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Abstract

The self-consistent and complex spin–orbit exact two-component (X2C) formal-

ism for NMR spin–spin coupling constants [J. Chem. Theory Comput. 17, 3974–3994

(2021)] is reduced to a scalar one-component ansatz. This way, the first-order response

term can be partitioned into the Fermi-contact (FC) and spin–dipole (SD) interac-

tions as well as the paramagnetic spin–orbit (PSO) contribution. The FC+SD terms

are real and symmetric, while the PSO term is purely imaginary and antisymmetric.

The relativistic one-component approach is combined with a modern density functional

treatment up to local hybrid functionals including the response of the current density.

Computational demands are reduced by factors of 8–24 as shown for a large tin com-

pound consisting of 137 atoms. Limitations of the current ansatz are critically assessed,

i.e. the one-component treatment is not sufficient for tin compounds featuring a few

heavy halogen atoms.
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is an indispensable tool for organic, inor-

ganic, and organometallic chemistry. NMR spectra can be measured for almost all elements

and provide important information about the chemical environment.1–7 An accurate theo-

retical framework beyond the third row of the periodic table of elements necessitates the

inclusion of special relativity.8–25 For instance, it was shown that selenium and tin NMR

spectra are substantially affected by relativistic effects.26–35 This holds for both the chemi-

cal shift, describing the position of the signal, and the indirect spin–spin coupling constant

(SSCC), describing the multiplet pattern.

Relativistic effects can be treated at different levels of accuracy.17–25 The most straight-

forward and most accurate choice is a four-component (4c) framework directly based on the

many-electron Dirac–Coulomb equation. This was also successfully applied to NMR cou-

pling constants.36–39 However, this leads to comparably high computational costs, as both

the electronic and the so-called positronic states are described. Relativistic two-component

(2c) approaches aim at decoupling40,41 these states to arrive at an electrons-only Hamilto-

nian.19–25 Popular ansätze for these 2c frameworks are the zeroth-order regular approxima-

tion42–44 (ZORA) and (one-electron) exact two-component (X2C) theory.45–51 As indicated

by the names, X2C is formally more accurate. Two-component approaches describe both

scalar-relativistic and spin–orbit effects self-consistently, and complex algebra is still needed.

Computational demands may be further reduced by scalar one-component (1c) approaches,

which can be implemented with real matrices and algebra only. For ZORA, both a 1c and a

2c formalism were presented for NMR coupling constants.52–55 In contrast, the X2C Hamil-

tonian is so far exclusively used in its complex spin–orbit fashion for NMR couplings.56–58

Herein, I will present a scalar X2C ansatz for NMR coupling constants, and assess its

efficiency and accuracy. This is motivated by the following thoughts. First, a one-component

formalism is substantially less demanding for both the self-consistent field (SCF) procedure

and the NMR calculation. Converging the 2c ground-state density is technically more in-
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volved than its 1c counter part. Second, a relativistic one-component Hamiltonian can be

directly interfaced to the existing non-relativistic code machinery. Therefore, one-component

methods will address a broader community in terms of quantum chemical program suites.

Third, a one-component approach allows for a simpler interpretation of the results regrading

the different contributions to the NMR coupling constant.

The theory for such a one-component approach is described in Section 2. Computational

methods and results for its application to main-group organometallic chemistry are discussed

in Sections 3 and 4. The work is summarized in Section 5, where the conclusions are drawn.

2 Theory and Implementation

To illustrate how the self-consistent and complex two-component approach is truncated to a

one-component ansatz, I first review the non-relativistic one-component and the relativistic

two-component approaches based on the definition of the NMR coupling tensor. In SI units,

the nuclear spin–spin coupling tensor JM,N of the nuclei M and N is defined as

(JM,N)u,v = h
γM
2π

γN
2π

(KM,N)u,v (1)

with the reduced indirect spin–spin coupling tensor KM,N . γM is the gyromagnetic ratio

of the nucleus M .59,60 The reduced coupling tensor KM,N is simply the derivative of the

electronic energy E with respect to the corresponding nuclear magnetic moments ~mM and

~mN . This derivative is formed in the limit of a vanishing perturbation, e.g. mM,u = 0. u and

v denote the Cartesian indices. The isotropic coupling constant J(M,N) or JMN describing

the splitting of the signals in the NMR spectra is a third of the trace,

J(M,N) =
1

3

∑
u

(JM,N)u,u (2)
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2.1 Non-Relativistic Theory

The non-relativistic theory was formulated by Ramsey.61 Here, the coupling is described

with the Fermi-contact (FC), spin–dipole (SD), paramagnetic spin–orbit (PSO), and the

diamagnetic spin–orbit (DSO) operators according to

hFC =
8π

3c2

∑
i,M

δ(~riM) ~si · ~mM (3)

hSD =
1

c2

∑
i,M

3 (~si · ~riM) (~mi · ~riM)− r2iM~si · ~mM

r5iM
(4)

hPSO = − i
c2

∑
i,M

~mM × ~riM
r3iM

· ~∇i (5)

hDSO =
1

c4

∑
i,M,N

~mM · (~riM · ~riN) ~mN − (~riM · ~mM) (~riN · ~mN)

r3iMr
3
iN

(6)

Uppercase letters refer to the nuclei and lowercase indices denote the electronic coordinates.

c is the speed of light (c = 137.0359990840 a.u.).62

Using the coupled-perturbed Kohn–Sham (CPKS) formalism, these operators allow to

compute the coupling tensor according to4,63–66

KM,N =KDSO
M,N +

∑
ai

λPSOM,ai

(
κPSON,ai

)T
+ KFC/SD

M,N

+ 13

∑
ai

λFCM,aiκ
FC
N,ai +

∑
ai

λSDM,ai

(
κSDN,ai

)T (7)

Note that 13 is the (3× 3) unit matrix. λM,ai indicates the response of the Kohn–Sham

(KS) wavefunction to the perturbation associated with the magnetic moment ~mM . That is,

response equations of the type

∑
bj

Gai,bjλM,bj = −κM,ai (8)

are solved. a, b, . . . denote virtual orbitals, while i, j, . . . denote occupied orbitals. Gai,bj is
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the electronic Hessian including the exchange-correlation kernel.4,63–71 The right-hand side

κM,ai is made up of the one-electron integral derivatives

(
hFC
)M
u

=
8π

3c2
〈µ|δ (~rM) δuw|ν〉 (9)(

hSD
)M
u

=
1

c2
〈µ|3rM,wrM,u − r2Mδuw

r5M
|ν〉 (10)

(
hPSO

)M
u

= − i
c2
〈µ|

(
~rM × ~∇
r3M

)
u

|ν〉 (11)

being transformed to the molecular orbital (MO) occupied-virtual tensor space (i, a) from the

atomic orbital (AO) representation (µ, ν). w is associated with the formal spin state (spin

x, y, z), δuw indicates the Kronecker delta, and δ(~rM) the delta distribution. A shorthand

notation is employed to indicate derivatives with respect to the nuclear magnetic moments,

i.e.
(
hPSO

)M
u

= ∂hPSO/∂mM,u. The FC and SD terms are real and symmetric, i.e. they

correspond to singlet exciations.4 In contrast, the PSO integrals are purely imaginary and

antisymmetric, corresponding to triplet excitations.4 This means that there are one response

equation for the FC term, six equations for the SD term (due to symmetry), and three

equations for the PSO term to be solved. For the DSO term, no response equations are

needed and the integral derivatives

(
hDSO)u,v

M,N
=

1

c4
〈µ|δuv~rM · ~rN − rN,urM,v

r3Mr
3
N

|ν〉 (12)

are directly contracted with the ground-state density matrix. KFC/SD
M,N is the FC-SD cross

contribution to the anisotropy

KFC/SD
M,N =

∑
ai

λFCM,aiκ
SD
N,ai +

∑
ai

κSDM,aiλ
FC
N,ai (13)

=
∑
ai

λFCM,aiκ
SD
N,ai +

∑
ai

λSDM,aiκ
FC
N,ai (14)

See, e.g., refs. 4 and 66 for more details.
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2.2 Exact Two-Component Theory

In the spin–orbit two-component X2C formalism,56–58 the derivatives of the one-electron

Hamiltonians are obtained by decoupling the energy sub-spaces of the one-electron Dirac

equation in a restricted kinetically based basis set,72

∣∣ψL
p

〉
=

∑
µ

cLµp |µ〉 (15)

∣∣ψS
p

〉
=

∑
µ

cSµp
~σ · ~p
2c
|µ〉 (16)V Π†

Π ( 1
4c2

W−T)


CL

− CL
+

CS
− CS

+

 =

S 02

02
1
2c2

T


CL

− CL
+

CS
− CS

+


ε− 02

02 ε+

 (17)

+ and − denote the electronic and positronic states of the energy ε+ and ε−. CL and CS

are the respective eigenvectors of the large (L) and small (S) component. The Dirac matrix

on the left-hand side of eq. 17 consists of one-electron integrals. In the (2× 2) super-space,

the overlap matrix S, kinetic energy matrix T, and potential matrix V read

S =

S0 0

0 S0

 , S0
µν = 〈µ|ν〉 (18)

T =

T0 0

0 T0

 , T0
µν = 〈µ|

1

2
p2|ν〉 (19)

V =

V0 0

0 V0

 , V0
µν = 〈µ|V |ν〉 (20)

Only the relativistically modified potential W and the generalized momentum matrix Π

include the electron spin via the Pauli spin matrices, ~σ = (σx, σy, σz), according to

Wµν = 〈µ|(~σ · ~p)V (~σ · ~p)|ν〉 (21)
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Π†µν =
1

2c
〈µ|c ~σ ·

(
~p+

1

c
~A

)
|(~σ · ~p) ν〉 (22)

~A is the vector potential of the nuclear magnetic moments, which was introduced via the

principle of minimal coupling,73

~A =
∑
M

~AM =
∑
M

~mM × ~rM
r3M

(23)

The point-charge model for the vector potential was assumed for comparison with the non-

relativistic integrals. The generalization to the finite nucleus model is straightforward.74–78

Application of the one-electron X2C decoupling scheme,45–51 results in the electrons-only

Hamiltonian

h+ = R†LR (24)

L is the so-called normalized-elimination-of-the-small-component (NESC) matrix.79–82 The

decoupling matrix X and the renormalization matrix R read

X =CS
+(C

L
+)
−1 (25)

R =S−1/2
(
S−1/2S̃S−1/2

)−1/2
S1/2 (26)

S̃ =S +
1

2c2
X†TX (27)

Analytical derivative theory19,21 for eq. 1, leads to the derivative of the X2C Hamiltonian

h+,M
u = R†,Mu LR + R†LM

u R + R†LRM
u (28)

with the derivative of the NESC matrix

LM
u =X†,Mu T + X†ΠM

u +Π†,Mu X + TXM
u

+ X†,Mu

(
1

4c2
W−T

)
X + X†

(
1

4c2
W−T

)
XM
u (29)
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This equation involves the one-electron integral derivatives for the generalized momentum

matrix given by56,57 (
Π†µν

)M
u

=
1

2c
〈µ|
(
~rM
r3M

× ~σ

)
u

|(~σ · ~p) ν〉 (30)

Recipes to calculate the derivative of the decoupling and the renormalization matrix can

be found in the literature.78,83–86 Due to spin–orbit effects the FC, SD, and PSO terms are

coupled and only three complex response equations are solved in the spinor space.87

In restricted kinetic balance (RKB), the unperturbed density or DSO contribution only

arises due to the second-order one-electron X2C response equations.56,57 The respective

second-order integral derivatives of Π are zero. We note in passing that a restricted mag-

netically balanced (RMB) basis set is used in four-component approaches according to39

∣∣ψL
p

〉
=

∑
µ

cLµp |µ〉 (31)

∣∣ψS
p

〉
=

∑
µ

cSµp
~σ · ~π
2c
|µ〉 (32)

with ~π = ~p+ 1
c
~A. However, this is problematic in one-electron X2C56 and the kinetic balance

only leads to a small deviation when using the spin–orbit X2C response for second-order

derivatives.57

2.3 One-Component Relativistic Approach

In order to arrive at a one-component formalism, we partition the generalized momentum

matrix derivative
(
Π†µν

)M
u

into the spin-dependent and spin-independent contributions ac-

cording to88

(
Π†µν

)M
u

= − i
2c
〈µ|

(
~rM × ~∇
r3M

)
u

|ν〉12 +
1

2c
〈µ|~σ · ~rM

r3M
~∇u − σu

~rM · ~∇
r3M

|ν〉 (33)
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The first term is spin-independent and consists of the non-relativistic PSO integrals, cf.

eqs. 5 and 11. Therefore, the PSO contribution to the first-order integral derivatives is

extracted in this way. The relativistically modified potential also has to be reduced to its

scalar contribution according to

W =

 W0 + iWz Wy + iWx

−Wy + iWx W0 − iWz

 (34)

with the real symmetric matrix W0 and the real antisymmetric matrices Wx, Wy, and Wz

W0
µν = 〈µ|pxV px + pyV py + pzV pz|ν〉 (35)

Wx
µν = 〈µ|pyV pz − pzV py|ν〉 (36)

Wy
µν = 〈µ|pzV px − pxV pz|ν〉 (37)

Wz
µν = 〈µ|pxV py − pyV px|ν〉 (38)

For the one-component ansatz, only W0 is needed. Constructing the X2C Hamiltonian

derivative according to eq. 28 with the spin-independent parts, therefore, only leads to the

relativistic PSO term with the same symmetry properties as in the non-relativistic ansatz.

The one-component X2C Hamiltonian derivative is obtained by replacing T and W in Eq. 28

with T0 and W0.

The spin-dependent part of eq. 33, constitutes the FC and SD interaction with

(
Π†,FC+SD
µν

)M
u

=
1

2c
〈µ|~σ · ~rM

r3M
~∇u − σu

~rM · ~∇
r3M

|ν〉 = 1

2c
〈µ|
∑
w

(
σw rM,w

r3M
~∇u − δuwσw

~rM · ~∇
r3M

)
|ν〉

(39)

The non-relativistic integrals of Eqs. 9 and 10 are obtained upon integration by parts in

the non-relativistic limit,89 where
(
Π†,FC+SD
µν

)M
u

and
(
ΠFC+SD
µν

)M
u

can simply be added.90,91

Similar to the spin-dependent part of the relativistically modified potential W in Eqs. 35–

38,
(
Π†,FC+SD

)M
u

can be evaluated with three real matrices associated with the spin index
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w. This means that we use three matrices for every Cartesian component u, leading to

nine matrices in total. These matrices are employed to form the Hamiltonian derivative

according to eq. 28. Therefore, nine response equations are solved for the FC+SD terms.

The same symmetry considerations and relations to excitations as in the non-relativistic

limit are applicable. Thus, this relativistic one-component ansatz, termed SR X2C, leads to

a minor computational overhead compared to the non-relativistic approach.

Overall, this one-component approach for the first-order terms is closely related to the

one-component formulation of the hyperfine coupling constant in X2C.90–93 Therefore, this

anstatz can be easily implemented by interfacing the respective routines into a non-relativistic

implementation of NMR coupling constants.

The DSO term is calculated with the second-order X2C Hamiltonian derivative78,85,86

using the PSO part of Π† and its derivatives. Therefore, a (3× 3) DSO tensor is obtained

using
(
ΠPSO
µν

)M
u

and
(
ΠPSO
µν

)N
v
.

2.4 Implementation

The outlined approach was implemented into the TURBOMOLE program suite.94–97 All

required integrals were already available.57,78,98 Note that we use the finite nucleus model99

for both the scalar potential and the vector potential. The algorithm for the X2C response

part is described in ref. 100 in detail and all steps support the OpenMP paradigm.101,102 Ap-

plication of the diagonal local approximation to the unitary decoupling transformation103,104

(DLU) is straightforward. The reader is referred to Refs. 57, 78, and 98 for details.

The CPKS equations are solved as discussed by Mack et al.,66 with the FC and SD

term now being coupled. Additionally, the current density response is included for meta-

generalized gradient approximations (mGGAs) and local hybrid functionals (see below).71

The respective magnetic exchange-correlation kernel only affects the PSO term due to sym-

metry reasons.69–71 Currently, the implementation supports Hartree–Fock (HF) theory and

KS-DFT up to the class of range-separated and local hybrid functionals.
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3 Computational Methods

First, the tetrel hydrogen molecules TtH4 (with Tt = C, Si, Ge, Sn, Pb) are considered, as

both 4c RMB results with the BP86 functional105,106 and experimental findings are avail-

able.39 Structures are taken from ref. 36. The same basis sets and functional as in ref. 39

are applied. That is, an uncontracted Dyall-VTZ basis set (no g functions) is used for Ge,

Sn, Pb,107,108 whereas the uncontracted pcJ-2 basis set is employed for C and Si.109 For

comparison, very large girds110–112 (grid size 5a) are applied for the numerical integration of

the DFT contributions. The SCF procedure is converged with thresholds of 10−8 Eh for the

total energy and 10−8 a.u. for change of the root mean square of the densities. For the CPKS

equations, a threshold of 10−7 a.u. is chosen for the norm of the residuum. These settings are

applied in both one- and two-component calculations based on the DLU-X2C Hamiltonian.

In 2c calculations, the modified screened nuclear spin–orbit (mSNSO) approximation113–115

is further applied. Note that the finite nucleus model for both the scalar potential and the

vector potential is used throughout all calculations. The 1c and 2c calculations are carried

out with the same program suite in this work, which allows for full consistency.

Second, the set of small tin compounds compiled by Bagno et al. is studied.27 Structures

are taken from ref. 57 and the BP86 functional105,106 is applied with very large grids (grid size

5a).110–112 Here, the x2c-TZVPPall-2c orbital and auxiliary basis sets116 for the resolution of

the identity approximation of the Coulomb integrals117–120 (RI-J) are employed. SCF thresh-

olds of 10−9 Eh and 10−8 a.u. are chosen, while a CPKS criterion of 10−7 a.u. is applied. The

conductor-like screening model121,122 (COSMO) is used for charged systems with the default

settings123 to simulate the counter ions. Again, the 1c DLU-X2C and 2c mSNSO-DLU-X2C

Hamiltonians are considered. To illustrate the impact of the density functional approxima-

tion (DFA),124–126 the following 31 functionals are studied. Pure DFAs are represented

by BP86,105,106 PBE,127 TPSS,128 M06-L,129 M11-L,130 MN12-L,131 MN15-L,132 TM,133

and r2SCAN,134,135 while BH&HLYP,105,136,137 B3LYP,105,136,138 PBE0,127,139 TPSSh,128,140

M06,141 M06-2X,141 MN15,142 and r2SCAN0,134,135,143 serve as examples for global hybrid
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DFAs. Range-separated hybrids used are CAM-B3LYP,144 ωB97X-D,145 ωB97M,146 M11,147

revM11,148 and MN12-SX.149 The performance of local hybrid DFAs150,151 is illustrated with

LH07t-SVWN,152 LH12ct-SsirPW92,153 LH14t-calPBE,154 LH20t,155 PSTS,71,156 LHJ14,157

LHJ-HFcal,158 and TMHF.158 Note that local hybrids use a seminumerical scheme for the

simultaneous evaluation of exact and semilocal exchange.71,159–161 For the DFT study, the

x2c-QZVPPall (auxiliary) basis sets are applied.162

Third, the efficiency of the 1c DLU-X2C and the 2c mSNSO-DLU-X2C approach is

assessed for the low-valent Sn phosphinidenide complex [({SIDipp}P)2Sn] (SIDipp = 1,3-

bis(2,6-di-isopropylphenyl)-imidazolidin-2-ylidene) of ref. 163. Here, the BP86105,106 and

B3LYP functionals105,136,138 are considered to illustrate the computational costs for pure and

hybrid DFAs. Large grids110,112 (grid size 4a) are chosen and both analytical integrals as

well as seminumerical integrals are used for the exact exchange.161 The RI-J approximation

is used throughout. One-component calculations employ the x2c-TZVPall (auxiliary) basis

sets,116 whereas the x2c-TZVPall-2c bases are employed for the 2c calculations.116 SCF

thresholds of 10−9 Eh and 10−8 a.u. for the root mean square of the densities matrices are

applied. The CPKS procedure is converged up to a threshold of 10−6 a.u. for the norm of the

residuum. Structures were optimized for each DFA, see txt file of the Supporting Information.

Thus, only the structures for r2SCAN,134,135 LHJ-HFcal,158 and TMHF158 including the D4

dispersion correction164–166 as well as that for ωB97X-D145 were optimized in this work.

Weight derivatives are included for r2SCAN,134,135 LHJ-HFcal,158 and TMHF.158 Structures

for the other DFAs were already available in the literature.57,163 For comparison with the

experimental finding,163 the top performers of the previous study are used together with the

seminumerical exchange approximation (snK) for the CPKS part (grid size −1).161 COSMO

is applied with the settings for benzene,121,122 i.e. a permitivity of ε = 2.300 and a refractive

index of n = 1.4957 are assumed.

Fourth, the 1J(119Sn,117Sn) coupling constant of the novel pincer-type bis-stannylene

ligand SnNSn is studied.167 This compound features a very large through-space coupling
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constant previously studied experimentally and computationally with the two-component

mSNSO-DLU-X2C ansatz.167 Here, the results are complemented with the SR X2C and

the non-relativistic approach. For the first, the x2c-TZVPall (auxiliary) basis sets116 are

applied. For the latter, the def2-TZVP basis set168 is used for all atoms except Sn, for which

the TZVPall bases are used.169 SCF convergence thresholds of 10−7 Eh and 10−6 a.u. for the

root mean square of the densities matrices are chosen, while 10−7 a.u. is used for the norm of

the CPKS residuum. Computational studies are carried out with the BH&HLYP,105,136,137

PBE0,127,139 TPSSh,128,140 ωB97X-D,145 and TMHF158 functionals using large grids (grid size

3a).110–112 Structures are taken from ref. 167. All calculations use the multipole-accelerated

RI-J (MARI-J) approximation170 and snK for the CPKS part. (grid size −1).161

4 Assessment of Accuracy and Efficiency

4.1 Tetrel Hydrogen Molecules

Comparison of the 1JTtH coupling constant in Table 1 reveals pronounced relativistic effects

for the heavy elements. Starting with GeH4 the non-relativistic treatment is no longer

sufficient. X2C and the 4c approach lead to a remarkable agreement for all molecules except

PbH4, which can be (at least partly) attributed to the different nuclear models for the vector

potential. X2C employs the finite nucleus model, while the 4c ansatz uses the point-charge

limit.171 This deviation is, however, small compared to the impact of relativistic effects

(column: NR–4c MAPD).

The 1c and 2c approaches lead to an excellent agreement up to SnH4, as the mean

absolute percent-wise deviation (MAPD) is below 5% (column: 1c–2c MAPD). As expected,

the deviation increases with the atomic number of the tetrel atom. In all cases, the coupling

constant is dominated by the Fermi-contact interaction (see Supporting Information) and

the coupling between the FC, SD, and PSO terms is rather small for the isotropic constant.

The second-order or DSO interaction is of almost no importance for the 1JTtH coupling.
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Table 1: Comparison of non-relativistic and relativistic approaches. 4c-RMB results are
taken from ref. 39. Coupling constants (1JTtH, 2JHH) are given in Hz. Experimental find-
ings172–175 (Expt.) were collected in ref. 39. Uncontracted Dyall-VTZ/pcJ-2 basis sets and
the BP86 functional are employed. MAPD is the mean absolute percent-wise deviation and
NR means non-relativistic. SR and SO refer to scalar and spin–orbit treatments, i.e. 1c
and 2c approaches. MAPD is not computed for coupling constants below 1Hz. Contribu-
tions of the individual terms are found in the Supporting Information. There, results with
a pseudo-2c treatment for the DSO term are also shown.

NR SR X2C SO X2C 4c RMB Expt. SR–SO MAPD NR–4c MAPD
1JTtH

CH4 121.5 122.1 121.9 122.0 120.1 0.2 0.4
SiH4 −195.1 −198.9 −198.6 −201.6 −201.1 0.1 3.2
GeH4 −82.3 −91.2 −90.5 −90.4 −97.6 0.8 8.9
SnH4 −1365.9 −1776.2 −1740.2 −1742.2 −1933.3 2.1 21.6
PbH4 1269.3 2650.4 2511.3 2345.3 – 5.5 45.9

2JHH

CH4 −12.90 −10.35 −13.15 −13.50 −12.40 21.3 4.5
SiH4 −0.82 1.18 −0.44 −0.56 2.75 – –
GeH4 5.28 11.01 7.81 7.79 7.69 41.0 32.3
SnH4 6.99 17.50 14.55 14.30 15.30 20.2 51.1
PbH4 7.23 41.38 36.66 30.87 – 12.9 76.6

Thus, the lack of the FC and SD integrals for the second-order derivative in the 1c ansatz is

well legitimated by the reduction in computational costs.

In contrast, the 2JHH couplings reveal a different picture, as the DSO and PSO terms

are sizable. Still, the Fermi-contact interaction is the leading term. Using the PSO inte-

grals only for the DSO term in the 1c ansatz leads to notably larger error as observed for

1JTtH. The trend of the 2JHH coupling constant is still well described by all approaches.

The larger deviation towards the 2c approach can be addressed to the second-order X2C

response equations in RKB. Both the spin-independent and the spin-dependent first-order

integral derivatives lead to sizable contributions. However, their simultaneous treatment is

not possible in a strict one-component approach.

Improving the DSO term is possible by transforming the 1c density matrix to the 2c

picture without SCF iterations, see Supporting Information (DSO p2c). Then, the DSO
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integrals can be evaluated in the 2c fashion using complex algebra. The computational

demands are still drastically reduced, as no 2c SCF procedure is required and the first-order

terms are still computed in the 1c formalism. Alternatively, the RMB condition could be

employed. Then, non-vanishing second-order integral derivatives for the spin-independent

part of Π are found, see eq. (31) in ref. 56. However, the second-order integral derivatives

of W are problematic in one-electron X2C.56

Taking together, the one-component ansatz yields encouraging results for coupling con-

stants. Especially, coupling constants, which are not substantially affected by the DSO

integrals, are calculated in excellent agreement with the self-consistent spin–orbit formalism.

4.2 Small Tin Compounds

The accuracy of the SR X2C approach is assessed in more detail in Table 2 for 19 molecules

and 44 Sn coupling constants. For molecules not including halogen atoms, very small

MAPDs, typically below 5%, are obtained. SnH−3 is an exception in this regard. The

MAPDs increase with the atomic number of the halogen atoms. For instance, it rises from

7.3% for SnCl4 to 41.0% and 391.5% for SnBr4 and SnI4, respectively. Therefore, the complex

SO X2C ansatz is needed for such systems. Similar findings hold for Me3SnCl, Me3SnBr,

Me3SnI (Me = CH3) as well as the series Me3SnBr, Me2SnBr2, MeSnBr3. Overall, the subset

consisting of SnMe4, (Me3Sn)2, SnH4, SnH+
3 , SnH

−
3 , Me3SnCl, Me2SnCl2, MeSnCl3, SnCl4,

Me3SnBr, and Me2SnBr2 can be studied rather accurately with the SR X2C ansatz, as all

MAPDs are below 20%.

Notably, neither SR X2C nor SO X2C result in a reasonable agreement with the experi-

mental findings. Changing the basis set from a triple-ζ to a quadruple-ζ basis set does not

substantially improve the results, see Supporting Information. Therefore, more sophisticated

density functional approximations are considered herein—especially functionals based on the

kinetic energy density to identify different iso-orbital regions. Note that the kinetic energy

density τ requires a generalization for magnetic properties.182–184 Therefore, the paramag-
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Table 2: Sn coupling constants in Hz for a set of small tin compounds compiled in ref. 27.
Experimental findings176–181 (Expt.) were collected in ref. 27. See this reference for details.
MAPD denotes the mean absolute percent-wise deviation of the SR X2C approach vs. the
SO X2C ansatz (BP86/x2c-TZVPall-2c).

SR X2C SO X2C MAPD Expt.

Molecule nJ J(Sn,X) FC+SD PSO DSO Total FC+SD+PSO DSO Total

SnMe4 1 C −157.8 13.4 0.0 −144.5 −140.5 −0.1 −140.6 2.8 −340
2 H 24.7 1.8 0.0 26.5 24.9 0.2 25.1 5.7 53.9

(Me3Sn)2 1 Sn 955.3 −36.5 0.0 918.8 869.3 0.1 869.5 5.7 4460
1 C −67.1 12.8 0.0 −54.4 −50.3 −0.1 −50.5 7.7 −240
2 H 17.9 1.9 0.0 19.8 18.1 0.0 18.1 9.3 49
2 C −44.9 0.4 0.0 −44.5 −43.9 −0.1 −44.1 1.0 −56
3 H −17.0 0.0 0.1 −17.0 −16.9 0.0 −16.9 0.8 −17.3

SnH4 1 H −1532.1 3.7 0.0 −1528.4 −1496.5 0.0 −1496.5 2.1 −1930
SnH+

3 1 H −2101.9 17.5 0.0 −2084.4 −2012.5 0.1 −2012.4 3.6 −2960
SnH−

3 1 H 159.4 −2.8 0.0 156.6 191.4 0.0 191.4 18.2 109.4
Me3SnCl 1 Cl 260.0 46.4 0.0 306.4 290.9 0.0 290.9 5.3 220

1 C −170.5 19.0 0.0 −151.6 −146.8 −0.1 −146.9 3.2 −379.7
2 H 23.6 2.3 0.0 26.0 24.2 0.1 24.3 6.9 58.2

Me2SnCl2 1 Cl 319.2 76.1 0.0 395.3 376.0 0.0 376.0 5.1 220
1 C −228.5 21.8 0.0 −206.7 −201.5 −0.1 −201.7 2.5 −468.4, −566
2 H 27.7 2.3 0.0 30.1 28.3 0.1 28.3 6.1 68.2, 68.9

MeSnCl3 1 Cl 395.4 90.5 0.0 485.9 460.3 0.0 460.3 5.6 –
1 C −392.6 20.9 −0.1 −371.7 −365.8 −0.1 −365.9 1.6 –
2 H 45.6 2.1 0.0 47.6 46.0 0.0 46.0 3.5 96.9

SnCl4 1 Cl 461.9 88.8 0.0 550.7 513.3 0.0 513.3 7.3 470
Me3SnBr 1 Br 1373.5 217.6 0.0 1591.1 1384.2 −0.1 1384.1 14.9 –

1 C −157.2 19.2 0.0 −138.1 −134.2 −0.1 −134.4 2.8 −368.9, −380
2 H 22.7 2.4 0.0 25.1 23.3 0.0 23.4 7.3 57.8

Me2SnBr2 1 Br 1691.6 378.6 0.0 2070.2 1765.3 −0.1 1765.2 17.3 –
1 C −192.1 22.2 −0.1 −170.0 −165.7 −0.2 −165.8 2.5 −442.7
2 H 24.6 2.4 0.0 27.0 25.0 −0.1 24.9 8.4 66.7

MeSnBr3 1 Br 2134.9 458.9 0.0 2593.8 2092.5 −0.1 2092.3 24.0 –
1 C −307.9 21.9 −0.1 −286.1 −277.9 −0.2 −278.1 2.9 −640
2 H 37.4 2.1 −0.1 39.5 36.9 −0.2 36.7 7.5 –

SnBr4 1 Br 2672.7 454.4 −0.1 3127.0 2217.8 −0.2 2217.6 41.0 920
Me3SnI 1 I 1645.8 235.5 0.0 1881.3 1371.9 0.0 1371.9 37.1 –

1 C −142.2 18.9 −0.1 −123.4 −119.3 −0.1 −119.5 3.3 –
2 H 21.8 2.5 0.0 24.2 22.6 0.0 22.6 7.3 –

Me2SnI2 1 I 1944.4 420.8 0.0 2365.2 1548.7 −0.1 1548.7 52.7 –
1 C −150.3 22.1 −0.1 −128.3 −118.0 −0.2 −118.2 8.5 –
2 H 20.7 2.7 −0.1 23.3 20.9 −0.2 20.7 12.5 –

MeSnI3 1 I 2256.2 520.1 0.0 2776.3 1376.3 −0.1 1376.1 101.7 –
1 C −214.7 22.8 −0.1 −192.0 −155.8 −0.2 −156.0 23.0 –
2 H 25.4 2.6 −0.1 27.9 22.3 −0.3 22.0 26.8 –

SnI4 1 I 2578.3 527.0 0.0 3105.2 632.0 −0.1 631.8 391.5 940
SnCl3I 1 Cl 430.7 89.8 0.0 520.4 468.6 −0.1 468.6 11.1 378

1 I 4135.7 518.3 0.0 4654.0 2138.1 −0.1 2138.0 117.7 1638
SnI3Cl 1 Cl 364.5 92.1 0.0 456.6 386.6 −0.1 386.5 18.2 421

1 I 3034.8 523.4 0.0 3558.2 1050.2 −0.1 1050.1 238.9 1097

netic current density and the magnetic kernel are included for the PSO term.58,71 This means

that an iterative procedure is necessary for this term. However, the impact on the compu-

tational costs is rather small, as the FC+SD part is unaffected and involves nine response

equations per nucleus, while only three equations are to be solved for the PSO contribu-

16



Figure 1: Comparison of various density functional approximations (SR X2C/x2c-QZVPPall)
to the experimental findings176–181 of selected Sn compounds. A “c” at the beginning of the
acronym indicates that the response of the current density is included for the PSO term.
MAPD and STD denote the mean absolute percent-wise deviation and its standard deviation.
Complete data is available in the Supporting Information.

tion. For the 1c ansatz, the current density does not affect the ground-state calculation—in

contrast to the 2c treatment.185

The results are shown in Figure 1, see Supporting Information for complete data. Gener-

ally, pure density functionals do not yield accurate results and hybrid functionals are clearly

superior. Notable exceptions in this regard are r2SCAN, M06-L, and MN15-L which perform

on par with the best global hybrid functionals (BH&HLYP, r2SCAN0, PBE0). For r2SCAN,

adding exact exchange even leads to a minor deterioration. Range-separated and local hy-

brid functionals allow for a more sophisticated and flexible admixture of exact exchange and

tend to improve the accuracy. This is illustrated by the fact that the four top performers are

LH07t-SVWN, CAM-B3LYP, TMHF, and LHJ-HFcal. Only TMHF and LHJ-HFcal yield

MAPDs below 20%. The respective errors amount to 15.6% and 14.7%, which is in good

agreement with all experimental findings. This shows that local hybrids are about to become

an increasingly useful class of density functional approximations.

Overall, the SR X2C ansatz accurately describes the Sn coupling constants for organometal-

lic compounds excluding heavy halogen atoms. The error by not treating spin–orbit coupling
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self-consistently is minuscule compared to the impact of different density functional approxi-

mations. Local hybrids tend to perform best for the Sn coupling constants, with TMHF and

LHJ-HFcal leading to the smallest deviation from experiment. Additionally, r2SCAN shows

very promising results.

4.3 Tin–Phosphorous Coupling

Third, the efficiency is assessed. To do so, the wall times for the SCF and NMR coupling

calculation of [({SIDipp}P)2Sn] on an Intel Xeon Gold 6212U CPU (2.40GHz) using 12

OpenMP threads are listed in Table 3. For the 1c approach, the SCF and NMR calculation

almost take the same computation time, BP86 requires 9 minutes for the SCF and 6 minutes

for the NMR calculation. For B3LYP, the computation times amount to 114 minutes and

116 minutes, respectively. This means that, in terms of computational costs, the NMR

calculation can always be carried out if the SCF procedure is affordable. This is not true for

the 2c calculations. Here, the exchange integrals for the CPKS equations are very demanding.

For B3LYP, the SCF part amounts to 591 minutes, while the CPKS part takes 2709 minutes.

Thus, the NMR calculation is more involved than the SCF procedure. Overall, the 1c

approach leads to a speed-up by factors of 10 (SCF) and 8 (SSCCs) for BP86, and to an

acceleration of 5 and 23 with B3LYP. The results are only slightly affected, e.g., the Sn–P

coupling constant changes by 5Hz from 1388 to 1383Hz. The two Sn–P couplings were

averaged for comparison with the experiment.163 The computed couplings differ by 1–5Hz.

Analyzing the NMR computation in more detail, it becomes evident that the time for

the one-electron part is negligible and large-scale calculations are routinely possible, i.e. DLU

substantially reduces the computation time without introducing notable errors.57,78,98,104,186–190

The wall times are always dominated by the HF or exact exchange integrals—just like in

the standard non-relativistic framework.66 Therefore, established approximations such as the

resolution of the identity approximation to the exchange integrals191 (RI-K) or the seminu-

merical exchange approximation159,161,192–199 are pivotal. Application of the seminumerical
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Table 3: Wall times and iterations (Iter.) for the SCF procedure and the main steps of the
calculation of the two Sn–P spin–spin coupling constants (SSCCs) of [({SIDipp}P)2Sn] on
an Intel Xeon Gold 6212U CPU (2.40GHz) using 12 OpenMP threads. Code was compiled
with Intel Fortran Compiler 19.0.1.144. Timings are listed in minutes. The extended Hückel
method is used for the SCF initial guess. The RI-J approximation is employed for the SCF
procedure and the seminumerical exchange approximation (snK) is applied in the CPKS
part if stated explicitly. CPKS iterations are given for both the FC+SD (first number) and
the PSO parts (second number) in 1c runs. Zero iterations for the PSO term indicates that
no iterations and no evaluation of the two-electron integrals in the CPKS part were needed.

SCF SSCCs

Method Iter. Total Time Iter. 1e Part HF Exchange XC Kernel Total Time

1c BP86 26 9 6,0 1 – 5 6
2c BP86 88 88 6 4 – 43 50
1c B3LYP 26 114 7,5 1 106 6 116
2c B3LYP 115 591 8 4 2650 49 2709
1c B3LYP snK – – 7,5 1 25 6 31
2c B3LYP snK – – 10 4 223 79 323

exchange approximation to the CPKS part, reduces the wall times for B3LYP substantially,

while changing the results by 1–2Hz only, see also ref. 57. The 1c and 2c calculations now

take 31 and 323 minutes. Especially for the 2c formalism, a drastic speed-up is found. This

makes scalar and spin–orbit calculations computationally affordable using low-cost hardware.

Results for the Sn–P coupling constant are listed in Table 4 with selected top performers

of the previous study in Section 4.2. Here, the conductor-like screening model is included

for a better comparison with the experiment in solution. Timings above were measured

without COSMO. According to the results in Table 4, the DSO term is negligible, which is

also confirmed by the 2c calculations.57 In contrast to the Sn compounds of Table 2, the

PSO term is of great importance for the total coupling constant. It amounts to almost a

third of the 1J(119Sn,31P) constant and the remaining two thirds may be attributed to the

FC+SD term. All functionals result in a fairly good agreement with the experiment. BP86

overestimates the coupling constant by about 4% and the conventional global and range-

separated hybrid functionals further increase the coupling constant. Therefore, they lead

to a larger deviation. Especially CAM-B3LYP notably increases the results compared to
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Table 4: Mean 1J(119Sn,31P) spin–spin coupling constant (in Hz) of [({SIDipp}P)2Sn] with
various density functional approximations and the x2c-TZVPall basis sets. Experimental
result (Expt.) taken from ref. 163. A “c” at the beginning of the acronym indicates that
the response of the current density is included for the PSO term. QZVPP refers to the
x2c-QZVPPall basis set, which employs more than 5838 functions (spherical AO basis).

Method FC+SD PSO DSO Total J

BP86 892 503 −0.1 1394
r2SCAN 989 421 −0.1 1410
cr2SCAN 989 441 −0.1 1430
B3LYP 913 527 −0.1 1440
PBE0 936 478 −0.1 1413
CAM-B3LYP 1016 551 −0.1 1567
ωB97X-D 941 508 −0.1 1450
cLHJ-HFcal 980 469 −0.1 1449
cTMHF 941 464 −0.1 1405
BP86 QZVPP 981 507 −0.1 1488
B3LYP QZVPP 1045 533 −0.1 1578

Expt. – – – 1334

B3LYP and BP86. The local hybrids TMHF and LHJ-HFcal lead to coupling constants of

1405Hz and 1449Hz.

In short, a relativistic one-component approach drastically reduces the wall times for

large systems and allows for routine studies with modern density functional methods.

4.4 Tin Pincer Ligand and Sn–Sn Coupling Constant

The novel pincer-type bis-stannylene ligand SnNSn, depicted in Figure 2, recently allowed us

to synthesize and study coinage metal complexes with Cu(I), Ag(I), and Au(I).167 Here, the

coinage metals are stabilized in exclusively tetrahedral coordination geometries. The pincer

ligand itself shows a very large 1J(119Sn,117Sn) coupling constant of 4087Hz. However, the

electron density between the two Sn atoms indicates no notable covalent bonding interaction.

The self-consistent SO X2C approach resulted in a good agreement with the experimental

findings.167 Herein, SO X2C results are compared to the SR X2C approach and the non-

relativistic treatment as shown in Table 5.
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Figure 2: Molecular structure of the pincer-type bis-stannylene ligand SnNSn. The com-
pound consists of 107 atoms and was synthesized in ref. 167. Color code: H white, C grey,
N purple, and Sn pink. Left: top-view, right: side-view.

Table 5: 1J(119Sn,117Sn) coupling constant in Hz of a novel pincer-type bis-stannylene ligand
SnNSn. NR, SR X2C, and SO X2C denote the non-relativistic, scalar X2C, and spin–orbit
X2C approach, respectively. A “c” at the beginning of the DFA acronym indicates that the
response of the current density is included for the PSO term. Two-component (x2c-TZVPall-
2c basis) and experimental results taken from ref. 167. Non-relativistic (TZVPall/def2-TZVP
basis) and scalar X2C (x2c-TZVPall basis) calculations are carried out herein. Computation
times are listed in the Supporting Information.

Functional NR SR X2C SO X2C

BH&HLYP 2358.8 5504.3 5499.5
PBE0 1947.8 4806.0 4802.1
cTPSSh 2065.3 4782.8 4768.2
ωB97X-D 3092.6 6545.2 6538.6
cTMHF 2203.1 5147.9 5135.8

Expt. 4087

The non-relativistic formalism is clearly insufficient, as it underestimates the coupling

constant by more than 50%. In contrast, the SR X2C and SO X2C lead to practically the

same results, which are generally in better agreement with the experimental findings. As

shown by the computation times in the Supporting Information, the computational demands

of the non-relativistic and the SR X2C approach are very similar with the all-electron basis

sets used herein. Note that relativistic basis sets are somewhat larger. Therefore, the SR X2C

ansatz can be safely applied to this Sn compound, which confirms the findings of Section 4.2.
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Considering the functionals, PBE0, cTPSSh, and TMHF lead to a deviation of about

25% towards the experiment, whereas ωB97X-D severely overestimates the coupling con-

stant by around 60%. BH&HLYP represents an intermediate case with a deviation of 34%

towards the experimental result. Individual contributions of the terms are listed in the Sup-

porting Information. Accordingly, the total coupling constant is completely dominated by

the FC+SD term, making up almost 100% of the total coupling constant.

Overall, this shows that the one-component approach presented herein can be accurately

applied to large and “real-world” organometallic compounds including heavy elements.

5 Summary and Conclusion

This work presents a low-cost scalar X2C ansatz for NMR coupling constant, which drasti-

cally reduces the computational demands of the self-consistent spin–orbit approach presented

previously.56,57 The errors introduced by truncating the complex two-component approach to

a one-component ansatz, which does not make use of complex algebra, is critically assessed.

For instance, the accuracy deteriorates with the number and mass of the halogen atoms in

a molecule, as this leads to more and more pronounced spin–orbit effects. Furthermore,

notable errors are found for coupling constants driven by the unperturbed density contribu-

tion, which corresponds to the diamagnetic spin–orbit term. For many coupling constants,

this term is the smallest contribution and therefore the errors seem justified by the reduced

computational demands. A straightforward strategy to overcome this limitation is discussed.

The approach outlined herein is also intended for the development of NMR-tailored basis

sets, as basis set optimization typically requires a large test set including all elements of

interest109,112,116,162,168,200–208 and many iterations until convergence is reached with respect

to the optimized exponents and contraction coefficients for all systems. Such developments

of basis sets for NMR coupling constants will be the topic of future work.

Given that the number of quantum chemical program suites supporting a scalar X2C
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or exact one-component (X1C) treatment is far larger than the number of program suites

featuring a two-component formalism (see, e.g., ref. 209), the ansatz presented herein may

also help to make modern relativistic all-electron approaches available in many program and

thus make it available to the masses.
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