to obtain model-agnostic local as well as global explanations. SubgraphX is
another method that explains GNN predictions by identifying important subgraphs. [68]

Another set of approaches like DeepLIFT [69] and Layerwise Relevance backPropagation [70] (LRP) depends on back-
propagation of prediction scores through each layer of the neural network. The specific backpropagation logic across
various activation functions differs in these approaches, which means each layer must have its own implementation.
Baldassarre and Azizpour [71] show application of LRP to explain aqueous solubility prediction for molecules.

SHAP is a model-agnostic feature attribution method that is inspired from the game theory concept of Shapley val-
ues. [57,72] It’s an additive feature contribution approach which assumes that an explanation model is a linear combina-
tion of binary variables z. If the Shapley value for the ith feature is ϕi, then the explanation is f̂(x⃗) =

∑
i ϕi(x⃗)zi(x⃗).

Shapley values for features are computed using Equation 3. [73,74]

ϕi(x⃗) =
1

M

M∑
f̂ (z⃗+i)− f̂ (z⃗−i) (3)

Here z⃗ is a fabricated example created from the original x⃗ and a random perturbation x⃗′. z⃗+i has the feature i from
x⃗ and z⃗−i has the ith feature from x⃗′. Some care should be taken in constructing z⃗ when working with molecular
descriptors to ensure that an impossible z⃗ is not sampled (e.g., high count of acid groups but no hydrogen bond
donors). M is the sample size of perturbations around x⃗. Shapley value computation is expensive, hence M is chosen
accordingly. Equation 3 is an approximation and gives contributions with an expectation term as ϕ0 +

∑
i=1 ϕi(x⃗) =

f̂(x⃗). SHAP has been popularly used in explaining molecular prediction models. [75–78]

Visualization based feature attribution has also been used for molecular data. In computer science, saliency maps is
a way to measure spatial feature contribution. [79] Simply put, saliency maps draw a connection between the model’s
neural fingerprint components (trained weights) and input features. Weber et al. [80] use saliency maps to build an
explainable GCN architecture that gives subgraph importance for small molecule activity prediction. Similarity maps,
on the other hand, compare model predictions for two or more molecules based on their chemical fingerprints. [81]

Similarity maps provide atomic weights or predicted probability difference between the molecules by removing atoms
one at a time. These weights can then be used to color the molecular graph and give a visual presentation. ChemIn-
formatics Model Explorer (CIME) is an interactive web based toolkit which allows visualization and comparison of
different explanation methods for molecular property prediction models. [82]

2.3 Surrogate models

One approach to explain black box predictions is to fit a self-explaining or interpretable model to the black box model,
in the vicinity of one or a few specific examples. These are known as surrogate models. We will make one model
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per explanation. If we could find one that explained the whole model, then we would simply have a globally accurate
interpretable model and no longer need the black box model. [73] In the work by White [73] a weighted least squares
linear model is used as the surrogate model. This model provides natural language based descriptor explanations
by replaced input features with chemically interpretable descriptors. This approach is similar to the concept-based
explanations approach used by McGrath et al. [83] where human understandable concepts are used in place of input
features in acquisition of chess knowledge in AlphaZero. Any of the self-explaining models detailed in the Self-
explaining models section can be used as a surrogate model.

The most commonly used surrogate model based method is Locally Interpretable Model Explanations (LIME). [39]

LIME creates perturbations around the example of interest and fits an interpretable model to these local perturbations.
Ribeiro et al. [39] mathematically define an explanation ξ for an example x⃗ using Equation 4.

ξ(x⃗) = argmin
g∈G

L(f, g, πx) + Ω(g) (4)

Where f is the black box model and g ∈ G is the interpretable explanation model. G is a class of potential interpretable
models, such as linear models, decision trees, and so on. πx is a similarity measure between original input x⃗ and it’s
perturbed input x⃗′. In context of molecular data, this could be a chemical similarity coefficient like Tanimoto [84]

similarity, cosine similarity and so on. The goal for LIME is to minimize the loss, L, so that g closely approximates
f . Ω is a parameter that controls the complexity (sparsity) of g. Ribeiro et al. [39] terms the agreement (how low the
loss is) between f and g as the fidelity.

GraphLIME [85] and LIMEtree [86] are modifications to LIME as applicable to graph neural networks and regression
trees, respectively. LIME has been used in chemistry previously, such as Whitmore et al. [87] who used LIME to
explain octane number predictions of molecules from a random forest classifier. Mehdi and Tiwary [88] used LIME
to explain thermodynamic contributions of features. Gandhi and White [10] use an approach similar to GraphLIME,
but use chemistry specific fragmentation and descriptors to explain molecular property prediction. Some examples are
highlighted in the Applications section. In recent work by Mehdi and Tiwary [88], a thermodynamic-based surrogate
model approach was used to interpret black-box models. The authors define an “interpretation free energy” which can
be achieved by minimizing the surrogate model’s uncertainty and maximizing simplicity.

2.4 Counterfactual explanations

Counterfactual explanations can be found in many fields such as statistics, mathematics and philosophy. [89–92] Accord-
ing to Woodward and Hitchcock [90], a counterfactual is an example with minimum deviation from the initial instance
but with a contrasting outcome. They can be used to answer the question, “which smallest change could alter the out-
come of an instance of interest?” While this deviation between the two instances is based on the existence of similar
worlds in philosophy, [93] a distance metric based on molecular similarity is employed in XAI for chemistry. For exam-
ple, in the work by Wellawatte et al. [9] distance between two molecules is defined as the Tanimoto distance [94] between
ECFP4 fingerprints. [95] Contrastive explanations are tangential to counterfactual explanations. Unlike the counterfac-
tual approach, contrastive approach employ a dual optimization method, which works by generating a similar and a
dissimilar (counterfactuals) example. Contrastive explanations can interpret the model by identifying contribution of
presence and absence of subsets of features towards a certain prediction. [40,96]

A counterfactual x′ of an input x is one with an dissimilar prediction f̂(x). Therefore, counterfactual generation
can be thought of as a constrained optimization problem which minimizes the vector distance d(x, x′) between the
features. [9,97]

minimize d(x, x′)

such that f̂(x) ̸= f̂(x′)
(5)

Equation 5 can be adapted for regression tasks as shown below in equation 6, where a counterfactual is one with a
defined increase or decrease in the prediction.

minimize d(x, x′)

such that
∣∣∣f̂(x)− f̂(x′)

∣∣∣ ≥ ∆
(6)

Counterfactuals explanations have become a useful tool for XAI in chemistry, as they provide intuitive understanding
of a decision and are able to uncover spurious relationships in training data [98] – helps to uncover physicochemical
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mechanisms based on data. Counterfactuals create local (instance-level), actionable explanations. Actionability of an
explanation is the degree to which the explanation can be acted on. For example, if an explanation claim that the the
electronegativity of an atom contributes towards a molecule’s solubility, this is non-actionable.

Counterfactual generation is an demainding task as it requires gradient optimization over discrete features that rep-
resents a molecule. Recent work by Fu et al. [99] and Shen et al. [100] present two techniques which allow continuous
gradient-based optimization. Although, these methodologies are shown to circumvent the issue of discrete molecular
optimization, counterfactual explanation based model interpretation still remains unexplored compared to other post-
hoc methods. The GNNExplainer [66] is another approach for generating local explanations for graph based models.
This method focuses on distinguishing which sub-graphs contribute most to the prediction by maximizing mutual in-
formation between the prediction and distribution of possible sub-graphs. However, this method fits under the feature
attribution category than the counterfactual explanation category.

CF-GNNExplainer is a method based on the GNNExplainer which generates counterfactual explanations for graph
based data. [101] This method generate informative and non-adversarial counterfactuals by perturbing the input data
(removing edges in the graph), and keeping account of which perturbations lead to changes in the output. However,
this method is only applicable to graph-based models and can generate infeasible molecular structures. Another related
work by Numeroso and Bacciu [102] focus on generating counterfactual explanations for deep graph networks. Their
method MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learning based generator to
create molecular counterfactuals (molecular graphs). While this method is able to generate counterfactuals through
a multi-objective reinforcement learner, this is not a universal approach (only for graph based models) and requires
training the generator for each task.

Work by Wellawatte et al. [9] present a model agnostic counterfactual generator MMACE (Molecular Model Agnostic
Counterfactual Explanations) which does not require training or computing gradients. This method employs a molecu-
lar generator based on the STONED algorithm [33] to populate a local chemical space through random string mutations
of SELFIES [103] representations. Unlike the CF-GNNExplainer [101] and MEG [102] methods, the MMACE algorithm
ensures that generated molecules are valid, owing to the surjective property of SELFIES. The MMACE method can
be applied to both regression and classification models. However, one limitation is that, it does not account for the
chemical stability of predicted counterfactuals. To circumvent this drawback, the Wellawatte et al. [9] propose another
approach, which lists counterfactuals through a similarity search on the PubChem database [104] instead of a generated
chemical space.

2.4.1 Similarity to adjacent fields

Tangential examples to counterfactual explanations are adversarial training and matched molecular pairs. Adversarial
perturbations are used in training to deceive the model such that the vulnerabilities of the model are exposed. [105,106]

Instead counterfactual examples are used to explain the model – an XAI tool applied post-hoc. Therefore, the main
difference between adversarial and counterfactual examples are in the application, although both are derived from
the same optimization problem. [97] Grabocka et al. [107] have developed a method named Adversarial Training on
EXplanations (ATEX) which improves model robustness which improves model’s stability to adversarial explanations.
While there are conceptual disparities between the similarity between the two, we agree that the counterfactual and
adversarial explanations are equivalent mathematical objects.

Matched molecular pairs (MMPs) are a pair of molecules that differ structurally at only one site by a known trans-
formation. [108,109] MMPs are widely used in drug discovery and medicinal chemistry as they facilitate fast and easy
understanding of structure-activity relationships. [110–112] Counterfactual and MMP analysis intersect if the structural
change is associated with a drastic change in the properties. These MMPs are then counterfactual pairs. In the case
the associated changes in the properties are non-significant, they are known as bioisosteres. [113,114] The connection
between MMPs and adversarial training examples has also been explored by van Tilborg et al. [115]. MMPs which
belong to the counterfactual category are commonly used in outlier and activity cliff detection. [109] This approach is
analogous to counterfactual explanations in XAI as the common objective is to uncover if the models have learned
non-linear relationships by identifying subgraphs associated with certain properties of the molecules. [67]

3 Applications

Model interpretation is certainly not new and a common step in ML in chemistry, but XAI for DL models is becoming
more important [56,63–66,70,86,101,102] Here we illustrate some practical examples drawn from our published work on
how model-agnostic XAI can be utilized to interpret black-box models and connect the explanations to structure-
property relationships. The methods are “Molecular Model Agnostic Counterfactual Explanations” (MMACE) [9] and
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“Explaining molecular properties with natural language”. [10] Then we demonstrate how counterfactuals and descriptor
explanations can propose structure-property relationships in the domain of molecular scent. [116]

3.1 Blood-brain barrier permeation prediction

The passive diffusion of drugs from the blood stream to the brain is a critical aspect in drug development and dis-
covery. [117] Predicting if a small molecule can permeate the blood-brain barrier (BBB) is routinely conducted with
DL. [118,119] Here we see if we can explain why the DL models work. We trained a random forest (RF) model [120] for
this classification task of BBB permeation prediction and generated counterfactuals explanations using the MMACE. [9]

Then we generate descriptor explanations to interpret a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN)
trained for the same task. Both the models were trained on the dataset developed by Martins et al. [121]. The RF model
was implemented in Scikit-learn [122] using Mordred molecular descriptors [123] as the input features. The GRU-RNN
model was implemented in Keras. [124] See Wellawatte et al. [9] for complete details

Figure 1 shows generated counterfactuals of a negative example; this molecule is predicted to not cross the BBB.
According to the counterfactuals of the instance molecule, we observe that the modifications to the carboxylic acid
group enable the example molecule to permeate the BBB. Experimental findings by Fischer et al. [117] show that the
BBB permeation of molecules are governed by hydrophobic interactions and surface area. The carboxylic group is a
hydrophilic functional group which hinders hydrophobic interactions and addition of atoms enhances the surface area.
The counterfactual provides an actionable modification to the molecule to make it cross the BBB.

In Figure 2 we show descriptor explanations generated for Alprozolam, a molecule that permeates the BBB, using
the method described by Gandhi and White [10]. We see that predicted permeability positively correlated with the
aromaticity of the molecule while negatively correlated with the number of hydrogen bonds donors and acceptors. A
similar structure-property relationship for BBB permeability in more mechanistic studies. [125–127] The substructure at-
tributions indicates a reduction in hydrogen bond donors and acceptors. These descriptor explanations are quantitative
and interpretable by chemists. Finally, we can use a natural language model to summarize the findings into a written
explanation, as shown in the printed text in Figure 2. This matches how a chemist might describe the findings after
inspecting the figures and molecular structure.

Figure 1: Counterfactuals of a molecule which cannot permeate the blood-brain barrier.Similarity is computed from
Tanimoto similarity of ECFP4 fingerprints. [128] Red indicates deletions and green indicates substitutions and addition
of atoms. Republished from Ref. [9] with permission from the Royal Society of Chemistry.

3.2 Solubility prediction

Small molecule solubility prediction is a classic cheminformatics challenge and is important for chemical process
design, drug design and crystallization. [130–133] In our previous works, [9,10] we implemented and trained an RNN
model in Keras to predict solubilities (log molarity) of small molecules. [124] The AqSolDB curated database [134] was
used to train the model.

We used 6 to define counterfactuals. Figure 3 is the generated local chemical space and the top four counterfactuals
of the example molecule. Based on the counterfactuals we observe that the modifications to the ester group and other
heteroatoms play an important role in solubility. These findings align with known experimental and basic chemical
intuition. [131] Figure 4 shows a more direct measurement of what part of the structure is important. Increasing the
polarity by adding acidic and basic groups as well as hydrogen bond acceptors, increases solubility. Substructure
importance from ECFP [95] and MACCS [135] descriptors indicate that adding heteroatoms increases solubility while
adding more rings makes the molecule less soluble. These are all well-known effects, but it is interesting to see they
can be derived purely from the data via DL and XAI.
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Figure 2: Descriptor explanations along with natural language explanation obtained for BBB permeability of Alprozo-
lam molecule. he green and red bars show descriptors that influence predictions positively and negatively, respectively.
Dotted yellow lines show significance threshold (α = 0.05) for the t-statistic. Molecular descriptors show molecule-
level properties that are important for prediction, and ECFP and MACCS descriptors indicate which substructures
influence model predictions. MACCS explanations lead to text explanations as shown. Republished from Ref. [10] with
permission from authors. [129]

Figure 3: Generated chemical space for solubility prediction using the RNN model. The chemical space is a 2D
projection of the pairwise Tanimoto similarities of the local counterfactuals. Each data point is colored by solubility.
Top 4 counterfactuals are shown here. Republished from Ref. [9] with permission from the Royal Society of Chemistry.
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Figure 4: Descriptor explanations for solubility prediction model. The green and red bars show descriptors that influ-
ence predictions positively and negatively, respectively. Dotted yellow lines show significance threshold (α = 0.05) for
the t-statistic. The MACCS and ECFP descriptors indicate which substructures influence model predictions. MACCS
substructures may either be present in the molecule as is or may represent a modification, and ECFP fingerprints are
substructures in the molecule that affect the prediction. MACCS descriptor are used to obtain text explanations as
shown. Republished from Ref. [10] with permission from authors. [136]

3.3 Generalizing XAI – interpreting scent-structure relationships

Here we show how to learn non-local structure-property relationships with XAI and DL across multiple molecules.
Molecular scent prediction is multi-label classification task because a molecule can be described by more than one
scent. For example, the molecule jasmone can be described as having ‘jasmine,’ ‘woody,’ ‘floral,’ and ’herbal’
scents. [137] The scent-structure relationship is not very well understood, [138] but some relationships are known. For
example, molecules with an ester functional group often have a ‘fruity’ scent. There are some exceptions though, like
tert-amyl acetate which has a ‘camphoraceous’ rather than ‘fruity’ scent. [138,139]

In Seshadri et al. [116], we trained a GNN model to predict the scent of molecules and utilized counterfactuals and
descriptor explanations to quantify scent-structure relationships. The MMACE method was modified to account for
the multi-label aspect of scent prediction. This modification defines molecules that differed from the instance molecule
by only the selected scent as counterfactuals. For instance, counterfactuals of the jasmone molecule would be false for
the ‘jasmine’ scent but would still be positive for ‘woody,’ ‘floral’ and ‘herbal’ scents.

The molecule 2,4 decadienal, which is known to have a ‘fatty’ scent is analyzed in Figure 5. [140,141] The resulting
counterfactual, which has a shorter carbon chain and no carbonyl group, highlights the influence of these structural
features on the ‘fatty’ scent of 2,4 decadienal. To generalize to other molecules, Seshadri et al. [116] applied the
descriptor attribution method to obtain global explanations for the scents. The global explanation for the ‘fatty’ scent
was generated by gathering chemical spaces around many ‘fatty’ scented molecules. The resulting natural language
explanation is: “The molecular property “fatty scent” can be explained by the presence of a heptanyl fragment, two
CH2 groups separated by four bonds, and a C=O double bond, as well as the lack of more than one or two O atoms.” [116]

The importance of a heptanyl fragment aligns with that reported in the literature, as ‘fatty’ molecules often have a long
carbon chain. [142] Furthermore, the importance of a C=O double bond is supported by the findings reported by Licon
et al. [143], where in addition to a “larger carbon-chain skeleton”, they found that ‘fatty’ molecules also had “aldehyde
or acid functions”. [143] For the ‘pineapple’ scent, the following natural language explanation was obtained: “The
molecular property “pineapple scent” can be explained by the presence of ester, ethyl/ether O group, alkene/ether O
group, and C=O double bond, as well as the absence of an Aromatic atom.” [116] Esters, such as ethyl 2-methylbutyrate,
are present in many pineapple volatile compounds. [144,145] The combination of a C=O double bond with an ether could
also correspond to an ester group. Additionally, aldehydes and ketones, which contain C=O double bonds, are also
common in pineapple volatile compounds. [144,146]
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Figure 5: Counterfactual for the 2,4 decadienal molecule. The counterfactual indicates structural changes to ethyl
benzoate that would result in the model predicting the molecule to not contain the ‘fruity’ scent. The Tanimoto [94]

similarity between the counterfactual and 2,4 decadienal is also provided. Republished with permission from au-
thors. [116]

4 Discussion

We have shown two post-hoc XAI methods based on molecular counterfactual explanations [9] and surrogate mod-
els. [10] These methods can be used for classification or regression black box models type whose input is a molecule.
The main objective of the two XAI approaches, we present in the review, is to explain black-box models under investi-
gation. Whether this explains the underlying physical phenomena depends strongly on the correctness of the black-box
model.

A molecular counterfactual is one with a minimal distance from a base molecular, but with contrasting chemical
properties. We used Tanimoto similarity [94] of ECFP4 fingreprints [95] as distance, although this should be explored
in the future.. Counterfactual explanations are useful because they are represented as chemical structures (familiar to
domain experts), sparse, and are actionable. A few other popular examples of counterfactual on graph methods are
GNNExplainer, MEG and CF-GNNExplainer. [66,101,102]

The surrogate-model based method developed by Gandhi and White [10] fits a self-explaining model to explain the
black-box model. This is similar to the GraphLIME [85] method, although we have the flexibility to use explanation
features other than subgraphs. The surrogate-models give natural language and chemical descriptor attributions to cre-
ate explanations useful for chemists. Lastly, we examined if XAI can be used beyond interpretation. Work by Seshadri
et al. [116] use MMACE and surrogate model explanations to analyze the structure-property relationships of scent.
They recovered known structure-property relationships for molecular scent purely from explanations, demonstrating
the usefulness of a two step process: fit an accurate model and then explain it.

5 Conclusion and outlook

We should seek to explain molecular property prediction models because users are more likely to trust explained
predictions and explanations can help assess if the model is learning the correct underlying chemical principle. We
also showed that black-box modeling first, followed by XAI, is a path to structure-property relationships without
needing to trade between accuracy and interepretability. However, XAI in chemistry has some major challenges, that
are also related to the black-box nature of the deep learning. Some are highlighted below:

• Explanation representation: How is an explanation presented – text, a molecule, attributions, a plot, etc.
How do we represent compounds in these explanations - for example, none of the methods above can really
account for stereochemistry and thus stereochemistry cannot be proposed as an explanation.

• Molecular distance: in XAI approaches such as counterfactual generation, the “distance” between two
molecules are minimized. Molecular distance is subjective. Possibilities are distance based on molecular
properties, synthesis routes, and direct structure comparisons. Which is best?
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• Regulations: As black-box models move from research to industry, healthcare, and environmental settings,
we expect XAI to become more important to explain decisions to chemists or non-experts and possibly be
legally required.

• Chemical space: Chemical space is the set of molecules that are realizable; “realizable” can be defined from
purchasable to synthesizable to satisfied valences. What is most useful? How can we generate local chemical
spaces centered around a specific molecule for finding counterfactuals and explanations? We note that this
idea has a connection with the older idea of “activity cliffs” in drug design. [147]

• Evaluating XAI: there is a lack of a systematic framework (quantitative or qualitative) to evaluate correctness
and applicability of an explanation. Can there be a universal framework, or should explanations be chosen
and evaluated based on the audience and domain?

6 Acknowledgements

Research reported in this work was supported by the National Institute of General Medical Sciences of the National
Institutes of Health under award number R35GM137966. This work was supported by the NSF under awards 1751471
and 1764415. We thank the Center for Integrated Research Computing at the University of Rochester for providing
computational resources.

References
[1] Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain, Francesca Tavazza, Ryan Cohn, Cheol Woo Park,

Alok Choudhary, Ankit Agrawal, Simon J.L. Billinge, Elizabeth Holm, Shyue Ping Ong, and Chris Wolverton.
Recent advances and applications of deep learning methods in materials science. npj Computational Materials,
8(1), 2022. ISSN 20573960. doi: 10.1038/s41524-022-00734-6.

[2] John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert
Müller, and Alexandre Tkatchenko. Combining machine learning and computational chemistry for predictive
insights into chemical systems. Chemical Reviews, 121(16):9816–9872, 2021. doi: 10.1021/acs.chemrev.
1c00107. URL https://doi.org/10.1021/acs.chemrev.1c00107. PMID: 34232033.

[3] Garrett B. Goh, Nathan O. Hodas, and Abhinav Vishnu. Deep learning for computational chemistry. Journal
of Computational Chemistry, 38(16):1291–1307, 2017. doi: https://doi.org/10.1002/jcc.24764. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24764.
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[32] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-referencing
embedded strings (selfies): A 100% robust molecular string representation. Machine Learning: Science and
Technology, 1(4):045024, 2020.

[33] AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan Aspuru-Guzik. Be-
yond generative models: superfast traversal, optimization, novelty, exploration and discovery (stoned) algorithm
for molecules using selfies. Chemical science, 12:7079–7090, 2021.

[34] Jasper van der Waa, Elisabeth Nieuwburg, Anita Cremers, and Mark Neerincx. Evaluating xai: A com-
parison of rule-based and example-based explanations. Artificial Intelligence, 291:103404, 2021. ISSN
0004-3702. doi: https://doi.org/10.1016/j.artint.2020.103404. URL https://www.sciencedirect.com/
science/article/pii/S0004370220301533.

[35] Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability is
both important and slippery. Queue, 16(3):31–57, 2018.

[36] Arun Das and Paul Rad. Opportunities and challenges in explainable artificial intelligence (xai): A survey.
arXiv preprint arXiv:2006.11371, 2020.

[37] R. Machlev, L. Heistrene, M. Perl, K. Y. Levy, J. Belikov, S. Mannor, and Y. Levron. Explainable artificial
intelligence (xai) techniques for energy and power systems: Review, challenges and opportunities. Energy and
AI, 9:100169, 8 2022. ISSN 2666-5468. doi: 10.1016/J.EGYAI.2022.100169.

[38] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In International
Conference on Machine Learning, pages 1885–1894. PMLR, 2017.

[39] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1135–1144, San Diego, CA, USA, June 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/N16-3020. URL https://aclanthology.org/N16-3020.

[40] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and
Payel Das. Explanations based on the missing: Towards contrastive explanations with pertinent negatives.
Advances in neural information processing systems, 31, 2018.

[41] Weina Jin, Xiaoxiao Li, and Ghassan Hamarneh. Evaluating explainable ai on a multi-modal medical imaging
task: Can existing algorithms fulfill clinical requirements? Proceedings of the AAAI Conference on Artificial
Intelligence, 36(11):11945–11953, Jun. 2022. doi: 10.1609/aaai.v36i11.21452. URL https://ojs.aaai.
org/index.php/AAAI/article/view/21452.

[42] Felipe Oviedo, Juan Lavista Ferres, Tonio Buonassisi, and Keith T. Butler. Interpretable and explainable ma-
chine learning for materials science and chemistry. Accounts of Materials Research, 3(6):597–607, 2022. doi:
10.1021/accountsmr.1c00244. URL https://doi.org/10.1021/accountsmr.1c00244.

[43] Yuyi Zhang, Feiran Xu, Jingying Zou, Ovanes L Petrosian, and Kirill V Krinkin. Xai evaluation: Evaluating
black-box model explanations for prediction. In 2021 II International Conference on Neural Networks and
Neurotechnologies (NeuroNT), pages 13–16. IEEE, 2021.
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