
 1 

A Quantum-Mechanical Approach to Predicting 

Carcinogenic Potency of N-nitrosamine Impurities in 

Pharmaceuticals 

Jakub Kostal,1,2* Adelina Voutchkova-Kostal1,2 

1Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, VA 

22314, United States; 2The George Washington University, 800 22nd St. NW, Washington, DC 

20052, United States 

 

 

 

 

 

 

 

 

 

 

 



 2 

For Table of Contents Only 

 

KEYWORDS computational toxicology, QSAR, quantum mechanics, carcinogenicity, 

mutagenicity, nitrosamines 

 

Abstract. N-nitrosamine contaminants in medicinal products are of concern due to their high 

carcinogenic potency; however, not all nitrosamines are created equal, and some are relatively 

benign chemicals. Understanding the structure-activity relationships (SARs) that drive hazard in 

one molecule versus another is key to both protecting human health and alleviating costly and 

sometimes inaccurate animal testing. Here, we report on an extension of the CADRE 

(Computer-Aided Discovery and REdesign) platform, used broadly by the pharmaceutical and 

personal care industries to assess environmental and human health endpoints, to predict 

carcinogenic potency of N-nitrosamines. The model distinguishes compounds in three potency 

categories with 78% accuracy in external testing, which surpasses reproducibility of rodent 

cancer bioassays and constraints imposed by limited (quality) data. Robustness of predictions 

for more complex pharmaceutical nitrosamines is maximized by capturing key SARs using 

quantum mechanics., i.e., by hinging the model on the underlying chemistry vs. chemicals in the 

QM modeling informing 
nitrosamine carcinogenicity

potency
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training set. To this end, the present approach can be leveraged in a quantitative hazard 

assessment and to offer qualitative guidance using electronic-structure comparison between 

well-studied analogs and unknown contaminants.  

 

Introduction 

The potential hazard posed by nitrosamine contaminants in human medicine was first 

recognized in 2018, when NDMA (N-nitrosodimethylamine), a potent carcinogen in rodents, was 

found in Valsatran.1 Subsequently, N-nitrosamines have been detected at low levels in other 

pharmaceuticals, where a reaction of a secondary or tertiary amine with a nitrosating agent (e.g., 

sodium nitrite) generates these compounds in the manufacturing of the active pharmaceutical 

ingredient (API).2 Currently, US and EU regulations require N-nitrosamine risk assessments to be 

carried out on all commercial medical products,3 by deriving acceptable intake (AI) limits from 

rodent TD50 values. This poses a challenge due to the lack of reliable carcinogenicity data for 

many chemicals in this class.1 Animal tests are economically and ethically costly, time-consuming 

and susceptible to supply-chain disruptions (e.g., during the Covid-19 pandemic), which can affect 

availability of animals.  While regulations permit read across with ‘close’ analogs, these often lead 

to questionable outcomes given the intricacy of the underlying biochemistry and the structural 

complexity nitrosamine impurities can adopt in pharmaceutical manufacturing.4 Indeed, many 

detected N-nitrosamines are completely unlike the small, well-characterized (reference) 

compounds, and the current landscape of N-nitrosamine carcinogenic potency spans over 4 log 

units of TD50 values.5, 6    

 Similar to a read-across, classification models and QSARs (Quantitative Structure-Activity 

Relationships) have shown limited ability to predict carcinogenic potency of N-nitrosamines.7 With 

dubious relation to the underlying mechanism of action (MOA), these tools are hindered by the 

lack of a broad and diverse dataset, inconsistently measured biological data and the apparent 

imbalance between carcinogenic and non-carcinogenic chemicals.7 For example, support vector 
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machines (SVM) and linear discriminant analysis (LDA) used by Luan et al to classify 148 N-

nitroso compounds yielded models with ca. 95% and 90% accuracy, respectively; however, the 

models’ predictive power for non-carcinogens in the test set was considerably lower (57% and 

71% for SVM and LDA, respectively).8 Similarly, using a large number of physicochemical and 

structural descriptors, Harju et al relied on multiple linear regression to develop a well-correlated 

model (R2 of ca. 0.72), which could not, however, be validated.7  Because of differences in the 

organ-specificity of tumors and the dependency of TD50 on species, sex and administration route, 

Helguera et al steered away from a global prediction model and developed multiple QSARs using 

the Topological Substructural Molecular Design (TOPS-MODE) approach.9-11 While these models 

achieved good performance, it is difficult to assess their external predictivity given the relatively 

few compounds in each model’s training set, narrowing their respective applicability domains. 

Lastly, a commercial software, MultiCASE (QSAR Flex), states that it predict nitrosamines’ 

carcinogenic potency based on ‘novel analog search methods’;12 however, without a 

corresponding peer-reviewed publication outlining its methodology and (external) validation, we 

cannot gauge its robustness and practical utility.13 

Fortunately, today’s in silico approaches are not limited to structure-based methods to 

infer toxicity for untested chemicals; computational chemistry has developed a broad repertoire 

of proven techniques that can be translated to predictive toxicology to build robust models.14, 15 

For N-nitrosamines, quantum-mechanics (QM) modeling of molecular interactions in key initiating 

events (KIEs) is the logical next step in predicting their reactivity, and in turn carcinogenicity.16 

This line of reasoning is consistent with the recent report by Cross and Ponting, which emphasized 

the need for SAR improvements based on N-nitrosamine reaction mechanisms.4 Furthermore, 

because mutagenicity has shown high sensitivity in Ames tests in predicting rodent 

carcinogenicity,5, 17 the KIEs can be related to the metabolic activation mechanisms by 

Cytochrome P450 (CYP), which control DNA alkylation rates of N-nitroso compounds.18  While 

QM approaches to study N-nitrosamine reactivity and the P450 metabolism are not new,16, 19-21 to 
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the best of our knowledge, no study has incorporated modern density functional theory (DFT) 

methods into a robust tool to predict carcinogenicity potency in support of substance-specific AI 

calculations as per ICH M7(R1) guidelines.22 This effort requires careful deconstruction of QM-

based reaction-pathway modeling16 into computationally less-demanding steric and electronic 

factors that drive the formation of mutagens (and thus carcinogens), and can afford hazard 

assessments in reasonable timeframes competitive with other nonanimal approaches.  

In dissecting the key molecular events in the bioactivation of N-nitrosamines in support of 

reduced QM modeling (Figure 1), the following observations have been made. Differential 

availability of CYP enzymes across species and their ability to metabolize smaller vs. larger N-

nitrosamines suggest that a single-species approach in model training and size-related metrics is 

important in otherwise promiscuous CYPs.21, 23, 24 Size metrics should be derived from sampling 

methods, e.g., molecular dynamics or Monte Carlo (MC) simulations, to obtain reasonable view 

of larger N-nitrosamines’ conformational landscapes and their molecular volume.   

 

 

Figure 1. Proposed main pathway for metabolic activation of N-nitrosamines to DNA-alkylating 

agents by Cytochrome P450. 

 



 6 

From Figure 1, hydroxylation at the -C position triggers the biochemical cascade leading to 

mutations in DNA and carcinogenesis. Local steric and electrostatic effects do play a role, as 

does the number of -C hydrogens on either side of the nitrosamine moiety (i.e., unsubstituted -

C positions increase mutagenicity/carcinogenicity), competing hydroxylations at  and, to a lesser 

extent,  positions (i.e., hydroxylation at those positions decreases mutagenicity/carcinogenicity 

by hindering -C activation, viz. Figure 1) and other enzymatic reaction mechanisms, which can 

both increase toxicity (e.g., oxidation to aldehydes) and decrease it (e.g., dinitrosation, 

glucuronidation, etc.).4, 18, 25-27  The interplay of these factors, especially for complex 

pharmaceuticals, undermines the utility of structural alerts to inform N-nitrosamine 

carcinogenicity. Correspondingly, Cross and Ponting found that none of the 39 structural features 

examined in their study were uniquely (and meaningfully) linked to N-nitrosamines of either high 

or low potency.4  

 In dealing with mechanistic complexity and underlying uncertainty, a computational 

toxicologist can integrate explicit modeling of ‘known’ events with statistical methods (assuming 

a large and chemically diverse dataset) and/or nonspecific reactivity approaches.14, 28 In our 

previous work, we have shown that robust toxicological models can be developed using the 

modular CADRE (Computer-Aided Discovery and REdesign) platform.15, 29 CADRE relies on a 

tiered approach to bioavailability, metabolic activation and covalent haptenation of biological 

targets by integrating an expert system with molecular simulations and QM calculations (Figure 

2). Because uncertainty is of concern even for the well-characterized toxicity pathways (e.g., 

dermal sensitization), CADRE balances site-specific QM calculations of known transformations 

with descriptors derived from Frontier Molecular Orbital (FMO) Theory, which capture reactivity 

broadly.28, 30 Paired with transparent Linear Discriminant Analysis (LDA) and Multivariate Linear 

Regressions (MLR) modeling, this strategy has delivered robust predictions across multiple toxic 

endpoints and a diverse chemical space.15, 31-34 In particular, CADRE has outperformed other tools 
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when considering larger, heavily functionalized and biologically active APIs and their synthetic 

intermediates.14, 31   

 Here we report an extension to the CADRE platform for N-nitrosamines, describing our 

approach to developing a predictive model for their carcinogenic potency. The current model 

relies on a combination of physicochemical properties, obtained from linear-response calculations 

in mixed quantum and classical mechanics (QM/MM) simulations, electronic parameters and 

reactivity indices, derived from DFT calculations. Our tool distinguishes 3 potency categories 

based on the ‘cohort-of-concern’ (COC) definition for N-nitrosamines with 77% accuracy in 

external validation.  

 

     

Figure 2. Outline of the modular CADRE (Computer-Aided Discovery and REdesign) platform for 

toxicity predictions and design of safer chemicals.  

 

 

Methods 

Dataset and data quality. A dataset of 96 compounds containing the nitrosamine moiety 

([OX1]=[NX2][NX3]([#6,#1])[#6,#1])35 was obtained from the Lhasa Carcinogenicity Database 

(LCDB, carcdb.lhasalimited.org), which draws data from the now-retired Carcinogenicity Potency 
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Database (CPDB)36, 37 (Table S1). Molecular weight of the collected N-nitrosamines ranged from 

74 to 314 g/mol with an average value of 157 g/mol. The dataset spanned 6 orders of magnitude 

in calculated TD50 values, from ca. 0.008 to 167 mg/kg, with an arithmetic and geometric means 

of 7.5 and 0.97 mg/kg, respectively.  Due to species-induced variability in TD50 data, only the 

prevalent rat model was selected. However, we noted that standard deviation (s) across species 

was as high as 400 mg/kg for some N-nitrosamines, while mean s per chemical across the entire 

dataset was ca. 8.5 mg/kg. The dataset was subsequently split into a training set (60) and a test 

set (36). Due to limited data, our dataset incorporated data from both sources available in LCDB: 

those with harmonic mean TD50 values derived by Lhasa using a curated subset of tumor sites 

(41) and those obtained directly from CPDB (55). The former is considered to be of higher quality, 

by omitting outcomes lacking a dose-response effect, single-concentration measurements and 

TD50’s obtained using the ‘lifetable’ vs. the terminal sacrifice method.38  

 

Computational modeling. The tiered structure of the N-nitrosamine model mimics that of the 

CADRE skin and respiratory sensitization models,15, 34 given our continued reliance on modeling 

of molecular interactions and the relevance of covalent binding in KIEs across all three endpoints. 

For all compounds here, ionization, an important factor in nitroso carcinogenicity,39, 40 was 

assessed at biological pH (7.4). Aqueous Monte Carlo (MC) simulations were used in conjunction 

with mixed quantum and classical mechanics calculations (QM/MM) to compute physicochemical 

properties related to toxicokinetics (e.g., molecular volume, solvent accessible area, dipole, 

polarizability, globularity etc.). Transport-related properties, such as the octanol-water partition 

coefficient (log Po/w), were predicted in linear-response calculations, based on solute-solvent 

energetics (i.e., Coulomb and van der Waals interactions) obtained from QM/MM/MC simulations. 

In the second tier, mechanistic alerts for N-nitrosamines were used to flag in-domain 

chemicals using the SMARTS language.41  The subsequent third tier is based on a QM-FMO 

approach, relying on global and atom-based steric factors and parameters derived from 
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nitrosamines’ electronic structure. Here, electronic structures were computed using density 

functional theory (DFT); the mPW1PW91/MIDIX+ method was selected based on performance 

in Lewis-acid/base and hydrogen-abstraction reactions, which are key to nitrosamines’ 

metabolic pathways (Figure 1).42  

 

Statistical modeling. The R language and environment for statistical computing (version 4.1.2) 

was used for data analysis, linear regressions and linear discriminant analyses (LDAs).43 

Multivariate normality (MVN) of descriptors was determined using functions in the MVN library, 

and, where necessary, variables were transformed to a logarithmic scale. The following 

additional R packages were included for data analysis: ggplots2, YaleToolkit, calibrate, caret, 

MVN and MASS. Descriptor selection was carried out using genetic algorithm, implemented in 

the library genalg, using 100 iterations with a mutation probability of 0.05 and the Bayesian 

Information Criterion (BIC) to avoid overfitting. Internal performance was estimated using the 

leave-one-out (LOO) cross validation. Final model selection was based on performance of the 

top 5 models in external validation. 

 

Results and Discussion 

Electronic structure readacross. Readacross is one of the pillars of predictive toxicology, a 

technique commonly used along (Q)SARs and expert systems to infer toxicity of untested 

chemicals based on close structural analogs.28, 44 The difficulty with readacross is to ascertain 

the validity of structural similarity given the complex relationship between structural features and 

mechanistic requirements of KIEs in most adverse outcome pathways (AOPs).14, 45 This issue is 

exemplified by the (incorrect) use of simple alkyl N-nitrosamines to ‘predict’ carcinogenicity of 

more complex pharmaceuticals. Nonetheless, there is utility in readacross when considered at 

the electronic (vs. atomistic) level. To that end, Frontier Molecular Orbital (FMO) Theory can be 

used to derive both kinetic and thermodynamic stability of molecules.46, 47 Pairing FMO with 
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Fukui-function calculations allows us to develop electronic parameters that can inform both 

global and local propensity to accept or donate electron density, which are traits key to acid, 

base and radical chemistries.15, 28, 48, 49 These parameters can then be used to compare 

reactivity of a compound (and its specific moiety, such as the N-nitrosamine) to a ‘known’ 

quantity in an electronic-structure readacross (ESR). So long as the underlying mechanism is 

the same, and is reasonably-well characterized, there is no need for ‘structural similarity’ in ESR 

because this method hinges on fundamental principles of chemical reactivity, and because MO-

derived parameters, assuming prudent functional and basis-set selection,50 can accurately 

condense effects of the entire molecule. Relying on existing knowledge, the added benefit of an 

ESR analysis is in discovering the most meaningful QM parameters for developing a predictive 

model, and to validate, further elucidate or challenge our understanding of the KIE’s molecular 

mechanism.  

 

ESR Case Study. To demonstrate how ESR can be used to gauge reactivity (and by extension 

carcinogenicity) of N-nitrosamines, we considered the well-studied N-nitrosodiethylamine 

(NDEA, CAS 55-18-5) and N-nitrosodimethylamine (NDMA, CAS 62-75-9) compounds, for 

which we have reliable TD50 data. We then developed a series of electronic (and steric) 

parameters relevant to KIEs in Figure 1, and applied them to DIPNA (N-nitrosodiisopropylamine, 

CAS 601-77-4), NDBA (Dibutylnitrosamine, CAS 924-16-3), EIPNA (N-

nitrosoethylisopropylamine, CAS 16339-04-1), NMBA (N-Nitrosomethylaminobutyric Acid, CAS 

61445-55-4) and MeNP (1-methyl-4-nitrosopiperazine, CAS 16339-07-4), using NDEA and 

NDMA as reference compounds (Table 1). All of these compounds are the most commonly 

found N-nitrosamines in medicinal products, and have derived daily acceptable intake (AI) limits 

using SAR/read-across.2, 3 As a result, there are discrepancies between AI limits (column 3) and 

applied TD50 values (column 2) in Table 1. Specifically, AI limits for DIPNA, NDNA, EIPNA and 

MeNP are based on SAR/read-across to NDEA’s TD50 (obtained from CPDB), whereas the limit 
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for NMBA was derived using NDMA’s TD50 (obtained from CPDB).2, 3 For NDEA and NDMA, the 

European Medicines Agency (EMA) uses AI limits based on a harmonic mean of TD50 values for 

all available tumor sites for the rat model in CPDB, whereas our reference values correspond to 

the higher-quality Lhasa TD50’s (viz. Methods). For NDBA and NMBA, only lower-quality CPDB 

TD50 values were available.  

  

Table 1. Steric and electronic parameters support hazard assessment of 5 nitrosamines using 

electronic structure readacross (ESR) to the well-studied N-nitrosodiethylamine (NDEA, CAS 55-

18-5) and N-nitrosodimethylamine (NDMA, CAS 62-75-9). AI = daily acceptable intake limit; SAVA 

= solvent-accessible volume area; Log D7.4 = octanol-water distribution coefficient (pH = 7.4). 

Compound 

(CAS number) 

 

TD50 

(mg/kg) 

AI 

(ng/day) 

mean 

SAVA, 

α-C (Å3) 

Log D7.4  Radical 

susceptibility 

(α-carbon, eV) 

Chemical 

potential, 

 (eV) 

 

Electrophilic 

susceptibility 

(α-carbon, eV) 

DIPNA  

(601-77-4) 

R1,R2 = iPr Lacking 

data 

26.5 12.4 1.59 0.0121 -0.219 0.0140 

NDBA  

(924-16-3) 

R1,R2 = nBu 0.691* 

 

26.5 18.5 2.69 0.0258 -0.125 0.0351 

EIPNA  

(16339-04-1) 

R1 = Et,  

R2 = iPr 

Lacking 

data 

26.5 17.4 1.17 0.0193 -0.240 0.0311 

NMBA 

(61445-55-4) 

R1 =  Me, R2 = 

aminobutyric 

acid 

0.982*  96.0 26.0 -2.99 0.0262 -0.427  

(-0.234)** 

0.0208 

MeNP 

(16339-07-4) 

R1 = Me, R2 = 

pip 

Lacking 

data 

26.5 21.7 -0.71 0.0231 -0.479 

(-0.111)** 

0.0259 

NDEA  

(55-18-5) 

R1,R2 = Et 0.0177* 26.5 19.6 0.75 0.0318 -0.510 0.0411 

NDMA  

(62-75-9) 

R1,R2 = Me 0.177* 96.0 34.1 0.04 0.0461 -0.428 0.0492 

*NDEA/NDMA use Lhasa (LCDB) TD50 harmonic mean, whereas NDBA/NMBA rely on CPDB (Gold) TD50 mean. 

**These species are ionized at physiological pH of 7.4.  

 

In considering data-poor nitrosamines in Table 1 (i.e., rows 2-6), we first focused on 

steric hindrance in the hydroxylation step, calculated as the solvent-accessible volume area 
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(SAVA) on the α-carbon(s). Here, DIPNA, NDBA, EIPNA, NMBA and MeNP all showed greater 

steric hindrance than NDMA, implying lower reactivity. However, NMBA and MeNP were both 

on average more accessible at the α-carbon-position than NDEA, which is a potent COC (TD50 

= 0.018 mg/kg), indicating that sterics (i.e., structural features) alone cannot explain nitrosamine 

potency.  In comparing electronic structures, we considered both global (i.e., molecular) 

properties as well as local (i.e., atom-based) reactivity indices. Global electronic properties were 

derived from the Frontier Molecular Orbital Theory (FMOT), while local properties were 

expressed via the Fukui function, 𝑓(𝑟) = [
𝜕𝜌(𝑟)

𝜕𝑁
]

𝜈(𝑟)
, which measures propensity of an atom (or 

molecule) to accept or donate electron density.  Here, we computed susceptibility to undergo 

radical chemistry at the α-carbon position, 𝑓0(𝐶𝛼) = [𝜌𝑁+1(𝐶𝛼) + 𝜌𝑁−1(𝐶𝛼)]/2 , which reflects 

the initial C-H alkylation step, and where maxima in the susceptibility index correspond to 

greater propensity for this process (Table 1, Column 5). For asymmetric N-nitrosamines, values 

in Table 1 reflect the more reactive position.  In our analysis, all 5 nitrosamines showed lower 

reactivity at -C than either NDEA or NDMA, which is consistent with the limited experimental 

data available. 

 

In deriving useful global properties, we computed the change in chemical potential for the 

hydroxylation step (i.e., ). Chemical potential is a well-established quantity that reflects the 

escaping tendency of electrons, (
𝜕𝐺

𝜕𝑁
), and its change along the reaction pathway was shown to 

control uphill chemical processes (while downhill chemical reactions are typically controlled by a 

change in molecular hardness).51 Since the initial C-H activation step is endergonic,52 we 

compared  across all 7 nitrosamines (Table 1, Column 6), noting that  is capable of 

distinguishing between the greater carcinogenicity of NDEA ( = -0.510, TD50 =  0.018 

mg/kg/day) over NDMA ( = -0.428, TD50 = 0.177 mg/kg).  For EIPNA and NMBA, which yield 

two different hydroxylated metabolites (viz. Figure 1),  was averaged assuming Boltzmann 
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distribution of states, i.e., ∆𝜇 = −𝑅𝑇 ln ∑ 𝑒−
∆𝜇𝑖
𝑅𝑇2

𝑖=1 + 𝑅𝑇 ln 2. From Table 1, all five N-nitrosamine 

‘unknowns’ showed less favorable  than NDEA or NDMA, indicating lesser propensity to form 

the hydroxylated metabolite. When ionization of NMBA and MeNP at physiological pH was 

considered, the difference in reactivity between NDEA/NDMA and the remaining compounds 

increased further (Table 1, Column 6, values in ellipses). We should note that ionization affects 

toxicity further by decreasing bioavailability. To that end, lesser relative toxicities of NMBA and 

MeNP are supported by their respective octanol-water distribution coefficients (log D at pH = 7.4), 

which are much lower than for the remaining nitrosamines (Table 1, Column 4), indicating limited 

partitioning across cell membranes.   

Lastly, we briefly considered the electrophilicity of all 7 nitrosamines, which plays an 

important role downstream in the covalent binding of DNA by alkylating metabolites (Figure 1). It 

is reasonable to propose that sufficient electronic ‘signature’ is present in the parent molecules to 

elucidate differential electrophilic reactivity of their metabolites.53  To that end, calculated maxima 

in electrophilic susceptibility on the α-C, 𝑓+(𝐶𝛼) = [𝜌𝑁+1(𝐶𝛼) − 𝜌𝑁(𝐶𝛼)], showed that both NDEA 

and NDMA are more susceptible to a nucleophilic attack (Table 1, Column 7) than the remaining 

nitrosamines. This finding is consistent with our analysis above, indicating lower reactivity (and 

carcinogenicity) of the selected 5 nitrosamines than the well-characterized NDEA and NDMA 

compounds. Interestingly, while electrophilicity correctly distinguished the minute difference 

between NDBA and NMBA TD50’s, it did not reflect experimental differences between NDEA and 

NDMA, which was better predicted by  highlighting the limitations of using a single variable (or 

a single KIE) in a readacross. 

Importantly, Table 1 outcomes suggest that the daily acceptable intake (AI) limits derived 

using SAR and (structure-based) readacross are overly conservative. In considering available 

experimental data and computed reactivity parameters for the 5 compounds in question, none 

exceed metrics calculated for NDMA, for which AI is set at 96.0 ng/day (vs. 26.5 ng/day for NDEA). 
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In fact, all data indicate substantially lower reactivity and toxicity, with values closer to NMBA (AI 

= 96.0 ng/day) than either NDMA or NDEA.  

 

Structure Activity Relationships. While ESR alleviates personal bias and applicability-domain 

issues associated with structural readacross, for large and complex molecules, it may be difficult 

to lean on a single variable. Furthermore, a quantitative (vs. qualitative) assessment of toxicity 

may be required by the industry or regulators. To that end, a statistical model, predictive of N-

nitrosamine carcinogenic potency and constructed as a composite of several key electronic and 

steric parameters informed by toxicity mechanism, should be leveraged instead to deliver an 

accurate in silico assessment.  Prior to developing such models, it is vital to perform analysis of 

key trends in the dataset, which could help elucidate mechanistic data clusters (i.e., analog 

series), and pinpoint (true) outliers.13, 54    

 Here, we considered several ‘known’ SARs and showcased how underlying trends can 

be captured using QM (Figure 3). Since ionization increases water solubility and decreases 

bioavailability, we noted that ionizable nitrosamines were generally less potent carcinogens than 

non-ionizable compounds (viz. median TD50 of 6.04 mg/kg for ionizables vs. 0.982 mg/kg for 

non-ionizables, as visualized in Figure 3, first row). This effect is captured well by aqueous 

solubility (log S), as predicted here from QM/MM/MC simulations. In comparing two 

representative analogs, nid and noe, computed log S (-1.2 and -0.065 for nid and noe, 

respectively) was consistent with calculated TD50’s (68.7 and 0.18 mg/kg, respectively). It has 

been proposed that  hydrogens (Hs) decrease toxicity, owing to competing hydroxylation 

processes that lower the probability of heterolysis and subsequent DNA alkylation.4, 55 We found 

this rule to be misleading, as nitrosamines with no -Hs were overall less toxic than those with 

-Hs in the dataset (Figure 3, second row). As shown by structures ndi and ndt, (TD50 = 0.11 

and 31.2, respectively), -Hs may imply lack of a more complex, sterically hindering moiety at 
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this position, thus promoting reactivity at the (carcinogenic)  position. In computations, this can 

be captured by the solvent accessible surface area (SASA) on -C’s, which was calculated to 

be 4.1 Å2 for ndi and 1.9 Å2 for ndt, supporting the difference in TD50 values.  

.  

Figure 3. Structural analogs (left) highlighting corresponding key trends across the present N-

nitrosamine dataset (right). 

 

The data further shows that multiple nitrosamine groups increase potency, as showcased by 

dnh vs. nhx, and captured by the lower median TD50 value of compounds with two (0.70 mg/kg) 

vs. one (1.26 mg/kg) N-nitrosamine groups (Figure 3, third row). We can readily capture this 

property using QM, for example, by the change in chemical potential for the hydroxylation step 
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(i.e., ), which was calculated to be -4.21 eV for dnh and -3.67 eV for nhx (i.e., considerably 

less favorable for the latter). Lastly, sp2 C’s proximal to the -C appear to increase carcinogenic 

potency (Figure 3, fourth row), as radical stabilization of the  -position by electron-hole 

delocalization promotes hydroxylation. Here, this effect is demonstrated by nhd vs. nsd, where 

radical stabilization by -resonance in the former leads to greater toxicity (TD50 = 0.059 mg/kg) 

over the latter (TD50 = 1.12 mg/kg). Orbital-mixing effects can be quantified in QM calculations 

via Second Order Perturbation Theory (SOPT) by estimating the magnitude of the -p donor-

acceptor contributions or, indirectly, by population analysis that gauges electron-density 

partitioning across atoms in the molecule. To that end, for the case of nhd vs. nsd, Hirshfeld 

population analysis (HPA) showed that -C in nhd is more electropositive (+0.09) than -C’s in 

nsd (+0.07), owing to the -electron withdrawing  bond.  

For a few documented SARs, the present dataset afforded  a comparison across a 

multiple-analog series (Figure 4).  In Figure 4A, we examined the effect of increasing 

(symmetrical) alkyl chains around the nitrosamine group. Consistent with past studies, longer 

chains generally translate to lower carcinogenic potency (i.e., increasing TD50’s), owing to 

increasing steric bulk on the -C (captured here using SASA). The important exception is NDEA 

(den), especially as it is commonly used by the EMA and FDA in structure-based readacross to 

inform carcinogenicity of nitrosamine impurities in medicinal products. NDEA (den) is an order-

of-magnitude more carcinogenic than NDMA (dmn). This activity ‘peak’ in the overall trend can 

be rationalized using SOPT (of Fock Matrix in Natural Bond Orbital, NBO, basis),56 based on the 

metabolic pathway of N-nitrosamines (Figure 1). In contrast to NDMA (dmn), NDEA (den) 

benefits from orbital mixing (i.e., hyperconjugation), which stabilizes the radical intermediate 

prior to C-hydroxylation by (C-H)→p(C•) donor-acceptor effects (Figure 5A). From Figure 5B, 

hyperconjugation is observed in Molecular Orbital Theory (MOT) as well; here, orbital mixing 

lowers energy of the MO consisting of the lone-pair atomic orbital (AO).  Crucially, this 
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interaction is absent in NDMA (dmn), and while it exists in dpn, ndb and dna, diminishing 

SASA with increasingly alkyl-chain length likely compensates for this effect, leading to an overall 

decrease in carcinogenicity. The magnitude of (C-H)→p(C•) orbital mixing in the NBO basis 

was estimated to be ca. 60-80 kcal/mol across the present alkyl-nitrosamine series, with slight 

increase in proceeding from shorter to longer alkyl chains.    

 

Figure 4. Series of acyclic (A) and cyclic (B) alkyl nitrosamine analogs with reliable rat TD50 

values in the present dataset and corresponding SASA values, computed at C. A and B 

columns are aligned so as to compare cyclic vs acyclic series’ analogs.  

 

Next, we were interested in comparing activities of acyclic and cyclic alkyl nitrosamines 

(Figure 4A vs 4B). We noted that smaller cyclic analogs were less potent than their acyclic 

counterparts (e.g., den vs. npy or dpn vs. nsd), despite greater accessibility of the -C (owing 
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to the syn relationship of heteroatoms in a cycle vs. anti in a linear chain). However, because 

TD50 values decrease with increasing ring size, nhm ends up being more potent than either dpn 

or ndb. Concurrently, SASA decreases with increasing ring size (Figure 4B); thus, it cannot 

explain the trend of increasing potency when proceeding from npy to nhm. Here, 

conformational sampling in conjunction with QM calculations is necessary, showing that as the 

ring size increases, the distance between the hydrogen on -C and oxygen of the nitrosamine 

group decreases (Figure 5B). This effect, which stems from greater rigidity of smaller rings vs. 

conformational flexibility of larger rings, is relevant because the C-H position is hydroxylated in 

N-nitrosamine metabolism, and in the heterolysis (i.e., aldehyde cleavage) step, proton is 

transferred from the OH group at C to the O of the nitrosamine (Figure 5B, top – transferred 

proton outlined in red color). Proton transfers become more facile with decreasing distance 

between the donor and the acceptor.57   

 

Figure 5. Orbital mixing in the NBO (Natural Bond Orbital) basis (A) and MOT (Molecular 

Orbital Theory) basis (B), capturing hyperconjugation effects between C• and proximal C-H  

bond. C: Mechanism of proton transfer in the heterolysis step of nitrosamine metabolism (top) 

as affected by the distance between the C-H position and the nitrosamine oxygen (bottom), 

obtained from aqueous QM/MM/MC simulations.  

 

Physicochemical properties. Consistent with past studies,4, 58 the above analysis illustrates 

the difficulties in using structural alerts to reliably inform N-nitrosamine carcinogenic potential 
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(and even less so potency), and the important role that QM plays in modeling nitrosamine 

metabolism. Since physicochemical properties are commonly used in QSAR models,59 both to 

capture bioavailability and, with limited success, as proxies for the more computationally 

demanding electronic-structure (i.e., reactivity) descriptors,28 we carried out a comprehensive 

analysis to determine their relevance in N-nitrosamine carcinogenicity. For the sake of this 

exercise, we considered the entire dataset (i.e., 96 compounds), and assigned 4 categories of 

potency based on the 1.5 mg/kg/day TTC (Threshold of Toxicological Concern): Category 1 

(TD50 < 0.15 mg/kg), Category 2 (TD50: 0.15 – 1.5 mg/kg), Category 3 (TD50: 1.5 – 15 mg/kg) 

and Category 4 (TD50 > 15 mg/kg).  Here, we highlight the most significant properties that could 

be rationalized in the context of N-nitrosamine metabolism, as computed from aqueous 

QM/MM/MC simulations using linear response calculations (viz. Methods).  From Figure 6, no 

single property could reliably distinguish compounds in different potency categories; however, 

we noted an informative trend to guide our predictive models. From left to right, globularity is an 

expression of molecular shape, and is highly conformation-dependent; previous studies have 

shown that globularity can be a useful descriptor for inhibition of enzymatic (and cellular) 

activity.60, 61 Here, nitrosamine COCs (Cat 1-2) were noted to be on average more spherical 

than non-COCs (Cat 3-4), though this distinction was statistically weak, likely due to the 

promiscuity of Cytochrome P450. Polarizability reflects the ability of a molecule’s electron cloud 

to distort in response to an external field, inducing a dipole. As such, polarizability is a useful 

proxy for reactivity (e.g., in describing substitution and elimination reactions on carbon-halogen 

bonds) as well as bioavailability (i.e., highly polarizable compounds tend to be more lipophilic). 

To this end, past studies have exploited polarizability as a useful descriptor of neurotoxicity.62 

Here, polarizability showed that potent COCs (Cat 1) were less polarizable than Cat 2 COCs; 

however, no useful trend was observed across all 4 categories. Aqueous solubility (log S) and 

the octanol-water partition coefficient (log Po/w) are common descriptors of membrane 

permeability and general bioavailability,28, 30 where higher lipophilicity typically indicates greater 



 20 

toxicity. Here, the trend is reversed, as COCs (Cat 1-2) appear to be more hydrophilic than non-

COCs (Cat 3-4). Trends across all properties above are consistent with the landscape of studied 

N-nitrosamines, where the most potent carcinogens are smaller molecules (i.e., less sterically 

hindered, more globular, less polarizable and thus more water-soluble). This is further 

supported by predicted Caco-2 (i.e., apparent Caco-2 cell permeability in nm/sec), which is a 

model for non-active transport across the gut-blood barrier. Here, COC nitrosamines were found 

to be less permeable than non-COCs (Figure 6). Our findings are best summarized by the last 

graph in Figure 6, which shows distributions of computed van der Waals (i.e., Lennard Jones or 

LJ) interaction energies, where the trend is that of increasing interactions (favoring large and 

polarizable substituents) with decreasing potency. Overall, our analysis shows that while 

physicochemical properties are important descriptors of bioavailability, overreliance on these 

metrics in predicting nitrosamine carcinogenicity is likely to be misleading; we can infer from the 

present outcomes that reactivity, and not bioavailability, is the driver of toxicity across the known 

chemical space. 

 

Figure 6. Representative physicochemical properties and their distributions calculated for 

potency categories of studied nitrosamines; Category 1 (TD50 < 0.15 mg/kg), Category 2 (TD50: 

0.15 – 1.5 mg/kg/day), Category 3 (TD50: 1.5 – 15 mg/kg) and Category 4 (TD50 > 15 mg/kg). 

Log Po/w = octanol-water partition coefficient; Caco-2 = apparent Caco-2 cell permeability; LJ 

interactions = Lennard-Jones interaction energies between nitrosamines and aqueous medium. 
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Model Performance. We investigated the use of linear discriminant methods to classify N-

nitrosamine contaminants into 3 potency categories: low potency (Cat 1, TD50 ≤ 0.15 mg/kg), 

COC compounds (Cat 2, 0.15 < TD50 ≤ 1.5 mg/kg) and potent COCs (Cat 3, TD50 > 1.5 mg/kg). 

Linear discriminant analysis (LDA) identifies a discriminant function by dividing an n-dimensional 

descriptor space into regions separated by a hyperplane. We also explored a multivariate 

regression (MLR) analysis as means to predicting TD50 values. Both approaches were applied 

with variable selection based on a genetic algorithm. In both cases, the analyses generated 

posterior probabilities via a cross-validation scheme. A comprehensive set of 92 QM variables 

and physicochemical properties was tested to find the most robust descriptors. In light of the 

mechanistic complexity and to prevent overfitting, LDA models were developed separately for 

N-nitrosamines with and without -Hs (Table 2). 

The LDA ‘no -Hs’ model afforded 92% accuracy and 83% LOO accuracy (Table 2). The 

performance of the LDA model with -Hs was comparable at 94% accuracy and 89% LOO 

accuracy. In external validation, both models fared reasonably well with 71% and 79% 

accuracy, respectively. Indeed, these values can be deemed perfectly satisfactory given the 

notoriously low reproducibility of rodent cancer bioassays, which was estimated at 57% by 

comparing carcinogenicity classifications from the National Cancer Institute/National Toxicology 

Program and from open literature (both sourced from CPDB).63 Given the relatively small size of 

the no -Hs model, combining the two COC categories resulted in improved external 

performance (86%). Overall performance was very good at 92% (training set), 87% (LOO) and 

78% (external).  We should note that our training/test set ratios for both LDA models were 

considerably more stringent (1.7) than is the accepted industry standard (4)64 to showcase the 

broad applicability of QM descriptors and to promote confidence in the models’ robustness.  
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Table 2. Performance statistics for LDA models developed for carcinogenic potency of N-

nitrosamines.  

Model Accuracy 
(%) 

LOO 
Accuracy (%) 

External 
Validation (%) 

LDA (no -Hs)  92 (12)* 83 71/86** (7) 

LDA (-Hs) 94 (48) 89 79 (29) 

Total 93 (60) 87 78 (36) 

*Number of compounds provided in ellipses. 
**2-category split (TD50 ≤ 0.15 mg/kg and TD50 > 1.5 mg/kg) 
 

Lastly, we briefly explored MLRs to predict TD50 values. While a well-performing model 

was developed for potent nitrosamines without -Hs (TD50 < 1.5 mg/kg), linear trends would 

break down above this range, owing to the high inherent variability of carcinogenesis as a multi-

stage probabilistic process, and likely because high TD50 values are deemed less reliable.65 

From Figure 7, the best MLR model afforded R2 and R2
adj of 85% and 82%, respectively, across 

13 compounds and using 3 descriptors (global electrophilicity index, electrophilic reactivity on 

the -C and maximal radical susceptibility).  

 

 

Figure 7. The best MLR model for N-nitrosamines without -Hs and with TD50 < 1.5 mg/kg. N = 

13, R2 = 85%, R2
adj = 82%.  
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Applicability domain. Transparency about model’s applicability is key to trusting its real-world 

performance. For QSARs, applicability domain can be defined in myriad different ways,66-68 but it 

is always tied to the distribution of descriptor (and response) values in the training set. Thus, if a 

prediction is supported by value(s) outside this (multivariate) space, it should be flagged as out 

of domain. Practices then differ, based on the model and context of the hazard assessment, as 

to how to treat chemicals predicted this way.69 In CADRE models (and models based on 

fundamentals of chemical interactions in general), the concept of applicability domain is less 

obvious.70 Presently, we report out-of-domain predictions (based on out-of-range descriptor 

values) using a confidence score,15, 29, 34 but we have repeatedly found that even lower-

confidence predictions are of high quality and aligned with experiment.14, 31 To this end, it can be 

proposed that models anchored in the underlying chemistry (vs. chemicals in the training set) 

have a ‘softer’ edge in their applicability domain, with fewer inter- and extrapolation concerns, as 

long as the molecular transformations are modeled appropriately and can be assumed to initiate 

the toxic endpoint in question.   

 In elucidating the applicability domain for the present models, we considered value 

ranges of descriptors in external validation (Figure 8). Specifically, we were curious as to 

whether significant deviations from training-set distribution impacted performance, hoping to 

boost confidence in applying our LDA models to a broad range of nitrosamine contaminants. 

This information is particularly important for endpoints with sparse data, where the use of in 

silico models in hazard assessment may be necessary to satisfy regulatory needs, limited 

access to test animals and general economic realities of new chemical development. As 

previously discussed, each QM descriptor in our LDA models (Figure 8) bears mechanistic 

relevance to the N-nitrosamine mechanism: global and local electrophilicity metrics gauge the 

compound’s propensity to accept electron density based on FMO Theory and the Fukui 

function; C/C reactivity reflects orbital overlap with a proxy target (we rely on an alkylamine to 

simulate nucleic acid base); radical susceptibility captures the initial C-H alkylation step; and LJ 
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interactions represent van der Waals energies with surrounding water molecules, computed 

from QM/MM simulations. Surface energy, estimated here via the sum of molecular dipole, 

quadruple and octopole moments, reflects electrostatic interactions with a medium as well as 

transport energies of holes and electrons in organic and biochemical reactions.71, 72 To this end, 

this metric relates to both toxicokinetic phenomena of membrane permeability and covalent 

events in the N-nitrosamine metabolic-activation pathway. Figure 8 clearly shows is that in both 

LDA models for N-nitrosamines without -Hs (Figure 8A) and with -Hs (Figure 8B), exceeding 

the distribution of descriptor values in the training set did not negatively impact external 

predictivity. In fact, there was no correlation between value distance from the training set and 

the rate of mispredictions, indicating robustness beyond current knowledge.    

 

Figure 8. Descriptor values for correct predictions vs. mispredictions in external testing relative 

to value distributions in the training sets of the top LDA model for N-nitrosamines without -Hs 

(A) and with -Hs (B). 
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Model outliers and limitations. Understanding model outliers is important in building 

confidence for real-world applications. Here, all mispredictions were based on a single category 

under- or over-prediction, with the exception of N-nitrosoheptamethyleneimine (Figure 9B, 

nhm). This is a notable outcome, as the difference between Cat 1/2 and Cat 2/3 cutoffs is a 

mere 1 mg/kg/day, while standard deviation in TD50’s across the entire dataset is ca. 8.5 

mg/kg/day. Nonetheless, to better understand the model’s limitations, we considered chemical 

structures of outliers in the context of the known SARs and the mechanism to form mutagens.  

From Figure 9A, ntm, nte, and npe are N-nitrosamines mispredicted in the training set, where 

ntm (TD50 = 3.54 mg/kg) and nte (TD50 = 2.55 mg/kg) were overpredicted as Cat 2 COCs (0.15 

< TD50 ≤ 1.5 mg/kg), and npe (TD50 = 0.00797 mg/kg) was underpredicted as Cat 2 COC. The 

sulfur in Ntm makes it a softer analog of nsm (N-nitrosomorpholine, CAS 59-89-2, Table S1), 

which has a rat TD50 of 0.135 mg/kg (i.e., Cat 1 COC). It is unlikely that the reactivity of the 

nitrosamine moiety is significantly affected by the swap of oxygen for sulfur; however, it could be 

proposed that a competing -hydroxylation is more favorable for ntm over nsm owing to better 

stabilization of the radical intermediate by the electron-diffuse sulfur, leading to lower toxicity of 

ntm.73 N-nitrosotrifluoroethylethylamine (nte) is an interesting case of a molecule that is -

electron-withdrawing by the trifluoro group (CF3 is roughly on par with Cl in electronegativity), 

while it is donating via (C–F)→p(C•) orbital mixing to stabilize the intermediate radical. 

Concurrently, the trifluoro group has an electron cloud that shields the -C position from 

hydroxylation. Assuming robustness of experimental data, destabilizing and shielding 

interactions appear to ‘win out’, as nte is one and two orders of magnitude less potent than dpn 

and den, respectively. Lastly, npe is underpredicted by our LDA model. Here, the aromatic ring 

can undergo oxidation by P450 enzymes to an arene oxide, generating an additional mutagenic 

site in the molecule. Because of the lack of reliable animal data for complex nitrosamines, the 

present model’s assessment of carcinogenic potency focuses only on the N-nitrosamine moiety.  
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 In external testing, we identified 6 outliers (Figure 9B). The 1-[(2,3-

dihydroxypropyl)nitrosoamino]-2-propanone (CAS 92177-50-9, TD50 = 0.0352 mg/kg) was 

underpredicted as Cat 2 COC. This toxicant is complicated by the hyperconjugation effects 

involving the -carbonyl and -OH groups, which can stabilize the radical intermediate in the 

hydroxylation step; a compound effect that appears to be underestimated in the model. 

Additionally, diols can cyclize to form mutagenic epoxides, which, though less likely under mild 

conditions or in vivo, is a transformation not captured by the model. Ethylnitrosocyanimide (ecy, 

TD50 = 3.68 mg/kg) was overpredicted as Cat 2 COC. While cyanamides are generally not 

mutagenic or carcinogenic,74 the conjugation effects across the cyano and nitrosamine groups 

in ecy might be further decreasing the -hydroxylation potential. Nitrosoheptamethyleneimine 

(nhm, TD50 = 0.0383 mg/kg) was underpredicted as Cat 3 COC (the only large misprediction in 

the dataset). We postulated that in the series of cyclic alkyl N-nitrosamines, the conformational 

flexibility of the larger analogs may result in closer positioning of the -OH group to the 

nitrosamine for proton transfer in the heterolysis step (Figure 5C). However, this effect is likely 

underestimated by the model given the concurrent trend of decreasing potency in larger (and 

more polarizable) alkyl nitrosamines (Figure 4). N-nitrosotetrahydropyridine (nhd, TD50 = 0.0599 

mg/kg) was underpredicted as Cat 2 COC, possibly due to the epoxidation on the double 

bond,75 which generates an additional mutagenic site (viz. discussion of npe above). Nde (TD50 

= 5.98 mg/kg) is a close analog of CAS 92177-50-9 (TD50 = 0.0352 mg/kg) but of much lower 

potency.  The difference in reactivity of the two compounds can be explained by the effect of the 

-carbonyl group on the hydroxylation step via -p orbital mixing. Lastly, 1-Nitroso-1-(2-

chloroethyl)-3-(2-hydroxypropyl)urea (CAS 106612-15-1, TD50 = 0.124 mg/kg) was 

underpredicted as Cat 2 COC, though the measured TD50 value is very close (0.03 mg/kg) to 

the Cat 1/2 cutoff. A possible explanation could be the mutagenic site of alkyl chloride, 

increasing the potency of this compound.76  
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Figure 9. N-nitrosamines under- and over-predicted by the current LDA model in the training set 

(A) and the test set (B).  

 

Application to EMA compounds. To offer immediate utility, we applied the present models to 

the complete list of nitrosamines in medicinal products, as compiled by EMA (Table 3).2, 3 From 

Table 3, predicted potency categories are generally aligned with measured values where 

available, and are by and large less conservative than the applied AI limits. The latter is simply a 

consequence of the current AI limits, which are derived mostly from NDEA (CAS 55-18-5) or 

NDMA (CAS 62-75-9), despite these compounds being (bio)chemically (i.e., mechanistically) 

different from much of the rest of the dataset. In some cases, calculated TD50’s or structurally 

relevant analogs were used toward AI limits for compounds in Table 3. For example, N-nitroso-

morpholine (CAS 59-89-2) has an AI limit of 127 ng/day, which corresponds to both computed 

TD50 from LCDB (0.135 mg/kg) and our predicted category of potency (Cat 1, TD50 ≤ 0.15 

mg/kg). Similarly, N-nitroso-N-methylaniline (CAS 614-00-6) has AI limit that corresponds to 

both measured and predicted potency categories (Cat 1).  
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Table 3. A list of N-nitrosamines commonly found in medicinal products, with AI limits provided 

by the European Medicines Agency (EMA) and corresponding predictions of carcinogenic 

potency determined with the CADRE program. AI = daily acceptable intake limit; SAVA = 

solvent-accessible volume area; LCDB = Lhasa Carcinogenicity Database, CPDB (Gold 

Carcinogenic Potency Database); Potency categories: Cat 1 (TD50 ≤ 0.15 mg/kg), Cat 2 (0.15 < 

TD50 ≤ 1.5 mg/kg) and Cat 3 (TD50 > 1.5 mg/kg). 

N-nitrosamine (CAS number) AI  
(ng/day) 

TD50 
(mg/kg/day) 

Source Measured 
potency 

Predicted 
potency 

N-Nitrosodimethylamine (62-75-9) 96.0 0.177 LCDB 2 2 
N-nitrosodiethylamine (55-18-5) 26.5 0.0177 LCDB 1 1 
N-nitrosoethylisopropylamine  
(16339-04-1) 

26.5 N/A - - 1 

N-nitrosodiisopropylamine (601-77-4) 26.5 N/A - - 2 
N-nitroso-N-methyl-4-aminobutyric acid 
(61445-55-4) 

96.0 0.982 CPDB 2 2 

1-Methyl-4-nitrosopiperazine  
(16339-07-4) 

26.5 N/A - - 2 

N-Nitroso-di-n-butylamine (924-16-3) 26.5 0.691 CPDB 2 2 
N-nitroso-N-methylaniline (614-00-6) 34.3 0.106 LCDB 1 1 
N-nitroso-morpholine (59-89-2) 127 0.135 LCDB 1 1 
N-nitroso-varenicline (2755871-02-2) 37.0 N/A - - 3 
N-nitrosodipropylamine (621-64-7) 26.5 0.186 CPDB 2 2 
N-nitrosomethylphenidate (55557-03-4) 1300 N/A - - 3 
N-nitrosopiperidine (100-75-4) 1300 1.12 LCDB 2 2 
N-nitrosorasagilene (2470278-90-9) 18 N/A - - 2 
7-Nitroso-3-(trifluoromethyl)-5,6,7,8-
tetrahydro[1,2,4]triazolo[4,3- a]pyrazine 

37 N/A - - 3 

N-nitroso-1,2,3,6-tetrahydropyridine 
(55556-92-8) 

37 0.0599 LCDB 1 2 

N-nitrosonortriptyline (55855-42-0) 8  - - 3 
N-methyl-N-nitrosophenethylamine, 
(13256-11-6) 

8 0.00797 LCDB 1 2 

 

For SAR/read-across using structurally similar compounds, the AI limit of N-nitroso-varenicline 

(CAS 2755871-02-2), 37 ng/day, was determined using N-nitroso-1,2,3,6-tetrahydropyridine 

(CAS 55556-92-8). Though these compounds may appear ‘similar’, they are chemically different 

due to the presence of the double bond in the latter. We discussed an analogous case in Figure 

3, contrasting N-nitroso-1,2,3,6-tetrahydropyridine (nhd) vs. nsd, where radical stabilization by 

-resonance in the former leads to greater toxicity (TD50 = 0.059 mg/kg) over the latter (TD50 = 
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1.12 mg/kg). For the same reason, CADRE predicts N-nitroso-varenicline to be less potent than 

N-nitroso-1,2,3,6-tetrahydropyridine (Table 3). Comparably, while N-methyl-N-

nitrosophenethylamine (CAS 13256-11-6) may appear to be a close structural analog of N-

nitrosonortriptyline (55855-42-0), driving the AI limit for the latter (8 ng/day), the two compounds 

behave differently. In CADRE’s Monte Carlo simulations, we observed that the ring -

conjugation is responsible for different conformational preference of the CH3–N–CH2–CH2 

dihedral angle in N-methyl-N-nitrosophenethylamine (anti) vs. N-nitrosonortriptyline (syn), 

resulting in the latter -C being less accessible to P450 hydroxylation (Figure 10). 

Consequently, CADRE predicts the latter compound as a less potent carcinogen. In sum, 

assessments of structural similarity are not enough to ensure useful derivations of AI limits; we 

need to understand and capture the underlying chemistry of N-nitrosamine metabolism.   

 

Figure 10. QM/MM/MC simulations used to capture the conformational difference in the CH3–

N–CH2–CH2 dihedral angle (marked in neon green color) for N-nitrosonortriptyline (syn) and N-

methyl-N-nitrosophenethylamine (anti), resulting in the latter -C being more accessible to P450 

hydroxylation and thus more carcinogenic.  

 

Future development. Despite indicated robustness of the present CADRE approach, any 

models that describe complex biochemical phenomena using limited data will have inherent 

drawbacks. While we can assess QM factors to ‘correct’ for outliers (viz. complex 

Syn: a-C less accessible Anti: a-C more accessible
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hyperconjugation effects), we are constrained by the training-set size in terms of the number of 

descriptors we can implement to prevent overfitting. To improve predictivity in the short term, we 

envision a tiered approach for complex nitrosamines that uses the current LDA models in 

tandem with electronic-structure readacross, which can provide refinement based on expert 

evaluation of additional QM descriptors. In the long term, models can be advanced if more 

(reliable) TD50 data, especially for complex nitrosamines, becomes available. This is not 

necessarily a call for more animal testing; rather, the scientific community should strive to 

improve data-sharing practices, allowing modelers to securely tap into existing proprietary data 

held by pharmaceutical companies to address both regulatory and new chemical development 

needs.14, 77 While the appetite for data ‘openness’ is growing,31 we need a systemic change to 

truly take advantage of our collective resources.77     

 

Conclusion. The use of SARs has been instrumental to our understanding of the steric and 

electronic factors contributing to the activation of N-nitrosamine pro-mutagens to carcinogenic 

compounds.4 However, direct use of SARs in predicting potency of N-nitrosamines is impractical 

due to the many confounding factors, the sheer complexity of the biochemical process and the 

limited dataset of reliable TD50’s to train such models.4, 78 On the other hand, the use of QSARs 

based on physicochemical properties can be grossly misleading given a dubious link between 

these descriptors and the mechanism of action. Since covalent interactions dominate N-

nitrosamine metabolism, the solution appears to be in the development of robust quantum-

mechanical approaches based on electronic structure. Underpinned and validated using SARs, 

these methods can alleviate concerns about limited data by capturing the underlying chemistry 

without over-reliance on chemical structures.  

Here, we outlined the extension of the QM-based CADRE platform to N-nitrosamines, 

with the goal of creating a predictive tool that is both robust and practically useful. We 

accomplished the latter by reducing reaction-pathway modeling, which is unfeasible in routine 
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hazard assessments, into key steric and electronic factors, and by recognizing that the low 

reproducibility of rodent carcinogenicity bioassays poses natural limitations on what a predictive 

model can accomplish. To this end, CADRE only offers categorical predictions, aimed at 

distinguishing the most hazardous nitrosamines from less potent COC and from no-concern 

compounds. External validation showed this can be accomplished with ca. 78% accuracy, 

though real-world metrics are expected to be somewhat lower. Our survey of model outliers and 

the relationship between out-of-domain descriptors and prediction accuracy offers insight into 

future development, while boosting confidence in applying the current model to complex N-

nitrosamine impurities found in medicinal products.  To this end, we should emphasize that the 

present model focuses on the contributions of the N-nitrosamine group to the compound’s 

carcinogenic potency. For chemicals containing other mutagenic toxicophores, CADRE should 

be paired with other tools that assess this endpoint broadly to determine their overall hazard.  
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