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Abstract 

The use of machine learning (ML) with metabolomics provides opportunities for the early diagnosis 

of disease. However, the accuracy and extent of information obtained from ML and metabolomics can be 

limited owing to challenges associated with interpreting disease prediction models and analysing many 

chemical features with abundances that are correlated and ‘noisy’. Here, we report an interpretable neural 

network (NN) framework to accurately predict disease and identify significant biomarkers using whole 

metabolomics datasets without feature selection. The performance of the NN approach for predicting 

Parkinson’s disease (PD) from blood plasma metabolomics data was significantly higher than classical ML 

methods with a mean area under the curve of > 0.995. PD-specific markers that contribute significantly to 

early disease prediction were identified including an exogenous polyfluoroalkyl substance. It is anticipated 

that this accurate and interpretable NN-based approach can improve diagnostic performance for many other 

diseases using metabolomics and other untargeted ‘omics methods.  
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Introduction 

 

The rate of Parkinson’s Disease (PD) is growing more rapidly than any other neurological disease.1 

PD is typically diagnosed according to a clinical criteria of motor symptoms which include bradykinesia 

(slowness of movement), a resting tremor, and rigidity.2 However, the onset of atypical non-motor symptoms 

such as sleep disorder, constipation, apathy, and loss of smell can predate clinically relevant symptoms by 

several years to decades.3-5 In addition, for patients who present with Parkinson-like symptoms, the current 

process for identifying PD can often be inconclusive. For example, according to a meta-analysis by Rizzo et 

al.,6 the overall diagnostic accuracy for PD based on an initial clinical assessment is 81% and the error rate 

for misclassifying PD is up to 20%. Accurate identification of PD using biomarker signatures rather than 

relying primarily on physical symptoms would be highly beneficial. 

Biomarkers associated with metabolic processes are used extensively for understanding, diagnosing 

and monitoring diseases.7, 8 Such metabolites are typically sampled from well-established matrices such as 

blood plasma and serum for trace-level analysis of tens to hundreds of metabolites using mass spectrometry 

(MS).9 Additional matrices of emerging interest for biomarker discovery and disease diagnosis applications 

include the rapid and non-invasive sampling of skin sebum and breath.10-12 Using MS, differences in the 

metabolite profiles in the blood plasma of pre-PD subjects were identified up to 15 years prior to a clinical 

diagnosis when compared to healthy controls who did not develop PD.13 These results suggest that PD may 

potentially be diagnosed using metabolite biomarkers significantly earlier than in current practice, particularly 

if analysing such metabolites can result in high diagnostic accuracy and be validated on large-scale cohort 

studies.  

To develop accurate prediction models for disease diagnosis using large metabolomics datasets, 

machine learning (ML) approaches are widely used. However, the use of whole metabolomics datasets to 

build prediction models is rarely used because these datasets often contain many highly correlated and ‘noisy’ 

chemical features which can risk model overtraining and reduce diagnostic performance.14 As a result, models 

are typically based on a smaller subset of features which are determined  by conventional statistical methods 

(e.g., based on p-values and fold-changes of individual features). For example, Gonzalez-Riano et al.13 

reported a classical ML model using 20 pre-selected biomarkers to diagnose pre-PD vs healthy controls from 

blood plasma samples. Similarly, Sinclair et al.15 used a classical ML model with 15 and 26 pre-selected 
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biomarkers to diagnose drug naïve PD and medicated PD vs healthy control, respectively, from skin sebum 

samples. However, given that the abundances of metabolites are often correlated and can depend nonlinearly 

on the abundances of other metabolites, such classical ML approaches may potentially ‘hide’ some key 

features in metabolomics datasets.  

Advanced ML approaches such as neural networks (NN) are particularly well-suited for processing 

large volumes of data interconnectivity and building models for datasets that contain nonlinear effects.16 

However, a fundamental issue in using methods such as NN for classifying complex mixtures based on 

metabolomics data is that the resulting predictive models are generally considered as uninterpretable ‘black 

boxes,’ which cannot be readily used to reveal mechanistic information.17, 18 Recently, a new approach entitled 

Shapley Additive exPlanations (SHAP) was developed to ‘interpret’ ML models by retrospectively calculating 

the contribution of individual features to the accurate predictive performance of a model.19 However, SHAP 

has not been used in the analysis of metabolomics datasets given that methods for interpreting ML models 

have only recently been developed and using all chemical features risks overtraining prediction models. 

Ideally, whole metabolomics datasets should be included in the ML model for SHAP to identify key 

metabolites that drive model prediction.   

Here, we report an interpretable and computationally efficient neural network-based framework for 

analysing datasets generated by untargeted mass spectrometry-based methods (Figure 1) entitled, ‘CRANK-

MS’ (Classification and Ranking Analysis using Neural network generates Knowledge from Mass 

Spectrometry). CRANK-MS has several built-in features including: (i) integrated model parameters that allow 

the high dimensionality of metabolomics datasets to be analysed without the need for pre-selecting chemical 

features; (ii) SHAP to retrospectively ‘mine’ key chemical features that contribute the most to an accurate 

model prediction; and (iii) benchmark testing with five alternative ML methods to compare diagnostic 

performance and further verify significant chemical features. Using CRANK-MS, we report the highest 

diagnostic performance to date for binary classification of PD vs healthy control with a mean area under the 

curve of > 0.995 Additionally, NN-driven predictions were used to reveal new PD-specific chemical features 

which were not previously identified. The program for implementing this approach is freely available online 

at https://github.com/CRANK-MS.   

 



5 
 

Methods 

Data 

Datasets from two cross-sectional PD metabolomics studies13, 15 were used throughout. The Spanish 

European Prospective Study on Nutrition and Cancer (EPIC) study13 involved metabolomics data from blood 

plasma samples taken from subjects who later developed PD up to 15 years later, and those who did not 

develop PD (total number of participants, n = 78; Table 1). The blood plasma samples from the EPIC study 

were analysed using four different instrumental methods (gas chromatography-MS, GC-MS; capillary 

electrophoresis-MS, CE-MS; and liquid chromatography-MS, LC-MS, in positive (+) and negative (-) 

ionisation modes). The NHS study15 involved the LC-MS (+) analysis of skin sebum sampled from drug-naïve 

and medicated PD patients, and healthy controls (n = 274). The composite dataset from the EPIC study was 

prepared using the data from all four methods (i.e., GC-MS, CE-MS, LC-MS (+) and LC-MS (-)). Six 

participants were excluded in the composite dataset as data from one or more of the four methods were missing. 

The number of reported molecular features in the metabolomics datasets ranged from 60 to 6502 (Table 1). 

Binary classification (i.e., PD vs healthy) was conducted on each dataset using ML algorithms (see below).  

Machine learning algorithms 

The six machine learning algorithms and SHAP analysis were implemented in Python (v. 3.8). Random 

forest (RF), extreme gradient boosting (XGB), linear discriminant analysis (LDA), logistic regression (LR), 

and support vector machine (SVM) were written using scikit-learn packages (v 1.0.2). NN with multilayer 

perceptron was written using PyTorch (v. 1.10.2). Additional Python libraries used to support data analysis 

and visualisation include pandas (v. 1.4.2), numpy (v. 1.21.5), and matplotlib (v. 3.5.1). Full details of the 

open access code are available at https://github.com/CRANK-MS. 

Hyperparameter tuning 

For each ML model, hyperparameters correspond to specific model parameters that an algorithm uses 

to train on a given dataset. To determine the optimal hyperparameters, the composite dataset from the EPIC 

study was used (see above). Hyperparameter tuning for each ML model was optimised using the 

GridSearchCV package in scikit-learn. For non-linear ML models, the number of possible permutations 

resulting from different parameters ranged from 120-158. For LDA, the number of permutations used was 12. 

For each permutation, a bootstrap model was used in which the dataset was split randomly 100 times into 60% 
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training data and 40% validation data (i.e., 100 ‘bootstraps’). The optimised hyperparameters were determined 

based on the combination of hyperparameters that gave the highest Matthews correlation coefficient (MCC) 

after 100 iterations per permutation. These hyperparameters were then applied to all datasets in the study. 

Performance metrics 

To calculate diagnostic performance, the 100 randomly selected testing datasets from the bootstrapping 

process were used to calculate the overall diagnostic performance. The use of a bootstrap model with more 

replicates can lower absolute error compared to other sampling methods such as cross-validation and is 

considered useful for relatively small sample sizes.20, 21 The diagnostic performance for each ML model was 

calculated based on the mean of the 100 bootstrap measurements and error was calculated as one standard 

deviation of the mean. For each ML model, accuracy, precision, sensitivity/recall, specificity, F1 score, and 

MCC score were calculated. Receiver operating characteristic (ROC) and precision-recall (PR) curves were 

generated to calculate area-under-curve (AUC). Briefly, AUC (ROC) is a plot of the true positive rate (i.e., 

how many PD patients were correctly predicted) vs the true negative rate (i.e., how many healthy controls 

were correctly predicted). In contrast, AUC (PR) plots the precision rate (i.e., how many PD predictions were 

correct) vs recall or sensitivity rate (i.e., how many PD patients were correctly predicted).  

Annotation of chemical features 

For each chemical feature in the metabolomics datasets, a SHAP score was calculated based on the 

absolute average from the 100 bootstraps. The greater the SHAP scores, the greater the contribution to the 

overall prediction of PD across all 100 bootstraps and all participants. Metabolites were annotated based on 

the highest mass accuracies that were obtained by comparing the measured monoisotopic neutral masses 

(accounting for protonation, sodiation and potential loss of a water molecule) to those from the Human 

Metabolome Database (https://hmdb.ca/) using a threshold of ± 20 ppm. One top scoring chemical feature 

(m/z 942.9824) had a relatively large negative mass defect which is indicative of an exogenous, synthetic 

compound. Thus, this ion was annotated using the PubChem (http://www.cheminfo.org/) database.  

 

Results and Discussion 

Highest diagnostic accuracy to date for PD using metabolomics: NN outperforms five other ML algorithms 

https://hmdb.ca/
http://www.cheminfo.org/
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The overall diagnostic performance for all six ML algorithms was assessed using a composite dataset 

featuring metabolites from blood plasma that were detected using four analytical methods as reported in the 

EPIC PD study.13 The diagnostic performance of NN was higher than the other five ML algorithms across all 

metrics investigated (Figure 2, Table S2). Specifically, the binary classification of PD vs healthy using NN 

resulted in AUCs of 0.994 and 0.995 for ROC and PR, respectively. Extreme gradient boosting and logistic 

regression performed similarly with AUC (ROC) and AUC (PR) of 0.967 and 0.968 for extreme gradient 

boosting, and 0.968 and 0.969 for logistic regression, respectively. In contrast, the performance of the RF, 

SVM and LDA classifiers were relatively low with AUC (ROC) and AUC (PR) values of 0.829 and 0.836 for 

the RF classifier, 0.647 and 0.661 for the SVM classifier, and 0.681 and 0.634 for the LDA classifier, 

respectively. Recently, Chicco et al.22 has shown that the MCC score is a more informative and reliable metric 

for evaluating binary classification accuracy as it considers all four values in the confusion matrix (i.e., true 

positive, false positive, true negative, and false negative). Thus, MCC can be considered as less biased towards 

datasets with imbalanced cohorts. Based on the MCC score, NN performed significantly higher with 0.918 

compared to 0.815, 0.787, 0.433, 0.272, and 0.213 for the LR, XGB, RF, LDA, and SVM classifiers, 

respectively.  

SHAP analysis was used to identify the metabolites and the corresponding mass spectrometry-based 

method that contributed the most to the accurate prediction of PD using the composite metabolomics dataset 

for blood plasma. Five of the top six metabolites were detected using LC-MS (+) (i.e., m/z 942.9824, 467.3822, 

393.3454, 379.3289, and 613.4767) (Figure 2). To further validate the contribution of these chemical features 

in predicting PD, all six ML algorithms were applied to the LC-MS (+) dataset without including the LC-MS 

(-), GC-MS and CE-MS datasets. Similar to that for the composite dataset, binary classification of PD using 

NN and the LC-MS (+) data was highest across all performance metrics (Figure 3, Table S2). For example, 

the AUC (ROC), AUC (PR), and MCC score for NN was 0.983, 0.984, and 0.894, respectively. Both XGB 

and LR classifiers performed about the same or slightly lower with AUC (ROC), AUC (PR) and MCC values 

of 0.968, 0.966, 0.805, and 0.972, 0.976, 0.869, respectively. RF, SVM, and LDA classifiers were substantially 

lower with AUC (ROC), AUC (PR), and MCC scores of 0.894, 0.911, 0.589 for the RF classifier; 0.856, 0.869, 

0.582 for the SVM classifier; and 0.878, 0.877, and 0.626 for the LDA classifier. Standard deviation errors 

across all performance metrics were pooled to calculate the average relative standard deviation (RSD). RSD 
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was lowest for NN (5.17%) followed by LR (5.19%), XGB (7.70%), LDA (12.8%), SVM (14.3%), and RF 

(17.2%). Based on a SHAP analysis, five of the six top-scoring chemical features in the LC-MS (+) dataset 

were also in the top six highest scoring features for the composite dataset (see above, Figure 3). These results 

indicate that the diagnostic performance for using the LC-MS (+) data outperformed the three other mass 

spectrometry-based methods across all six ML methods. The use of NN resulted in higher diagnostic accuracy 

than the other five ML methods for the LC-MS (+) dataset which has significantly fewer chemical features 

(509) than in the composite dataset (1430). Given these results and the low RSD of NN compared to other ML 

methods, any overtraining effects are minimal under these conditions.  

Overall, NN resulted in the highest diagnostic performance and the lowest %RSD in predicting PD 

from blood plasma using either the composite or LC-MS (+) datasets compared to the other five ML 

algorithms. Disease classification using NN involving 100 bootstraps and 1430 total metabolites required < 1 

min on a consumer laptop computer (Surface Laptop 3, Microsoft) with a 1.2 GHz processor (Intel i5-core). 

The diagnostic performance of NN was at least 10% higher than previously reported by Gonzalez-Riano et al 

when a support vector machine model was used.13 In addition, the diagnostic performance obtained using NN 

is the highest reported to date for any PD diagnosis regardless of the sample matrix including blood plasma,23, 

24 blood serum,25 and skin sebum.10, 11, 15, 26, 27  

Diagnostic performance is uncompromised by including the whole metabolomics dataset 

 The NN model required no pre-processing steps as all metabolites or features from the dataset were 

used as inputs for the model rather than using models with pre-selected chemical features. For example, in 

Gonzalez-Riano et al.,13 biomarkers for PD were first screened for significance and a small subset of these 

biomarkers (up to 20) were used in the final diagnostic model. In this previous study, the highest ROC (AUC) 

value obtained was 0.919 for the composite dataset using a 20-feature linear SVM model.13 In the current 

study, a similar linear SVM model was applied to the composite dataset without feature selection which 

resulted in a ROC (AUC) of 0.647. In contrast, using NN on all features in the composite dataset resulted in 

a ROC (AUC) of 0.994. These results are consistent with classical ML models having relatively low predictive 

performance when incorporating large datasets that contain many ‘noisy’ features.  

A feature-selected NN model was developed using the ten chemical features that had the highest SHAP 

scores using the LC-MS (+) dataset. The AUC ROC and PR values for the feature-selected NN-model were 
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comparable or slightly higher (0.997 ± 0.006 and 0.997 ± 0.006) than that obtained using all chemical features 

in the dataset (0.983 ± 0.022 and 0.984 ± 0.022). Given that the diagnostic performance of both models was 

comparable, these data indicate that NN can be highly tolerant of many chemical features (> 1500) that do not 

contribute substantially to accurate disease prediction; i.e., diagnostic performance is essentially 

uncompromised by including the whole metabolomics dataset without feature selection. In addition, the 

relatively high diagnostic accuracy further verifies the use of SHAP to accurately identify chemical features 

that contribute significantly to disease classification. 

Revealing new metabolite biomarkers for PD by retrospective analysis  

The metabolites that contributed the most significantly to the accurate prediction of PD are more likely 

to be more basic and readily ionised by cation adduction, rather than acidic, given that higher diagnostic 

performance for PD was obtained using LC-MS (+) that LC-MS (-) and that similar numbers of metabolites 

(~510 to 530) were measured using each method, consistent with previous reports.23, 25 SHAP analysis on LC-

MS (+) data for blood plasma revealed that five of the top six highest scoring metabolites were consistent 

across all six ML algorithms (Figure 3). The detected metabolites were different compared to those determined 

using a linear-based classical ML model13 (Figure S2), which can fundamentally be attributed to the difference 

between projecting data in a linear vs non-linear space.  

The five metabolites that contributed the most to a PD prediction could serve as potential indicators 

for disease status and were annotated (Table 2). The five annotated ions corresponded to polyfluoroalkyl 

substance (PFAS), triterpenoids, cholestane steroids, diacylglycerol and vitamin D steroids of either 

endogenous or exogenous origins, which have all been linked to PD in the literature previously (Table 2). For 

example, the ion with an m/z value of 942.9824 had the highest SHAP value and likely corresponds to the 

sodiated PFAS [3-(2,2,3,3,4,4,4-heptafluorobutanoyloxy)-2,2-bis(2,2,3,3,4,4,4-

heptafluorobutanoyloxymethyl)propyl] 2,2,3,3,4,4,4-heptafluorobutanoate (DTXSID70325550). Ions 

corresponding to this PFAS and its oxidation ([3-(2,2,3,3,4,4,4-heptafluorobutanoyloxy)-2,2-

bis(2,2,3,3,4,4,4-heptafluorobutanoyloxymethyl)-1-hydroxypropyl] 2,2,3,3,4,4,4-heptafluorobutanoate) and 

hydrolysis (i.e., sodiated 2,2-bis(hydroxymethyl)propane-1,3-diol) products were all higher in PD participants 

than health controls. The presence of PFAS compounds are ubiquitous in the environment and human blood 

given their propensity to bioaccumulate, chemical longevity and widespread use in industrial and consumer 
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products such as plastics, non-stick cookware, and food packaging.28, 29 For example, in the U.S. population, 

PFAS was detected in the blood serum of over 98% of Americans that were sampled during 2003-2004 (n = 

2,094).30 DTXSID70325550 is a PFAS compound of interest that is currently listed under the U.S. 

Environmental Protection Agency CompTox Chemicals Database,31 and appears pre-organised for the non-

covalent, multi-dentate binding of Na+, K+, Ca2+, Cu2+ and Zn2+. Thus, such a compound could potentially 

disrupt neuronal activity by affecting intracellular ion homeostasis.32, 33 A potential mechanism proposed for 

PFAS-induced neurotoxicity involves the increase of intracellular Ca2+ which is implicated in impacting 

neuronal cell processing, signalling, and function.28, 33 Although further in vitro and in vivo studies are needed 

to investigate the effects of DTXSID70325550 on neuronal cell function, these data suggest that elevated 

levels of specific PFAS compounds in blood plasma may be an early indicator of PD. Overall, these results 

further support that SHAP analysis can be useful in identifying potential biomarkers for PD (Table 2) that 

were not initially found using classical statistical approaches.13  

NN resulted in higher performance for diagnosing PD than five alternative ML methods using a larger 

metabolomics dataset from sebum samples  

The performance of CRANK-MS was assessed on a larger sample size with more chemical features. 

The six ML algorithms were used to analyse the data from the NHS study15 to predict PD patients that were 

drug naïve or medicated from healthy controls using LC-MS (+) metabolomics data from skin swab samples 

of sebum. Across all performance metrics, NN performed comparatively better on average compared to the 

five other ML algorithms (Figure 5, Table S2). Binary classification of drug-naïve PD vs healthy control using 

NN resulted in AUC (ROC), AUC (PR), MCC, and F1 scores of 0.843, 0.896, 0.530, and 0.800 respectively. 

In addition, average %RSD was lowest for NN at 9.51% followed by SVM (9.63%), LR and LDA (10.0%), 

XGB (11.7%), and RF classifiers (14.0%). For the medicated PD vs healthy control dataset, XGB and NN 

performing better overall compared to the other ML algorithms (Table S2).  

The diagnostic performance obtained using NN on skin sebum was more than 8% higher than 

previously reported by Sinclair et al.15 which used a multivariate principle least squares-discriminant analysis 

model based on 15 pre-selected features. Specifically, the AUC (ROC) using multivariate principle least 

squares-discriminant analysis was 0.779 compared to 0.843 using NN.15 The NN approach required no pre-

selection of features and took 10 min to obtain the key diagnostic performance metrics (i.e., accuracy, 
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sensitivity, specificity, precision, F1 score, MCC score, AUC ROC, AUC PR) using all 6,502 chemical 

features in the dataset. 

 

Conclusions 

In this study, a ‘lightweight’ and optimised NN framework with interpretable feature analysis, entitled 

CRANK-MS, is reported that can be used to establish accurate disease prediction models using whole MS 

datasets without pre-selecting features. The NN is highly tolerant of ‘noisy’ metabolomics data that can 

contain thousands of metabolites which do not contribute significantly to model prediction. Using CRANK-

MS, we report the highest diagnostic performance to date for predicting PD using blood plasma metabolomics 

data (> 0.995 AUC) when benchmarked with classical ML algorithms. Diagnostic accuracy in predicting PD 

using skin sebum metabolomics data was also enhanced using NN compared to alternative, widely used ML 

approaches. PD-specific biomarkers in blood plasma were identified including triterpenoids, diacylglycerols 

and a polyfluoroalkyl substance that contribute significantly to ML model predictions and are potential early 

indicators for PD. These results are consistent with specific food diets (such as the Mediterranean diet34) for 

PD prevention and that exposure to some exogenous chemicals (such as PFASs that can disrupt neuronal 

activity via changes to intracellular ion homeostasis32, 33) may contribute to the development of PD. 

Given the improved diagnostic performance of CRANK-MS, it is anticipated that this neural network-

based framework can be a powerful tool to build accurate prediction models for other diseases using 

metabolomics data. Interpretable ML methods can also be used to retrospectively ‘mine’ metabolomics 

datasets to identify early ‘lead’ compounds within the biomarker discovery pipeline. Biomarkers identified 

using this approach can be further validated using high-resolution tandem mass spectrometry and NMR for 

complete structure elucidation and targeted quantification using clinical MS-based methods, in addition to 

using in-vitro cell-based assays and in-vivo disease models. For example, there are over 800 publicly available 

metabolomics studies in the Metabolomics Workbench data repository in which prediction models could be 

used for the binary classification of diseases such as diabetes, fatty liver disease, heart disease, chronic 

obstructive pulmonary disease, and COVID-19. Using advanced ML methods, retrospectively ‘mining’ such 

databases for biomarkers that contribute significantly to the prediction of these diseases could reveal novel 

mechanistic information that may not necessarily be apparent using traditional linear approaches. In addition, 
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CRANK-MS could be adapted to support clinical workflows and improve confidence in diagnosis particularly 

where disease stratification is important. For example, CRANK-MS can be used with metabolomics data in 

conjunction with alternative 2-dimensional clinical information such as medical history and neurological 

examination scores, as well as 3-dimensional brain structural imaging scans to further differentiate clinical 

PD from other types of Parkinsonian-like diseases. Ultimately, the use of CRANK-MS should enhance the 

accuracy of disease prediction models based on metabolomics and many other types of '-omics' experiments, 

and facilitate biomarker discovery. 
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Figure 1. Neural network (NN) framework for predicting Parkinson’s disease using large mass spectrometry-

based metabolomics data. Whole metabolomics datasets without feature selection can be analysed directly by 

NN for the binary classification of Parkinson’s disease. Using a 100-iteration bootstrap model, 60% of the 

data was randomly distributed for training and 40% for testing. Diagnostic performance for each bootstrap 

was calculated based on the absolute values obtained for true positive (TP), false negative (FN), false positive 

(FP), and true negative (TN). Shapely additive explanations (SHAP) analysis of NN was used to rank chemical 

features based on the extent of their contribution to a positive Parkinson’s disease prediction.  
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Figure 2. The use of neural networks (NN) can outperform other machine learning algorithms for the early 

diagnosis of Parkinson’s disease using blood plasma metabolomics data. A composite dataset from the EPIC 

PD study was used involving metabolomics data from liquid chromatography-mass spectrometry (LC-MS) in 

positive and negative ionisation modes, capillary electrophoresis-mass spectrometry (CE-MS), and gas 

chromatography-MS (GC-MS) without any feature selection.13 Box-swarm plots of area under curves (AUC) 

of (A) receiver-operating curve (ROC) and (B) precision-recall (PR) for NN, extreme gradient boosting (XGB), 

logistic regression (LR), random forest (RF), linear discriminant analysis (LDA), and support vector machine 

(SVM) classifiers. The red line corresponds to the AUC previously reported13 based on a feature-selected 

classical ML model. Overall (C) ROC and (D) PR plots are shown for NN. (E) Shapely additive explanations 

(SHAP) values for NN for the top ions (m/z) that had the highest contribution to a positive PD prediction and 

the corresponding analytical method. The average correlation corresponds to whether the feature is up- (green) 

or down- (red) regulated. For each algorithm, (F) accuracy, (G) precision, and (H) sensitivity are shown (green 

bars correspond to the highest performance).  
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Figure 3. The use of neural networks (NN) resulted in the highest performance for diagnosing Parkinson’s 

disease from blood plasma metabolomics data (EPIC PD study13) obtained by liquid chromatography-mass 

spectrometry in positive mode (LC-MS (+)) without any pre-selection of chemical features. Box-swarm plots 

of area under curves (AUC) for (A) receiver-operating curve (ROC) and (B) precision-recall (PR) for NN, 

extreme gradient boosting (XGB), logistic regression (LR), random forest (RF), linear discriminant analysis 

(LDA), and support vector machine (SVM) classifiers. Overall (C) ROC and (D) PR plots are shown for NN. 

(E) Shapely additive explanations (SHAP) values for NN shown for the top ten ions (m/z) using LC-MS (+) 

that had the highest contribution to a positive PD prediction. The average correlation corresponds to whether 

the feature is up- (green) or down- (red) regulated. (F) Comparative SHAP values and relative rankings for 

the top ten metabolites for all six ML algorithms. (G) ROC and (H) PR plots are shown for a feature-selected 

NN-model using the top ten metabolites identified from SHAP. 
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Figure 4. The use of neural networks (NN) can result in higher overall diagnostic performance for drug-naïve 

PD vs healthy control from metabolomics data (NHS PD study15) of skin sebum samples without any selection 

of > 6500 chemical features. Box-swarm plots of area under curves (AUC) of (A) receiver-operating curve 

(ROC) and (B) precision-recall (PR) for NN, extreme gradient boosting (XGB), logistic regression (LR), 

random forest (RF), linear discriminant analysis (LDA), and support vector machine (SVM) classifiers. The 

red line corresponds to the AUC previously reported15 based on a feature-selected classical ML model. ROC 

and PR plots are shown for NN in (C) and (D), respectively. For each algorithm, (E) accuracy, (F) MCC score, 

and (G) F1 score are shown (green bars correspond to the highest performance). 

  



17 
 

Table 1. Summary of demographic and chemical feature information for each metabolomics dataset 

Cohort Dataset N = Control N = PD 
Number of 

features 

Sample 

type 

EPIC13 

GC-MS 39 36 60 Plasma 

CE-MS 39 39 329 Plasma 

LC-MS (+) 39 39 509 Plasma 

LC-MS (-) 34 39 532 Plasma 

Composite  

(GC-MS, CE, LC-MS (+), LC-MS (-) 
37 35 1430 Plasma 

NHS15 
LC-MS (+) 56 80a 6502 Sebum 

LC-MS (+) 56 138b 6502 Sebum 

a Healthy control vs drug-naïve PD.  
b Healthy control vs medicated PD.  

 



Table 2. Summary of five annotated metabolites that contributed most to a Parkinson’s disease prediction. 

 

m/z Compound class Annotation 
Chemical 

formula 
Ion 

Up/Down 

regulated 
p-value Link to PD 

942.9824 
Polyfluorinated 

alkyl substance 

[3-(2,2,3,3,4,4,4-

heptafluorobutanoyloxy)

-2,2-bis(2,2,3,3,4,4,4-

heptafluorobutanoyloxy

methyl)propyl] 

2,2,3,3,4,4,4-

heptafluorobutanoate 

C21H8F28O8 [M+Na]+ Up 5.4 × 10-11 

A proposed mechanism for PFAS-

induced neurotoxicity involves the 

increase of intracellular Ca2+ which is 

implicated in impacting neuronal cell 

processing, signalling, and function.28, 33   

Non-covalent binding of metal ions by 

this PFAS could disrupt neuronal 

activity by affecting intracellular ion 

homeostasis.32, 33 

467.3822 Triterpenoid Dammarenediol II a C30H52O2 [M+Na]+ Down 3.1 × 10-09 

Triterpenoids have been linked to the 

activation of the nuclear factor-E2-

related factor-2 (Nrf2)/antioxidant 

response element (ARE) signalling 

pathway which regulates oxidative 

stress.35-37 Oxidative stress is a leading 

factor in the pathogenesis of PD which 

includes dopaminergic cell death, 

mitochondrial dysfunction, and 

inflammation.38 Triterpenoids can be 

consumed through food sources 

including apple, olive, tomato, and 

soybean.36, 39, 40 
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613.4767 Diacylglycerol 
1,2-diacylglycerol (34:3) 

isomers b 
C37H66O5 [M+Na]+ Down 3.2 × 10-06 

Diacylglycerols are naturally found in 

vegetable oils such as olive oil,41 where 

consumption of unsaturated lipids is an 

important component in a Mediterranean 

diet.34 A recent study by Barbalace et 

al.42 reported that extra virgin olive oil 

extract can significantly increase the 

brain-derived neurotrophic factor, which 

is a key signalling pathway for neuronal 

survival, regulation, and regeneration.43, 

44 

379.3289 Steroid  Vitamin D2 c C28H44O 
[M+H 

-H2O]+ 
Up 4.5× 10-07 

The presence of Vitamin D has 

previously been implicated as 

biomarkers in PD.13, 45 

393.3454 Cholestane steroid Cholest-5-ene C27H46 [M+Na]+ Down 1.1 × 10-06 

Cholestane derivatives have been shown 

to have neuroprotectant properties.46 For 

example, using animal models, Hu et 

al.47 reported that an endogenous 

cholestane derivative could directly 

block NMDA receptors where 

overactivation of these receptors are 

typically observed in PD.48 

a See Table S3 for other potential triterpenoid isomers listed in the HMDB that have not been detected in blood, unlike Dammarenediol II.  
b 1,3-diacylglycerol (34:3) isomers were also listed in the HMDB.  
c Vitamin D2 agrees with the annotation by Gonzalez-Riano et al.13 based on the EPIC cohort. See Table S3 for other potential steroid isomers listed in the HMDB.      
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