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ABSTRACT

Learning structure-scent relationships is a complex challenge due to both the large chemical space
of odorous molecules and the molecular biology of a smell. We empirically fit structure-scent
relationships by training an accurate graph neural network and then explaining its predictions. We
use counterfactuals and descriptor attribution to generate explanations for the 112 scents in the
Leffingwell Odor Dataset (Sanchez-Lengeling et al., 2019). Then we use natural language processing
to summarize the quantitative explanations into text. The complete process goes from data to a natural
language explanation with the aim of determining structure-scent relationships.

1 Introduction

Humans are thought to be able to differentiate over 400,000 odorant molecules. [1] Odorant molecules are volatile
compounds with a low molecular weight. [2–4] When an odorant binds to an olfactory receptor protein, a signal is
produced and sent to the olfactory bulb, which is then sent to different areas of the brain and results in the perception of
scent. The signal produced is different for each odorant molecule, allowing for humans to distinguish between various
scents. [4–7] Although many theories attempt to explain how humans can differentiate between these molecules, the
specific structural properties of odorants that determine their scent remains unknown. [4,8] For example, we currently do
not know what structural properties make some molecules, such as vanillin, have a vanilla scent, while others, such
as hexanoic acid, smell “goat-like”. [2,9–11] Additionally, in some cases the concentration of molecules can alter the
perceived scent, such as in the case of indole, which is floral at low concentrations and putrid at high concentrations. [2,12]

There are certain relationships between molecular structure and scent that are well-documented. [2,8,13–15] For instance, it
is known that esters tend to have a fruity and floral scent while thiols often are described as having a rotten or alliaceous
scent. [8,14] Even though both tert-amyl acetate and n-amyl acetate have the ester functional group and are very similar
in structure, tert-amyl acetate has a camphoraceous scent while n-amyl acetate has a fruity scent. [14] This complex
relation between structure and scent is not unique to esters. Both vanillin and isovanillin are aldehydes and are noted
for their different scents. Vanillin has a strong vanilla scent, while isovanillin has a weak phenolic scent. Structurally,
the only differences between the two molecules are the positions of the ring carbons to which the hydroxyl (OH) and
methoxy (OCH3) groups are bonded. [2,16] In addition, molecules that have drastically different structures can have
similar scents. For instance, both muscone and musk ketone have a musky scent, despite musk ketone having an
aromatic ring and muscone not having one. [8,14] Therefore, the complex relationship between structure and scent makes
it a good candidate for machine learning.
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Predicting the scent of molecules based on their structure can be considered as a supervised learning problem. Supervised
learning involves first training the model on a set of labeled data, which consists of the input features (~x) and labels (y),
and then predicting the ŷ labels for different ~x inputs. Here the inputs are molecular graphs and the outputs are labels
indicating each molecule’s predicted scent. This can be treated as multi-class, multi-label, or a regression problem
depending on the data and approach. [17,18]

One regression-based approach to scent prediction was the DREAM Olfaction Prediction Challenge created by Keller
et al., which included having competitors develop models that predicted the intensity of different scents for a given
molecule. [19] However, molecular scent prediction can also be characterized as a multi-label classification problem,
where rather than predicting the intensity of every scent for every molecule, the scent classes that the molecule belongs
to are predicted. For example, the molecule lyral could be described as having more than one scent – specifically a
‘fresh,’ ‘floral,’ ‘muguet,’ and ‘sweet’ scent. [11] The traditional approach to this type of classification problem would
be to perform a regression analysis that takes in various features of the molecule, such as the number of hydroxyl
(OH) groups or its molecular weight. For instance, Chacko et al. [2] used RDkit descriptors as the input to their model
to classify whether molecules had ‘sweet’ or ‘musky’ scents. However, since the relationship between the structural
properties of molecules and their scent is complex and not well understood, deep learning (DL) methods may be a
better approach to tackling this problem as they can capture non-linear relationships.

There have been many efforts to develop DL models that predict molecular scent. [20,21] For example, Zhang et al. [22]

used a Multilayer Perceptron (MLP) model to predict the scent of molecules based on their surface charge density profile.
Shang et al. [23] compared the performance of support vector machines (SVM), random forest (RF) and extreme learning
machine (ELM), for scent prediction using physicochemical properties of compounds. Nozaki and Nakamoto [24] used
an MLP for scent prediction using mass spectra information of compounds. The authors later showed that this model did
not perform well on validation data and proposed a new predictive model that uses a hierarchical clustering approach
along with the mass spectra information as input to the MLP. [25] Sharma et al. [4] compared the scent prediction from an
MLP, that took the physiochemical properties and molecular fingerprints as features, to a Convolutional Neural Network
(CNN) which took the image of a molecular structure as input. This study found that an ensemble model that combined
the predictions from the CNN and MLP provided the best results. [4] There are more direct ways to featurize molecules
than using images for CNNs, such as using molecular graphs. [26] Sanchez-Lengeling et al. [11] treated predicting scents
as a multi-label classification problem and applied Graph Neural Networks (GNNs) to classify the scents of small
molecules. They also created a labeled dataset of odorants. Lee et al. [27] used the same GNN to create a scent map,
which can be used in a manner similar to color maps, where molecules with similar scents appear closer together. They
also demonstrated that their GNN was generalizable to a new dataset as well as to other scent-prediction tasks. [27]

DeepSniffer is a framework, developed by Liu et al. [28], to classify scents in essential oils using an MLP based on
k-shot meta-learning. Most of the described studies primarily focus on evaluating the empirical accuracy of different
models and developing models with strong predictive capabilities for molecular scent prediction. [4] However, good
predictive accuracy does not necessarily provide an understanding of why molecules have particular scents.

In this paper, the goal is to develop a scent prediction model and use explainable artificial intelligence (XAI) methods
to understand why molecules have a certain smell in terms of molecular features. XAI is a field that is emerging to
provide insight into how DL models work and why certain predictions are made. As DL is employed more and more
for QSAR modeling, explainability has become important. Explainability is important when using DL models, as it can
not only help with finding limitations in models and increase trust in model predictions, but can also aid in scientific
developments. [29–31] Using Miller’s definition, an explanation provides additional context or insight for why a model
prediction is made. [32] A local explanation can be defined as one that explains the model prediction for a specific case,
whereas global explanations provide a broader description of model behavior. [30]

Feature attribution is an XAI method that provides quantitative information on the influence different input features have
on the model prediction. Some recent scent-prediction studies include feature importance rankings. [2,19,33] However,
one drawback to using feature attribution methods in chemical research is that many molecular descriptors are not
very intuitive. [34] For instance, it is not very intuitive as how one would experimentally evaluate results reported by
Saini and Ramanathan [33] that the ‘centered moreau-broto autocorrelation of lag 5 weighted by van der Waals volume’
is important in predicting the scent of a molecule. This feature was computed using Mordred, a Python library for
molecular descriptor calculation. [35]

According to Grisoni et al. [36], classical molecular descriptors encode a precise ‘structural/chemical feature (or a
set of features of different complexity) into one, single number.’ Chemical fingerprints, on the other hand, provide
information on the molecular structure in a sequence of bits. [36] For example, MACCS fingerprints are one type of
substructure-based fingerprint that provide information about a molecule based on the presence or absence of different
substructures, such as a ring or carbon-nitrogen single bond. [37–39] Extended connectivity fingerprints (ECFP) are a
type of circular fingerprints that provide information on the specific substructures in a molecule. [38,40] An advantage to
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using chemical fingerprints rather than other chemical descriptors is that they are often easier to interpret, as the value
of a MACCS or ECFP fingerprints can be often determined simply by looking at the molecular structure. [41]

One type of explanation approach is to utilize a surrogate model that is more interpretable, such as a linear model, and fit
it to the DL model. [31,34] Surrogate models are used in the Locally Interpretable Model Explanations (LIME) algorithm.
LIME generates a sample space around a specific data point and uses the DL model to obtain predictions for each
element in the space. A surrogate model is then trained on this space and used to obtain local explanations. [42,43] This
study used a modified version of the descriptor explanation method developed by Gandhi and White [41] for identifying
influential MACCS and ECFP fingerprints with LIME.

Counterfactuals are another method with which to interpret the predictions produced by a machine learning model. [44]

A counterfactual explanation provides information as to the minimal number of changes that must be made to the input
features for a specific case to alter the output prediction of the model. [34,45,46] Some recent uses of counterfactuals
include crop growth prediction, and medical diagnosis. [47,48] A molecular counterfactual is the molecule that is most
similar to the input but has a different predicted label. In the case of scent prediction, if a given molecule has a fruity
scent, its corresponding counterfactual would be the most structurally similar molecule that is predicted to not have a
fruity scent. In this study, we use the Python package exmol to generate molecular counterfactuals. [46]

In this article, we develop a model to predict scent of molecules and propose the relationship between molecular
structure and scent using explainable artificial intelligence (XAI) methods. We build a GNN for our predictive model
and show that it has comparable performance to existing scent prediction models in the literature. To explain the
predictions and obtain structure-scent relationships, we use counterfactual analysis [46] and descriptor explanations. [41]

The counterfactual approach provides insight into which structural groups on a specific molecule may influence its
corresponding scent. The descriptor explanations allow for a broader exploration of the structure-scent relationship by
identifying influential structures for different scent classes in general. The descriptor explanations are further used to
obtain text explanations for the structure-scent relationship.

1.1 Related work

Recent efforts have been made to interpret the results of models used to predict scent, although few provide a thorough
analysis of these results. Mayhew et al. [49] note that molecules that are volatile and hydrophobic are generally odorous,
although they do not predict particular odors. Using their RF model, Saini and Ramanathan [33] identify two spatial
autocorrelation features as being the most important for scent prediction in general. Keller et al. [19] report the top
five molecular features used by a random-forest model to classify whether a molecule had ‘fruit,’ ‘burnt,’ and ‘bakery’
scents. Kowalewski et al. [50] found that an aggregation of SVM models performed better than RF models in predicting
scent, but also use RF models to determine the importance of different chemical features in scent prediction. Similarly,
Chacko et al. [2] report rankings of the different features used. They found that the presence of the ether functional
group and molar refractivity were important in predicting whether a molecule had a sweet scent. Another study by
Licon et al. [51] used a data mining technique to generate descriptive structure-scent relationships for molecules. [51]

This study found that the scent of a molecule can be related to more than one class of physicochemical properties as
opposed to a single property. Gupta et al. [52] use a transformer-CNN combined with a recurrent neural network to
predict molecular scent and provide per atom attribution using integrated gradients for the predicted odor.

2 Methods

2.1 Dataset

The Leffingwell Odor Dataset [11] was used to train and test the Graph Neural Network (GNN) model and the logistic
regression model. The logistic regression model was used as a baseline from which the performance of the GNN model
could be compared against. Sanchez-Lengeling et al. [11] created the Leffingwell Odor Dataset using scent descriptions
given in the Leffingwell PMP 2001 database. The Leffingwell Odor Dataset consists of 3523 molecules and covers 113
different scent classes. 70% of the data was used for training the model, 10% was used for validation and 20% was used
for the test set. The splits used for the training and test sets were based on that used by Sanchez-Lengeling et al. [11] for
their work with molecular scent prediction. Sanchez-Lengeling et al. [11] created these splits using IterativeStratification
in scikit-multilearn. [11] The training set used by Sanchez-Lengeling et al. [11] was further split into a training and
validation set for this study using IterativeStratification in scikit-multilearn. [53] A bar chart depicting the ten most
common scents in the dataset and the number of molecules belonging to each scent class can be found below (Figure 1).
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Figure 1: Overview of the Leffingwell Odor Dataset. A bar chart depicting the most common scent classes and
distribution of number of scent labels per molecule is shown.

2.2 Logistic Regression and GNN Models

The output of both the logistic regression and GNN models is a 112 length vector, with each element corresponding to a
specific scent class. A model prediction consisting of the zero vector corresponds to the odorless class.

First, a logistic regression model was created to serve as a baseline. The descriptors used as input to the logistic
regression model were computed using Mordred. [35] The baseline model was trained for 1000 epochs, with a learning
rate of 0.04 and used stochastic gradient descent.

Then the GNN model was created. Both the logistic regression and GNN models used cross-entropy loss. The final
GNN model consisted of four GNN layers followed by two Linear layers. The model was trained for 138 epochs, with
a learning rate of 10−5 and used the Adam optimizer. An image depicting the architecture of the GNN model created
can be found in Figure 2.

The molecular graphs were generated from the input SMILES string for each molecule using one-hot encoding for node
feature vectors and the adjacency matrix. The adjacency matrix only contained information on whether a bond was
present between two atoms (nodes) or not. The molecular graphs were then passed through the GNN layers.

The Battaglia equations were used to define the GNN layers. [54] Only the node feature vector and graph feature vector
were updated after each layer. It was found that using a leaky ReLU rather than ReLU resulted in a slightly higher
mean AUROC (Area Under Receiver Operating Characteristic Curve) and slightly lower cross-entropy loss. The node
feature vector and graph feature vector were updated using Equations 1 and 2, respectively.

~v′i = σ(Wvē′i) + ~vi (1)

~u′ = σ(Wuv̄′) + ~u (2)

Where ~v′i represents the updated nodes, ~vi is the original node feature vector, ē′i is the aggregated edge updates, Wv

are the node weight vectors, and σ is a leaky ReLU. The node feature vectors were normalized after each update. The
updated graph feature vector is represented by ~u′, ~u is the original graph feature vector, v̄′ is the sum of the node
updates, Wu are the graph weight vectors, and σ is a leaky ReLU.

The graph feature vector outputted from the last GNN layer was then passed through two Linear layers, created using
the Haiku Linear module. [55] The label vector with predictions for each scent class was taken to be the output of the
final Linear layer. This output is a 112 length vector, where each entry corresponds to a different scent class. For each
scent class, the threshold that maximized the F1 score for that class on the training and validation sets combined was
selected. These thresholds were used when determining the predicted scent labels of the input molecules. Weights &
Biases was used for tracking the performance of different models when varying the values of the hyperparameters. [56]
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Figure 2: Architecture of GNN model used to predict molecular scent. The molecular graph representation of the
molecule, which consists of the adjacency matrix and node feature vector is the model input. The model consists of four
GNN layers followed by two Linear layers. The model output is a 112 length vector, with each entry corresponding to a
scent class

2.3 Model Evaluation

Both the logistic regression and GNN models used in this study were trained by minimizing the cross-entropy loss.
The macro-average, micro-average and weighted average AUROC, precision, recall and F1 scores were calculated.
The macro-averaged values correspond to the average of the metric for each scent class. The micro-averaged values
correspond to each example in the dataset having an equal contribution to the metric. For weighted-average metrics, the
weighting corresponds to the number of positive examples in each scent class. Additionally, the median AUROC was
calculated by taking the median of the individual AUROC values for each scent class. The threshold values for each
scent class were optimized by taking the threshold value that maximized the F1 score on the training and validation sets
combined. These computations were done using the scikit-learn Python library. [57]

To test whether the GNN model was learning information relating the structure of molecules and their associated scent,
the GNN was also trained on a mislabeled dataset, where each molecule was incorrectly labeled as having the scent of
the subsequent molecule in the original dataset. The mean AUROC of the model trained on the mislabeled dataset was
much lower than that for the model trained on the original dataset, suggesting that the GNN model did indeed learn a
relationship between molecular structure and scent.

The primary scents examined using XAI methods were selected as those with an AUROC on the test set above 0.8 as
well as the GNN model correctly classifying over 70% of the positive examples for that scent class in the dataset. The
latter condition was included because, as described in 2.5, for each scent, the spaces for the descriptor explanations
were generated using all of the molecules with a positive label for that scent in the dataset.
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2.4 Counterfactual Generation

Wellawatte et al. [46] developed a method, molecular model agnostic counterfactual explanations (MMACE), for
counterfactual generation. We use this method to explain smells predicted for ethyl benzoate and 2,4 decadienal –
molecules known for having ‘fruity’ and ‘fatty’ scents, respectively. [58–60] MMACE first uses the STONED-SELFIES
method [61] to generate a local chemical space around the molecule of interest and then identifies counterfactual
molecules from this space. There are a few parameters that can be passed in to MMACE for creation of the chemical
space before selecting counterfactuals. These include number of mutations, type of mutations (called the “alphabet”)
and size of the chemical space. Here, the input parameters used for counterfactual generation were a sample size of
20,000 molecules, a maximum of two mutations, and a modified version of the basic alphabet. The basic alphabet
was modified to remove boron, bromine, chlorine, fluorine and iodine as these elements were not present in any of the
molecules in the dataset. Each molecule can have multiple scents. In order to get ‘true’ counterfactuals, we modify
MMACE algorithm to pick molecules where the label for only the scent of interest is flipped. This ensures that the
counterfactuals still have other scents attributed to them, and we explain just one scent.

2.5 Descriptor explanations and natural language explanations

Descriptor explanation was used to identify significant substructures that influence the prediction of whether a molecule
has a certain scent or not. In a recent study, Gandhi and White [41] used LIME with MACCS fingerprints [37] and
ECFP fingerprints [62] to explain which molecular substructures contribute to a certain model prediction. These are
primarily local explanations. They also derive natural language explanations from these descriptor explanations. The
procedure for creating a perturbed chemical space around the molecule of interest was the same as MMACE, using the
STONED-SELFIES method.

To understand more generally why molecules might have a particular scent, we modify the method developed by
Gandhi and White [41] to give global explanations. For each molecule that has a positive label for a scent, local chemical
spaces are generated using the STONED-SELFIES algorithm. The input parameters used for generating each local
sample space were a sample size of 200 molecules, a maximum of two mutations, and the modified version of the basic
alphabet that was used for counterfactual generation. Then, these chemical spaces are combined to form a larger space,
which is used for the descriptor explanation analysis. The same chemical space was used when identifying significant
MACCS and ECFP descriptors. This procedure is used to get explanations for all of the scents.

3 Results and Discussion

3.1 Model Performance

The mean AUROC and F1 score for the logistic regression baseline model and GNN model are given in Table 1. The
model results reported by Sanchez-Lengeling et al. [11] using the same Leffingwell Odor Dataset are also included along
with the results reported by Sharma et al. [4]. Previous studies have reported mean AUROC scores generally ranging
between 0.767 and 0.913. [4,11,63] As shown in Table 1, the model performance of the GNN that was used in this study
for exploring structure-scent relationships is comparable to others in the literature. As model accuracy was not the
primary objective of this study, the performance of the GNN model is acceptable. Additional model performance results,
including the median AUROC and macro-average, micro-average, and weighted-average AUROC, F1, precision, and
recall scores for the logistic regression and GNN models can be found in Table S3. The GNN AUROC score for each
scent class can be found in Table S4.

Table 1: Macro-average AUROC and F1 score for the logistic regression baseline and GNN models. Reported model
performance metrics from other scent-prediction studies are also provided for comparison.

Model Dataset Macro-average AUROC Mean F1

Logistic Regression Baseline Leffingwell Odor Dataset 0.873 0.329
GNN Model Leffingwell Odor Dataset 0.885 0.308
Sanchez-Lengeling et al. [11] GNN Leffingwell Odor Dataset 0.913 0.406
Sharma et al. [4] CNN Sharma et al. [4] 0.767 0.88

After filtering the scent classes down to those that had a test set AUROC value greater than 0.8 as well as the model
correctly predicting, for that specific scent, over 70% of the positive examples in the dataset, nine scents remained.
These nine scents were: ‘alcoholic’, ‘apple’, ‘fatty’, ‘fruity’, ‘meaty’, ‘popcorn’, ‘roasted’, ‘sulfurous’, and ‘catty’. The
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number of positive examples, percentage of correct predictions for the positive examples, and test set AUROC, F1,
precision, and recall scores for these scents is given in Table 2. Since the ‘catty’ scent had much lower precision, recall,
and F1 scores compared to the other scents, it was not included in the main analysis.

Table 2: Scents that had a test set AUROC above 0.8 and the correct model prediction for over 70% of the positive
examples. For each scent, the number of positive examples, percentage of correct predictions for the positive examples,
and test set AUROC, F1, precision, and recall scores are provided.

Scent Number of Positive Examples True Positives Rate (%) AUROC F1 Precision Recall

Fruity 1392 84.7 0.882 0.759 0.698 0.832
Fatty 407 71.3 0.890 0.599 0.528 0.691
Sulfurous 252 72.2 0.972 0.558 0.592 0.527
Apple 239 70.7 0.916 0.492 0.403 0.633
Meaty 218 72.0 0.934 0.547 0.510 0.591
Roasted 195 70.8 0.955 0.605 0.553 0.667
Alcoholic 85 82.4 0.994 0.651 0.538 0.824
Popcorn 23 73.9 0.932 0.667 0.750 0.600
Catty 20 75.0 0.945 0.167 0.125 0.250

3.2 Counterfactual Analysis

We conducted counterfactual analysis for two molecules - ethyl benzoate and 2,4 decadienal to explain their scents.
Ethyl benzoate, which is used in fragrances and as a flavoring compound, is known to have a ‘fruity’ scent and is found
in many fruits, including species of apples, bananas, and strawberries. [58,59,64] One of the main aroma compounds in
butter oil, 2,4 decadienal is well-documented as having a ‘fatty’ scent. [60,65]

Counterfactuals generated around the ‘fruity’ scent using ethyl benzoate as a base molecule and the ‘fatty’ scent using
2,4 decadienal as the base molecule are given in Figure 3. These counterfactuals correspond to molecules from the
sampled chemical space with the highest Tanimoto similarity to ethyl benzoate or 2,4 decadienal, but lack the ‘fruity’ or
‘fatty’ scent, respectively.

Figure 3: Counterfactuals generated around the ‘fruity’ and ‘fatty’ scents using ethyl benzoate and 2,4 decadienal as the
base molecules, respectively. The counterfactuals indicate structural changes to the base molecule that would result
in the model predicting the molecule to not have ‘fruity’ (for the ethyl benzoate counterfactual) or ‘fatty’ (for the 2,4
decadienal counterfactual) scents. The Tanimoto similarity between the counterfactuals and the base molecules is also
provided.

As shown in Figure 3, altering the structure of ethyl benzoate such that it is no longer an ester would likely result in it
no longer having a ‘fruity’ scent. This result is supported by the fact that esters are generally associated with ‘fruity’
scents. [8,14] As the ‘fruity’ counterfactual only differs from the base molecule by one structural change, it can also be
considered as a matched molecular pair for ethyl benzoate. [66]
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For 2,4 decadienal, it appears that replacing the carbonyl group with a hydroperoxide (-OOH) group and reducing the
number of carbons in the chain from ten to eight may result in the molecule no longer having a ‘fatty’ scent (Figure 3).
Increasing the carbon chain length is known to increase the ‘fatty’ scent for some molecules. [67] Additionally, Licon
et al. [51] used a data-mining approach to identify structure-scent relationships and reported that most molecules with a
‘fatty’ scent had a “larger carbon-chain skeleton which is highly hydrop[h]obic with aldehyde or acid functions”. These
findings further support the result shown in Figure 3, since compared to 2,4 decadienal, the ‘fatty’ counterfactual has a
shorter carbon chain and is no longer an aldehyde.

3.3 Descriptor Explanations

Descriptor explanations were found for ‘fruity’ and ‘fatty’ scents using the method described in section 2.5. This
method is hypothesized to provide global explanations of why molecules may have a certain scent. MACCS fingerprints
and ECFP fingerprints are used to represent molecules. The descriptor explanation results using MACCS and ECFP
fingerprints for the ‘fruity’ and ‘fatty’ scents are given below in Figure 4.

Figure 4: The five most significant ECFP and MACCS descriptors found using the sample space obtained from
enumerating around all molecules in the Leffingwell Odor Dataset with ‘fruity’ and ‘fatty’ scents, respectively. The
green and red bars show descriptors that influence predictions positively and negatively, respectively. Dotted yellow
lines show significance threshold (α = 0.05) for the t-statistic. MACCS substructures may either be present in the
molecule as is or may represent a modification, and ECFP fingerprints are substructures in the molecule that affect the
prediction. [68]

As shown in Figure 4, the presence of an ester group, carbonyl group, and an oxygen with two chain bonds positively
influences the ‘fruity’ scent of a molecule. The combination of the latter two descriptors could also correspond to an
ester group. Esters are often known for having a ‘fruity’ scent, but Jelen and Gracka [67] note that increasing the chain
length can result in their scent becoming “more fatty, soapy or metallic”. [67] This trend can support the result in Figure
4, where the fourth ECFP descriptor is a heptanyl fragment that appears to negatively influence the ‘fruity’ scent of a
molecule.

Three of the top five most significant ECFP descriptors contain alkyl fragments with five or seven carbon atoms and
positively influence the ‘fatty’ scent of a molecule (Figure 4). For aldehydes, alcohols, and esters, molecules with a
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longer chain length can have more of a ‘fatty’ scent, which supports this result of alkyl chains positively influencing a
molecule’s ‘fatty’ scent. [67] The fifth MACCS descriptor, a carbon-oxygen double bond, is present in both aldehydes
and carboxylic acids (Figure 4). As stated earlier, Licon et al. [51] found that molecules with a ‘fatty’ scent had a
longer carbon chain and aldehyde or acid functional groups. [51] These results further support the conclusion from this
study that long alkyl chains and the presence of a carbon-oxygen double bond are likely influential in determining a
molecule’s ‘fatty’ scent.

3.4 Natural language explanations

Following the procedure laid out by Gandhi and White [41] to obtain natural language explanations, we find text
explanations for molecular scents from their MACCS and ECFP descriptor explanations. Table 3 contains text
explanations for the eight scents that had an AUROC above 0.8 and had over 70% of their positive examples correctly
classified by the GNN model. A complete list of explanations for all scents is given in the SI.

Table 3: Natural Language explanations generated using GPT-3 text-davinci-003 [69,70] model for ‘alcoholic’,
‘apple’, ‘fatty’, ‘fruity’, ‘meaty’, ‘popcorn’, ‘roasted’, and ‘sulfurous’ scents. These scents were chosen as they had an
AUROC above 0.8 and the GNN model correctly predicted over 70% of the positive examples had that scent

Scent Natural Language Explanation
alcoholic The molecular property "alcoholic scent" can be explained by the presence of an

ethyl/ether O group and the absence of acetal like/methyl groups, two CH2 groups
separated by any three bonds, an alkyne group, and an S. These are all very important
for the property.

apple The molecular property "apple scent" can be explained by the presence of an ethyl/ether
O group, as well as the absence of an aromatic atom, hydroxy oxygen (OH), propyl
fragment, and S. These structure-property relationships are very important for the
property and explain why the molecule smells like apples.

fatty The molecular property "fatty scent" can be explained by the presence of a heptanyl
fragment, two CH2 groups separated by four bonds, and a C=O double bond, as well
as the lack of more than one or two O atoms.

fruity The molecular property "fruity scent" can be explained by the presence of a carbonyl, a
C=O double bond, and an oxygen atom with at least two chain bonds. The lack of a
heptanyl fragment and an S atom also contribute to this property.

meaty The molecular property "meaty scent" can be explained by the presence of an S atom
and the absence of an alkene, an O atom, a methyl group, and a CH2 group bonded to
two neighbors by non-ring bonds.

popcorn The molecular property "popcorn scent" can be explained by the presence of a carbonyl
and a hetero N nonbasic/aromatic group. The absence of a carboxylic acid deriva-
tive/methyl group, an amine (NH2) group, and a heteroatom bonded to a methyl C was
also important for the property.

roasted The molecular property "roasted scent" can be explained by the presence of an S atom,
a hetero N nonbasic/aromatic group, and an atom at a ring/chain boundary. The absence
of an N bonded to at least one H, and a CH2 group bonded to two neighbors by non-ring
bonds were also important in contributing to the molecular property.

sulfurous The molecular property "sulfurous scent" can be explained by the presence of an S
atom and a hydroxy oxygen (OH) group, as well as the lack of a CH2 group bonded to
two neighbors by non-ring bonds, an O atom, and a methyl group.

Natural language explanations are a condensed plain text form of the descriptor explanations and we observe for
many scents that text explanations agree with structure-scent relationships reported in previous studies. Many ‘fruity’
molecules are esters, but aldehydes, ketones, and lactones, which all have a C=O double bond, have also been found
to contribute to a molecule’s ‘fruity’ scent, supporting the result in Table 3 that a C=O double bond is important for
‘fruity’ molecules. [71] As mentioned previously, molecules with a ‘fatty’ scent tend to have a longer carbon chain, and
this trend supports the result that a heptanyl fragment is very important in determining if a molecule has a ‘fatty’ scent
(Table 3). [51,60,67]
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The natural language explanations for the ‘sulfurous’ and ‘meaty’ scents indicate that the presence of sulfur positively
influences these scents (Table 3). This result is supported in the literature as both ‘sulfurous’ and ‘meaty’ scents are
associated with sulfur-containing compounds. [3,8,51,60,72] Heterocycles, especially heterocyclic rings containing sulfur
are known to be important for ‘meaty’ scents. [72,73] However, an S-heterocycle was not found to be the most important.
This result may be due to the diversity of ‘meaty’ molecules in the dataset used, as less than half of these molecules (103
out of 218) contained a heterocycle and only 52 out of the 218 molecules contained an S-heterocycle. Sulfur-containing
compounds are also associated with ‘bread’, ‘coffee’, ‘grapefruit’, ‘garlic’ and ‘potato’ scents, and the importance of
sulfur-related descriptors are found in the natural language explanations for each of these scents (Table S5). [3,74]

According to Rowe [60], many acetyl compounds are associated with ‘popcorn’ scents, which supports importance of
the carbonyl group in the natural language explanation for the ‘popcorn’ scent as the acetyl group consists of a carbonyl
(C=O) structure bonded to a methyl group. It is important to note that for the ‘popcorn’ scent, there were only 23
positive examples in the dataset, which may have influenced the results.

In some cases, text explanations failed to reasonably explain the scents. For example, although the model performed
reasonably well for the ‘apple’ scent, and correctly predicted over 70% of the positive examples as having an ‘apple’
scent, the text explanation does not match the expected result that esters and alcohols are important (Table 3). [71] In the
dataset used the majority of molecules with an ‘apple’ scent had an ester group. Some possible reasons for the fact
that an ester group was not identified as being important include the fact that the fit of the ECFP explanatory model to
the GNN model had a low correlation of 0.618 for the ‘apple’ scent, and that the dataset used was highly imbalanced.
Conducting the same analysis using a more balanced dataset with a greater number of positive examples for each of the
scent classes likely would result in the explanations more closely matching known structure-scent relationships and
could aid in the proposal of new structure-scent relationships. The ‘pineapple’ scent has 139 positive examples and a
correlation of 0.737 of the ECFP model with the GNN model. For this scent, the ester group, which is present in many
pineapple volatile organic compounds, was found to be important in the natural language explanation (Table S5). [71,75]

In general, most of the MACCS descriptors were found to have higher t-statistics compared to ECFP descriptors for
the same scent, which resulted in primarily MACCS descriptors appearing in the natural language explanations. This
may be due to the MACCS descriptors matching more general substructures, while the ECFP descriptors correspond to
more specific substructures. However, in some cases, like for ‘pungent’ the ECFP descriptors were able to capture the
importance of structures such as isothiocyanate, which are thought to contribute to ‘pungent’ flavors (Table S5). [76]

Conducting additional analysis with different descriptor types may result in a closer match between the natural language
explanations and known structure-scent relationships.

4 Conclusions

We have shown how to go from a dataset to a natural language explanation of a structure-function relationship purely
with artifical intelligence methods. We created a graph neural network that can accurately predict scents across a range
of scent categories. Then we generated local chemical spaces around known positive molecules from the dataset and
used those spaces to find counterfactual molecules that explain which parts of the structure contribute to scent for a
specific example. The counterfactuals are local explanations. We then joined all these chemical spaces and fit surrogate
models of ECFP/MACCS descriptors to give global explanations of the important molecular structures for each scent.
Finally, these surrogate models were summarized into two sentence natural language summaries for the 112 scents.

The explanations can be useful for creating fragrances and flavor compounds, where knowing how to modify a structure
can change or remove a scent. This can be done with counterfactuals. The global explanations can provide insight into
biological mechanisms and also provide clues to biases in the dataset. For example, it is not clear if ‘fatty’ scented
molecules require a carbonyl to remain soluble/volatile or for their scent. Future work can explore these unusual
explanations and make use of the emerging larger Pyrfume Project dataset. [63]

5 Code Availability

All code for this work is available at https://github.com/ur-whitelab/exmol and the data is available in
Sanchez-Lengeling et al. [11].
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SUPPLEMENTAL INFORMATION:WHY DOES THAT MOLECULE
SMELL?

S1 Hyperparameter Selection

The hyperparameters examined were the number of GNN layers, number of dense layers, GNN message feature length,
GNN node feature length, GNN graph feature length, learning rate, the inclusion of edge updates in the GNN layers,
and leaky ReLU (rather than ReLU) as the activation function. The hyperparameters used in the final GNN model can
be found in Table S1. The training curves for each of the thirteen trials during the hyperparameter search can be found
in Figure S1. The corresponding hyperparameter values for each trial can be found in Table S2.

Table S1: Optimal hyperparameter choices for GNN Model.

Hyperparameter GNN Model

Number of GNN Layers 4
Number of Linear Layers 2
GNN Message Feature Length 256
GNN Node Feature Length 256
GNN Graph Feature Length 512
Learning Rate 1e-5
L2 Regularization Strength 1e-6
Early Stopping Patience 3
Number of Epochs 138

Figure S1: Training curves for each trial with early stopping. Trial 1 was the optimal trial, with the lowest training
loss of 0.06323. The only difference between Trials 1 and 2 is that Trial 2 used ReLU rather than leaky ReLU as the
activation function. The differences between the hyperparameter values for Trial 1 and all other trials, along with the
final training losses, can be found in Table S2.
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Table S2: Hyperparameters for different trials with early stopping.

Trial Difference from Optimal Hyperparameters (Table S1) Final Training Loss

1 Optimal 0.06323
2 ReLU activation function 0.08159
3 Edge updates in GNN layers 0.06959
4 Edge updates in GNN layers and ReLU activation function 0.07552
5 2 GNN layers 0.06671
6 3 GNN layers 0.06801
7 5 GNN layers, Regularization strength 10−5 0.06715
8 1 Dense layer 0.07463
9 3 Dense layers 0.07098
10 message feature length = 128, node feature length = 128, graph feature length = 256 0.07303
11 message feature length = 128, node feature length = 256, graph feature length = 256 0.06851
12 message feature length = 256, node feature length = 256, graph feature length = 256 0.06352
13 learning rate = 1e-4 0.07772

Figure S2: Training and validation loss versus epoch for each of the hyperparameter trials described in Table S2
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S2 Additional Model Performance Results

Table S3: AUROC, precision, recall, and F1 score values for logistic regression and GNN models.

Performance Metric Logistic Regression Baseline GNN Model

Weighted average AUROC 0.865 0.865
Macro-average AUROC 0.873 0.885
Micro-average AUROC 0.915 0.925
Median AUROC 0.893 0.892
Weighted average Precision 0.435 0.432
Macro-average Precision 0.368 0.377
Micro-average Precision 0.447 0.451
Weighted Average Recall 0.467 0.446
Macro-average Recall 0.340 0.307
Micro-average Recall 0.467 0.446
Weighted Average F1 0.430 0.419
Macro-average F1 0.329 0.308
Micro-average F1 0.457 0.449

Table S4: AUROC value for each scent class

Scent Class AUROC Scent Class AUROC

alcoholic 0.994 aldehydic 0.745
alliaceous 0.919 almond 0.846

animal 0.891 anisic 0.957
apple 0.916 apricot 0.863

aromatic 0.848 balsamic 0.953
banana 0.922 beefy 0.980
berry 0.780 blackcurrant 0.906

brandy 0.961 bread 0.891
brothy 0.932 burnt 0.844
buttery 0.928 cabbage 0.906

camphoreous 0.887 caramellic 0.852
catty 0.945 chamomile 0.965

cheesy 0.915 cherry 0.875
chicken 0.949 chocolate 0.900

cinnamon 0.886 citrus 0.881
cocoa 0.857 coconut 0.956
coffee 0.912 cognac 0.940

coumarinic 0.990 creamy 0.800
cucumber 0.948 dairy 0.807

dry 0.839 earthy 0.746
ethereal 0.943 fatty 0.890

fermented 0.847 fishy 0.932
floral 0.855 fresh 0.737
fruity 0.882 garlic 0.979

gasoline 0.966 grape 0.915
grapefruit 0.895 grassy 0.848

green 0.768 hay 0.838
hazelnut 0.977 herbal 0.776
honey 0.914 horseradish 0.923

jasmine 0.964 ketonic 0.988
leafy 0.827 leathery 0.870

lemon 0.854 malty 0.752
meaty 0.934 medicinal 0.920

Continued on next page
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Table S4 – continued from previous page
Scent Class AUROC Scent Class AUROC

melon 0.901 metallic 0.779
milky 0.809 mint 0.923

mushroom 0.830 musk 0.665
musty 0.786 nutty 0.825
oily 0.905 onion 0.971

orange 0.900 orris 0.775
peach 0.819 pear 0.870

phenolic 0.923 pine 0.913
pineapple 0.873 plum 0.853
popcorn 0.932 potato 0.943
pungent 0.883 radish 0.844

ripe 0.936 roasted 0.955
rose 0.892 rum 0.882

savory 0.918 sharp 0.950
smoky 0.970 solvent 0.979
sour 0.850 spicy 0.873

strawberry 0.877 sulfurous 0.972
sweet 0.741 tea 0.715

tobacco 0.900 tomato 0.888
tropical 0.910 vanilla 0.988

vegetable 0.860 violet 0.890

warm 0.737 waxy 0.928
winey 0.854 woody 0.867

Table S5: Natural Language explanations generated using GPT-3
text-davinci-003 model for scents observed in the Leffingwell Odor
Dataset.

Scent Why the scent?

alcoholic The molecular property "alcoholic scent" can be explained by the presence of an
ethyl/ether O group and the absence of acetal like/methyl groups, two CH2 groups
separated by any three bonds, an alkyne group, and an S. These are all very important
for the property.

aldehydic The molecular property "aldehydic scent" can be explained by the presence of an
oxygen atom, a lack of an oxygen atom bonded to a secondary carbon atom, the
absence of an aromatic/ether oxygen group, the absence of more than two oxygen
atoms, and the lack of a sulfur atom.

alliaceous The molecular property "alliaceous scent" can be explained by the presence of more
than one CH2 group that is bonded to two neighbors, one of which is a heteroatom,
an atom bonded to three other atoms, one of which is an S, and the presence of an S.
The lack of an O and an oxymethylene group (-CH2O-) is also very important for the
property.

almond The molecular property "almond scent" can be explained by the presence of an oxygen
atom, an aldehyde/aromatic group, and the absence of an atom bonded to two methyl
groups, a CH2 group bonded to two neighbors by non-ring bonds, and an S atom.
These are particularly important structure-property relationships for the almond scent.

Continued on next page
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Scent Why the scent?

animal The molecular property "animal scent" can be explained by the presence of an atom in
a ring, a C=O double bond, and the lack of more than two O atoms, an N separated
from an O by any 4 bonds, and an S. These are all very important for the property.

anisic The molecular property "anisic scent" can be explained by the presence of more than
one O atom, an alkylarylether/aromatic group, and the absence of a C bonded to two O
atoms, an alkene bond, and an S.

apple The molecular property "apple scent" can be explained by the presence of an ethyl/ether
O group, as well as the absence of an aromatic atom, hydroxy oxygen (OH), propyl
fragment, and S. These structure-property relationships are very important for the
property and explain why the molecule smells like apples.

apricot The molecular property "apricot scent" can be explained by the presence of a CH2
group involved in a double bond, an atom bonded to a CH3CH2- group, and the lack of
ether, N, and S groups.

aromatic The molecular property "aromatic scent" can be explained by the presence of more
than one O atom, an ether O/methyl group, and the absence of a C bonded to two O
atoms, a methyl group, and an S. These structural attributes are all very important for
the property.

balsamic The molecular property "balsamic scent" can be explained by the presence of an atom
in a ring, an aromatic atom, a cis double bond/aromatic group, and a C=O double bond.
The lack of an S atom is also important in contributing to the property.

banana The molecular property "banana scent" can be explained by the presence of a C=O
double bond and a carboxylic acid derivative/methyl group, as well as the lack of an
alkyne group, more than two oxygen atoms, and an S atom.

beefy The molecular property "beefy scent" can be explained by the presence of an S atom, a
hetero O/aromatic group, the lack of a pentanyl fragment, the lack of an O atom with at
least two chain bonds, and the lack of an ether O/alkane group. These structure-property
relationships are important for understanding the beefy scent of molecules.

berry The molecular property "berry scent" can be explained by the presence of a C=O double
bond and an ethyl/ether O group, as well as the absence of an N atom separated from
an O atom by three bonds, more than one O atom, and multiple N atoms.

blackcurrant The molecular property "blackcurrant scent" can be explained by its structure, which
includes an S atom, a heteroatom separated from a CH2 group by two bonds, and ethyl.
The lack of an S atom involved in a double bond and an atom bonded to another atom
by an aromatic bond and bonded to an S by a non-aromatic bond are also important for
the blackcurrant scent.

brandy The molecular property "brandy scent" can be explained by its structure, specifically
the presence of a C=O double bond, an O with at least two chain bonds, and the lack of
more than three O atoms, more than two O atoms, and an S atom.

bread The molecular property "bread scent" can be explained by the presence of multiple
heterocyclic atoms, an S, and a C=O double bond. The absence of multiple methyl
groups and a tertiary alcohol are also important for this property.

Continued on next page

5



Why does that molecule smell? A PREPRINT

Scent Why the scent?

brothy The molecular property "brothy scent" can be explained by the presence of hetero
O/aromatic/primary carbon groups and an S atom, as well as the lack of an atom bonded
to a CH3CH2- group, more than three O atoms, and an O atom.

burnt The molecular property "burnt scent" can be explained by the presence of multiple O
atoms that are involved in double bonds, an S atom, and multiple aromatic rings. The
lack of an O atom and the lack of more than one O atom are also very important for
this molecular property.

buttery The molecular property "buttery scent" can be explained by the presence of more than
one oxygen atom, a CH2 group separated from O by any two bonds, multiple O atoms
involved in double bonds, and more than three O atoms. The absence of an S atom is
also very important for this property.

cabbage The molecular property "cabbage scent" can be explained by the presence of an S
atom, disulfide/methyl group, and a heteroatom bonded to a methyl C. The lack of a
CH2 group bonded to two neighbors by non-ring bonds and a methyl group are also
important for this property.

camphoreous The molecular property "camphoreous scent" can be explained by the presence of
bridged rings/alkane groups and carbonyl groups, as well as the lack of a 6M ring, a
CH2 group bonded to two neighbors by non-ring bonds, and an S. These structure-
property relationships are very important for the molecular property.

caramellic The molecular property "caramellic scent" can be explained by the presence of a
carbonyl and more than one O atom, as well as the absence of multiple heteroatoms
bonded to at least one H atom, more than three O atoms, and an S.

catty The molecular property "catty scent" can be explained by the presence of an S atom,
tertiary C, O bonded to a secondary C, and an oxymethylene group (-CH2O-). The
lack of more than one CH2 group that is bonded to two neighbors, one of which is a
heteroatom, is also important for this property.

chamomile The molecular property "chamomile scent" can be explained by the presence of a
michael acceptor/methyl group and a propyl fragment/ether O group, as well as the
absence of two CH2 groups separated by any three or four bonds and the absence of an
S.

cheesy The molecular property "cheesy scent" can be explained by the presence of a C atom
bonded to two O atoms, the lack of an O atom with at least two chain bonds, the lack
of a butyl fragment/ether O group, the lack of more than one O atom, and the lack of
an ether O/methyl group.

cherry The molecular property "cherry scent" can be explained by the presence of an aro-
matic/methyl group and an aldehyde/aromatic group. The lack of two CH2 groups
separated by any four bonds, a CH3 group separated from a CH2 group by any two
bonds, and an S are all important for this property.

chicken The molecular property "chicken scent" can be explained by the presence of an atom
bonded to three other atoms, one of which is an S, as well as the lack of multiple methyl
groups, an S, a heptanyl fragment, and an ether O/alkane group.

Continued on next page
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Scent Why the scent?

chocolate The molecular property "chocolate scent" can be explained by the presence
of multiple heterocyclic atoms, an atom in a ring, and a hetero N nonba-
sic/heteroaromatic/aromatic/primary carbon group. The lack of an iso-butyl/carboxylic
ester group and an iso-butyl/ether O group are also important for this property.

cinnamon The molecular property "cinnamon scent" can be explained by the presence of an
oxygen atom, an alkene bond, and the absence of a 5M ring, more than one 6M ring,
and an S atom.

citrus The molecular property "citrus scent" can be explained by the presence of an oxygen
atom, secondary carbon, and the lack of a C=O double bond and more than two oxygen
atoms, as well as the lack of a sulfur atom.

cocoa The molecular property "cocoa scent" can be explained by the presence of an oxygen
atom, more than one oxygen atom, a lack of a charged atom/group, a lack of a sulfur
atom and a lack of a carbon-oxygen double bond.

coconut The molecular property "coconut scent" can be explained by the presence of an n-butyl
group and a carbonyl group, and the lack of a CH2 group bonded to two neighbors (at
least one of which is a heteroatom), a propyl fragment, and an S.

coffee The molecular property "coffee scent" can be explained by the presence of an S atom,
an aromatic ring, and the lack of an N atom bonded to at least one H, more than one
6M ring, and a secondary carbon/alkane group.

cognac The molecular property "cognac scent" can be explained by the presence of more than
one oxygen atom, an oxygen atom, and the lack of a C=O double bond, an alkyne
group, and an S atom.

coumarinic The molecular property "coumarinic scent" can be explained by the presence of an
oxygen atom, the absence of a propyl fragment, the absence of an aromatic/primary
carbon group, the absence of an alkene bond, and the absence of an sulfur atom.

creamy The molecular property "creamy scent" can be explained by the presence of a carbonyl
and an oxygen, as well as the absence of an S-heterocycle, heterocyclic, and a CH2
group bonded to two neighbors, at least one of which is a heteroatom.

cucumber The molecular property "cucumber scent" can be explained by the structure of the
molecule, with the presence of a secondary carbon, an O atom, and the absence of more
than two O atoms, multiple methyl groups, and an S atom being the most important
factors.

dairy The molecular property "dairy scent" can be explained by the presence of a C atom
bonded to two O atoms, an O atom that is separated from another O atom by any 3
bonds, and the lack of a CH2 group bonded to two neighbors, at least one of which is a
heteroatom, as well as the lack of more than one or two O atoms.

dry The molecular property "dry scent" can be explained by the presence of a C atom
bonded to two O atoms, as well as a C=O double bond. The lack of more than one O
atom, more than two O atoms, and an S atom are also very important for this property.

Continued on next page
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Scent Why the scent?

earthy The molecular property "earthy scent" can be explained by the presence of an alkene
bond and a hetero N nonbasic/aromatic group, as well as the lack of a butyl frag-
ment/ether O group, more than one O atom, and an ester.

ethereal The molecular property "ethereal scent" can be explained by the presence of an O
atom, an ether O/methyl group, and the absence of an alkyne group, two CH2 groups
separated by any four bonds, and an S atom.

fatty The molecular property "fatty scent" can be explained by the presence of a heptanyl
fragment, two CH2 groups separated by four bonds, and a C=O double bond, as well
as the lack of more than one or two O atoms.

fermented The molecular property "fermented scent" can be explained in part by the presence
of an atom bonded to two methyl groups, a C-O single bond, and the absence of a
carbonyl group, a CH3 group separated from a CH2 group by any four bonds, and a
C=O double bond.

fishy The molecular property "fishy scent" can be explained by the presence of an alkene
bond and an N atom, as well as the absence of more than one O atom, more than two O
atoms, and an ether O/alkane group.

floral The molecular property "floral scent" can be explained by the presence of an O atom
bonded to a secondary C, more than two methyl groups, an atom in a ring, the absence
of a C bonded to two O atoms, and the absence of an S atom. These structure-property
relationships are all important for the presence of the floral scent.

fresh The molecular property "fresh scent" can be explained in terms of its structure, specifi-
cally the presence of an alkene bond and an O atom which are both very important for
the property. The lack of an atom in a ring, an atom bonded to a CH3CH2- group, and
an S atom are also very important for the property.

fruity The molecular property "fruity scent" can be explained by the presence of a carbonyl,
a C=O double bond, and an oxygen atom with at least two chain bonds. The lack of a
heptanyl fragment and an S atom also contribute to this property.

garlic The molecular property "garlic scent" can be explained by the presence of sulfur
atoms, disulfide/methyl and disulfide/alkene groups, and atoms bonded to three other
atoms, one of which is a sulfur atom. The absence of multiple methyl groups is also a
contributing factor.

gasoline The molecular property "gasoline scent" can be explained by looking at the structural
attributes of the molecule, such as the presence of a methyl group, a CH2 group bonded
to two neighbors by non-ring bonds, the absence of a CH2 group separated from O
by two bonds, the absence of an ether O/methyl group, and the absence of an alkyne
group. These attributes are all very important for the property.

grape The molecular property "grape scent" can be explained by the presence of a primary
amine, an O bonded to a secondary C, and a lack of a butyl fragment/ether O group, a
heteroatom bonded to at least two CH2 carbons, and two CH2 groups separated by any
four bonds.

Continued on next page
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Scent Why the scent?

grapefruit The molecular property "grapefruit scent" can be explained in part by the presence
of an S atom, an O atom bonded to a secondary C atom, and an oxymethylene group
(-CH2O-). The absence of more than two O atoms and more than one O atom also
contributes to this property.

grassy The molecular property "grassy scent" can be explained by the presence of an oxygen
atom, the lack of hetero N nonbasic/ketone/aromatic groups, multiple methyl groups, a
C=O double bond and sulfur. These attributes of structure are the most important for
the property.

green The molecular property "green scent" can be explained by the presence of an O atom,
the lack of a carbonyl, heptanyl fragment, C=O double bond, and S atom. These are all
very important for this property.

hay The molecular property "hay scent" can be explained by the presence of a heterocycle
and a C=O double bond, as well as the absence of an N, more than two O atoms, and
an S.

hazelnut The molecular property "hazelnut scent" can be explained by the presence of hetero
N nonbasic/aromatic/primary carbon groups, ethyl/aromatic groups, multiple methyl
groups, and multiple N atoms. The lack of more than one O atom could have a relevent
effect on the property.

herbal The molecular property "herbal scent" can be explained by the presence of a C=O
double bond, C-O single bond, atoms in a ring, more than two methyl groups, and the
absence of more than one O atom.

honey The molecular property "honey scent" can be explained by the presence of an ester, an
atom in a ring, an aromatic atom, and a C bonded to two O atoms. Notably, the absence
of an S atom is also very important for this property.

horseradish The molecular property "horseradish scent" can be explained by the presence of an S
atom, isothiocyanate, an atom bonded to both S and N, and a CH2 group bonded to
two neighbors, at least one of which is a heteroatom. The lack of hetero O/aromatic
groups is also an important factor for the property.

jasmine The molecular property "jasmine scent" can be explained by the presence of more
than two methyl groups, an atom in a ring, an oxymethylene group (-CH2O-), and the
absence of an S and a CH2 group bonded to two neighbors, at least one of which is a
heteroatom.

ketonic The molecular property "ketonic scent" can be explained by the presence of an O
bonded to a secondary C and iso-propyl, as well as the lack of a primary carbon, an
alkene bond, and an S. These structural attributes are especially important for this
property.

leafy The molecular property "leafy scent" can be explained by the presence of more than
one O atom, an alkene bond, and an O atom in the molecule, and the absence of a C=O
double bond and an S atom.

leathery The molecular property "leathery scent" can be explained by the presence of phenol,
tert-butyl/aromatic groups, multiple methyl groups, and a hydroxy oxygen (OH). Of
these, the presence of phenol is the most important for the leathery scent.

Continued on next page
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Scent Why the scent?

lemon The molecular property "lemon scent" can be explained by the presence of more than
two methyl groups, an alkene/methyl group, and the absence of more than two O atoms,
an atom at an aromatic/non-aromatic boundary, and an S atom.

malty The molecular property "malty scent" can be explained by the presence of an atom
bonded to two methyl groups, more than one O atom, and the lack of a C=O double
bond, an S atom, and an alkyne group.

meaty The molecular property "meaty scent" can be explained by the presence of an S atom
and the absence of an alkene, an O atom, a methyl group, and a CH2 group bonded to
two neighbors by non-ring bonds.

medicinal The molecular property "medicinal scent" can be explained by the presence of phenol
and the presence of a hydroxy oxygen (OH). The lack of an O with at least two chain
bonds, the lack of more than two O atoms, and the lack of an S are all important
structure-property relationships for this property.

melon The molecular property "melon scent" can be explained by the presence of an O atom
and an alkene bond, as well as the absence of multiple methyl groups, more than two O
atoms, and an S atom.

metallic The molecular property "metallic scent" can be explained by the presence of an aromatic
atom and a C=O double bond, and the lack of an S-heterocycle and more than one O
atom. These structure-property relationships are very important for the property.

milky The molecular property "milky scent" can be explained by the presence of a molecule
containing a C atom bonded to two O atoms. The lack of an alkyne group, tert-
butyl/aromatic group, propyl fragment, and alkene bond are all important for the
property.

mint The molecular property "mint scent" can be explained by the presence of a carbonyl, a
methyl group, and a C bonded to two O atoms, and the absence of an S atom and an
aromatic atom. These are the most important structure-property relationships for this
property.

mushroom The molecular property "mushroom scent" can be explained by the presence of an
oxygen atom bonded to a secondary carbon atom, as well as the presence of a dialkylth-
ioether. The lack of a butyl fragment/ether oxygen group and more than one or two
oxygen atoms was also important for the property.

musk The molecular property "musk scent" can be explained by the presence of an atom in a
ring and secondary carbon, and the absence of an aromatic atom, an alkyne group, and
a 8M - 14M Ring.

musty The molecular property "musty scent" can be explained by the presence of an O atom,
a heteroatom bonded to a methyl C, and the lack of an atom bonded to O by a non-
aromatic bond and bonded to another atom aromatically, multiple methyl groups, and
an S atom.

nutty The molecular property "nutty scent" can be explained by the presence of a hetero N
nonbasic/aromatic group, the absence of a propyl fragment, multiple aromatic rings,
two CH2 groups separated by any three bonds, and an alkene bond.

Continued on next page
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Scent Why the scent?

oily The molecular property "oily scent" can be explained by the presence of a heptanyl
fragment, an oxygen with at least two chain bonds, and a hexanyl fragment/ether
oxygen group. The absence of more than two oxygen atoms and an S atom also
contributes to the property.

onion The molecular property "onion scent" can be explained by the presence of an S and a
disulfide/methyl group. The lack of an N, multiple methyl groups, and a single methyl
group are also important factors in contributing to the property.

orange The molecular property "orange scent" can be explained by the presence of two CH2
groups separated by any four bonds and an O atom, as well as the lack of an S atom, an
O atom bonded to a secondary C atom, and more than two O atoms.

orris The molecular property "orris scent" can be explained by the presence of tertiary
carbon, and the absence of pentanyl fragment, N, more than two O atoms, and S.

peach The molecular property "peach scent" can be explained by the presence of an alkene
bond, a carbonyl group, a five-membered ring, a carbon atom bonded to two oxygen
atoms, and the absence of multiple heterocyclic atoms. These structural features are all
important for the property.

pear The molecular property "pear scent" can be explained by the presence of a C=O double
bond, an ethyl/ether O group, and the lack of an atom in a ring, an S atom, and more
than two O atoms. These structural attributes are all very important for this property.

phenolic The molecular property "phenolic scent" can be explained by the presence of phenol,
an aromatic/methyl group, and a hydroxy oxygen (OH). The lack of a C=O double
bond and an O with at least two chain bonds are also important for the property.

pine The molecular property "pine scent" can be explained by the presence of an atom in a
ring and the lack of an alkene/secondary carbon group, a C=O double bond, a charged
atom/group, and an S in the molecule.

pineapple The molecular property "pineapple scent" can be explained by the presence of an ester,
ethyl/ether O group, alkene/ether O group, and a C=O double bond. The absence of an
aromatic atom is also significant for this property.

plum The molecular property "plum scent" can be explained by the presence of a carbonyl, a
C=O double bond, an oxymethylene group (-CH2O-), and the lack of an S atom and
multiple N atoms. These attributes of structure are important for the property.

popcorn The molecular property "popcorn scent" can be explained by the presence of a carbonyl
and a hetero N nonbasic/aromatic group. The absence of a carboxylic acid deriva-
tive/methyl group, an amine (NH2) group, and a heteroatom bonded to a methyl C was
also important for the property.

potato The molecular property "potato scent" can be explained by the presence of sulfur, hetero
nitrogen nonbasic/heteroaromatic/aromatic groups, dialkylthioether, and ethyl/aromatic
groups in the molecule. The lack of an acetal-like group is also important for the
property.

Continued on next page
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pungent The molecular property "pungent scent" can be explained by the presence of an isothio-
cyanate group, an oxygen atom, and an atom bonded to both sulfur and nitrogen, as
well as the absence of an nitrogen atom seperated from an oxygen atom by either three
or four bonds.

radish The molecular property "radish scent" can be explained by the presence of an S atom,
dialkylthioether, and the absence of dialkylether/ether O group, ethyl/alkene group, and
more than two O atoms.

ripe The molecular property "ripe scent" can be explained by the presence of an S atom, an
N atom, and the absence of hetero O/aromatic groups, an N atom separated from an O
atom by 3 bonds, and an N atom separated from an O atom by 4 bonds.

roasted The molecular property "roasted scent" can be explained by the presence of an S atom,
a hetero N nonbasic/aromatic group, and an atom at a ring/chain boundary. The absence
of an N bonded to at least one H, and a CH2 group bonded to two neighbors by non-ring
bonds were also important in contributing to the molecular property.

rose The molecular property "rose scent" can be explained by the presence of a C=O double
bond and more than two methyl groups, and the absence of more than one O atom,
more than two O atoms, and an S atom. These structural features are all very important
for the property.

rum The molecular property "rum scent" can be explained by the presence of an oxygen
atom with at least two chain bonds, the absence of carboxylic acid, two CH2 groups
separated by any four bonds, more than three oxygen atoms, and the absence of
sulfur. These structure-property relationships are very important for understanding the
molecular property.

savory The molecular property "savory scent" can be explained by the presence of an S atom,
an atom bonded to three other atoms, one of which is an S, and the absence of more
than two O atoms, multiple methyl groups, and a methyl group.

sharp The molecular property "sharp scent" can be explained by the presence of an alkene
bond and a C=O double bond, as well as the absence of more than three O atoms and
more than two O atoms, and the absence of an S atom.

smoky The molecular property "smoky scent" can be explained by the presence of phenol,
aromatic/methyl groups and hydroxy oxygen (OH) in the structure. The lack of
carbonyl and a C=O double bond is also important for this property.

solvent The molecular property "solvent scent" can be explained by the presence of an oxygen
atom, oxygen atoms separated by three bonds, an alkyne group, two CH2 groups
separated by four bonds, and an sulfur atom in the molecule.

sour The molecular property "sour scent" can be explained by the presence of a C atom
bonded to two O atoms, an atom bonded to a CH3CH2- group, and the lack of a
CH3 group separated from a CH2 group by any four bonds, more than two O atoms,
and more than one CH2 group that is bonded to two neighbors, one of which is a
heteroatom.

Continued on next page
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spicy The molecular property "spicy scent" can be explained by the presence of an ether
O/methyl group, an alkene bond, and a heteroatom bonded to a methyl C. The lack of
multiple N atoms and an N atom are also very important for this property.

strawberry The molecular property "strawberry scent" can be explained by the presence of a C-O
single bond and an O with at least two chain bonds. Additionally, the lack of alkylthiol,
an O bonded to a secondary C, and an S is important for this property.

sulfurous The molecular property "sulfurous scent" can be explained by the presence of an S
atom and a hydroxy oxygen (OH) group, as well as the lack of a CH2 group bonded to
two neighbors by non-ring bonds, an O atom, and a methyl group.

sweet The molecular property "sweet scent" can be explained by the presence of a C=O
double bond and the absence of a CH3 group separated from a CH2 group by any four
bonds, a heptanyl fragment, an alkene bond, and an S.

tea The molecular property "tea scent" can be explained by the presence of a C=O double
bond and carbonyl, and the lack of an S atom and more than two or three O atoms.

tobacco The molecular property "tobacco scent" can be explained by the presence of multiple
aromatic rings and a C atom bonded to two O atoms. The lack of an 8M - 14M ring,
more than two O atoms, and an S atom is also important for the property.

tomato The molecular property "tomato scent" can be explained by the presence of an S atom,
primary alcohol, and the lack of an aromatic and propyl fragment, as well as a CH3
group separated from a CH2 group by four bonds.

tropical The molecular property "tropical scent" can be explained by the presence of an S atom
and a C atom bonded to two O atoms, as well as an alkene bond. The lack of an O
bonded to a secondary C atom and an aromatic atom also contributes to this property.

vanilla The molecular property "vanilla scent" can be explained by the presence of more than
one oxygen atom, an ether O/methyl group, more than two oxygen atoms, and an atom
in a ring. The lack of a carbon atom bonded to two oxygen atoms is also important for
the property.

vegetable The molecular property "vegetable scent" can be explained by the presence of an S
atom and an O atom in the molecule, as well as the absence of an S atom involved in a
double bond, an ester, and a C=O double bond.

violet The molecular property "violet scent" can be explained by the presence of a C=O
double bond and an alkyne group, as well as the lack of an S atom, more than three O
atoms, and more than two O atoms.

warm The molecular property "warm scent" can be explained by the presence of an ether
O/methyl group, an aromatic atom, and more than one O atom. The lack of a hydroxy
oxygen (OH) and an S atom also contribute to the property.

waxy The molecular property "waxy scent" can be explained by the presence of an n-heptanyl
and heptanyl fragment, and the lack of a CH2 group bonded to two neighbors (at least
one of which is a heteroatom), more than two O atoms, and an S.

Continued on next page
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winey The molecular property "winey scent" can be explained by the presence of a C-O single
bond, a C=O double bond, and an O with at least two chain bonds. The lack of a 6M
Ring and an S is also important for this molecular property.

woody The molecular property "woody scent" can be explained by the presence of a C=O
double bond, an atom in a ring, and the lack of more than one O atom, an O atom, and
an S atom. These attributes are all very important for this property.
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