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Abstract

We present a new implementation of real-time time-dependent density functional
theory (RT-TDDFT) for calculating excited-state dynamics of periodic systems in the
open-source Python-based PySCF software package. Our implementation uses Gaus-
sian basis functions in a velocity gauge formalism and can be applied to periodic sur-
faces, condensed-phase, and molecular systems. As representative benchmark applica-
tions, we present optical absorption calculations of various molecular and bulk systems,
and a real-time simulation of field-induced dynamics of a (ZnO)4 molecular cluster on
a periodic graphene sheet. We present representative calculations on optical response
of solids to infinitesimal external fields as well as real-time charge-transfer dynamics in-
duced by strong pulsed laser fields. Due to the widespread use of the Python language,
our RT-TDDFT implementation can be easily modified and provides a new capability
in the PySCF code for real-time excited-state calculations of chemical and material
systems.
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Time-dependent charge transfer of a (ZnO)4 molecular cluster
on a periodic graphene sheet irradiated by a laser pulse (yellow arrows show the distribution
of the electronic flux).
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1 Introduction

The prediction of excited-state dynamics in condensed phase systems continues to garner

immense interest due to their importance in field-induced transitions1,2, surface reactions3,

photocatalysis4,5, nanoscale devices9. and strong-field dynamics6–8. Because of the dynamic

nature of these systems, an understanding of electron dynamics at a time-resolved level of

detail is central to improving and controlling their properties. Of the various theoretical

capabilities for calculating electron dynamics, real-time time-dependent density functional

theory (RT-TDDFT)10 continues to be one the most promising computational approaches

due to its balance between accuracy and cost. RT-TDDFT codes for molecular (i.e., non-

periodic) systems are becoming more common since the implementation of the dipole-gauge

formalism, which is required to calculate quantum dynamics in non-periodic systems, is

relatively straightforward. However, the dipole-gauge formalism cannot be used for periodic

systems since it breaks the translational symmetry of the Hamiltonian12. As such, open-

source RT-TDDFT codes for fully extended periodic systems are less common.

To bridge this gap between molecular and periodic systems, we have implemented a new

RT-TDDFT capability in the open-source Python-based PySCF software package13. While

a few RT-TDDFT implementations exist for condensed-phase systems, such as TDAP15,

Q-box16, Salmon17,18, Elk19, and Siesta20, these programs are either in-house, not open-

source, or written in a low-level language. In contrast, the modular structure of the Python-

based PySCF code allows easy modification and extension of built-in methodologies, even for

researchers unfamiliar with specific details of each routine. These implementations are made

possible through the high-level Python language, which is known for its code readability/re-

usability and has found widespread usage in the scientific community22. Another advantage

of PySCF is its use of localized, all-electron Gaussian basis sets, which are (1) generally

more accurate than pseudopotentials for RT-TDDFT calculations of intense laser fields23

and (2) more computationally efficient for systems requiring a large vacuum space, such

as extended surfaces and low-dimensional systems. Moreover, previous work has shown

that efficient use of Python libraries enables PySCF to perform reasonably well for many

quantum chemistry implementations13, although it should be re-emphasized that PySCF
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was designed for code readability/modularity and not massively-parallelized calculations.

In the context of our work on periodic systems, the use of Gaussian basis functions and

several built-in capabilities of PySCF13, such as the density-fitting25–28, enable calculations

of periodic systems in a reasonable time and cost.

In this work, we provide a detailed description of our PySCF RT-TDDFT implementa-

tion for simulating electron dynamics of periodic systems in the presence of time-dependent

external fields. To validate our custom implementation, we provide a variety of benchmark

tests that include comparisons between (1) conventional linear-response and RT-TDDFT cal-

culations, (2) different gauge choices, and (3) oscillator strength distributions. Our results

are also complemented by a variety of analyses, including real-time electronic properties and

time-dependent orbital occupations for a (ZnO)4 molecular cluster on a periodic graphene

sheet as a representative example. Finally, we conclude with a discussion and summary of

our results, with additional perspectives of future applications of our RT-TDDFT implemen-

tation.

2 Methodology

2.1 Real-time propagation scheme

We first describe the real-time propagation scheme used in our custom PySCF implemen-

tation. We commence with the electronic ground state of a periodic system described by a

given nuclear configuration with lattice vectors {ai} and reciprocal vectors G. Each Kohn-

Sham (KS) orbital is characterized by a Bloch vector k and is a solution of the eigenvalue

equation,

HKS
k ψkα = εkαψkα, (1)

where α is an orbital index and HKS is the KS Hamiltonian given by

HKS = T + Vext + VH + Vxc, (2)

where T , Vext, VH and Vxc are the kinetic energy, external potential, Hartree potential, and

exchange-correlation (xc) potential operators, respectively. In this work, we focus on a Kohn-
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Sham treatment of the electrons (described via local and semi-local functionals), which can

be readily used by PySCF developers and users without significant computational effort. We

note that this formulation cannot capture all of the intricate many-body effects in excited-

state dynamics (such as electron-hole interactions), and modifications of our program to

include these many-body effects would be possible future extensions of our work.

For a system is in its electronic ground state at time t = 0, its time evolution for future

times, t > 0, is given by the time-dependent KS equation

iℏ
∂

∂t
ψkα(r, t) = HKS

k (t)ψkα(r, t), (3)

where HKS
k (t) is the time-dependent KS Hamiltonian operator. The electron density of the

system at time t is given by

ρ(r, r′; t) =
∑
kα

ψkα(r, t)wkαψ
∗
kα(r

′, t), (4)

where wkα is a time-independent occupation number. In this paper, we use the adiabatic

formulation30 of TDDFT, which approximates the xc potential to be a functional of the

density at time t. As representative examples of our implementation, we use local and semi-

local xc functionals such as the local density approximation (LDA)31 and the generalized

gradient approximations (GGA)32,33. We recognize that hybrid xc functionals typically give

better results than LDA and GGA; however, the main purpose of our work is to validate our

implementation of RT-TDDFT for periodic systems.

To numerically solve the time evolution in equation (3), we apply the Crank-Nicolson

algorithm34 and propagate the KS orbitals as

ψkα(t+∆t) ≈
Ns−1∏
j=0

[
1 +

idt

2ℏ
HKS

k (tj+ 1
2
)

]−1 [
1− idt

2ℏ
HKS

k (tj+ 1
2
)

]
ψkα(t), (5)

where ∆t is the step size of the propagation, Ns is the number of steps (typically set as

Ns = 20 in this work), dt ≡ ∆t/Ns is the propagation time step, and tj+ 1
2
≡ t+(j+ 1

2
)dt are

the time values. The Crank-Nicolson operator in Eq. (5) is a strictly unitary approximation

of the exact time evolution operator e−i∆tHKS/ℏ for a small step size ∆t. The density matrix

and Hamiltonian at time t+∆t are solved self-consistently, whereas the Hamiltonians at the
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intermediate time points, HKS
k (tj+ 1

2
), are approximated by a linear interpolation of HKS

k (t)

and HKS
k (t+∆t) as suggested in Ref. [15] (b).

Within the PySCF13 software package, the time-dependent KS orbitals are expanded in

a set of Gaussian atomic orbitals (AOs) as

ψkα(r, t) =
∑
µ

χkµ(r)C
µ
kα(t), (6)

where Cµ
kα(t) are the time-dependent coefficients, χkµ(r) ≡

√
1
N
∑

Tn
χµ(r−Rµ −Tn)e

ik·Tn

are the Gaussian basis functions with Rµ being the atomic center of orbital µ, Tn is the

lattice translation, and N is a formal normalization factor. The electron density, Eq. (4), is

expanded as

ρ(r, r′; t) =
∑
k

∑
µν

χkµ(r)Dkµν(t)χ
∗
kν(r

′), (7)

where Dkµν(t) is the density matrix in the AO representation, given by

Dkµν(t) ≡
∑
α

Cµ
kα(t)wkαC

ν∗
kα(t). (8)

With these definitions, the time-dependent KS equation (within the fixed nuclei approxima-

tion) in Eq. (3) can be written in matrix form as

iℏ
∑
ν

√
SµνĊ

ν
kα(t) =

∑
κν

H̃kµκ

√
SκνC

ν
kα(t), (9)

where Sµν is the overlap matrix and H̃kµν ≡
∑

σκ

(
1/

√
S
)
µσ
Hkσκ

(
1/

√
S
)
κν
. The Cν

kα

coefficients can be calculated with the following expression:

Cν
kα(t+∆t) ≈

∑
µκ

(
1√
S

Ns−1∏
j=0

[
1 +

idt

2ℏ
H̃k(tj+ 1

2
)

]−1 [
1− idt

2ℏ
H̃k(tj+ 1

2
)

])
νµ

(√
S
)
µκ
Cκ

kα(t).

(10)

The required self-consistency between the KS Hamiltonian HKS(t + ∆t) and the electron

density ρ(r, r′; t+∆t) at time t+∆t is achieved iteratively starting from an initial guess for

HKS(t +∆t). We propagate the wavefunctions using Eq. (5), calculate the electron density

at time t + ∆t using Eq. (7), and recalculate the corresponding Hamiltonian HKS(t + ∆t).
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This iterative procedure is repeated until a self-consistent solution is reached. We require

the norm of the electron density difference across successive iterations to be smaller than a

predetermined ϵtol value, which we set to 5 × 10−7. Convergence is accelerated by Pulay’s

direct inversion of iterative space (DIIS) algorithm35 in which the trial density matrix at the

pth iteration step D
(p)
kµν(t) is set as the input vector.

2.2 Velocity gauge formulation

The velocity gauge formulation is used to correctly incorporate the effects of external electric

fields with periodic boundary conditions. In this formulation, the kinetic energy, T , in Eq. (2)

becomes

T =
1

2me

(
ℏ
i
∇− qe

c
A(t)

)2

, (11)

where me is the electron mass of an electron, qe is its charge, c is the speed of light, and A(t)

is the electromagnetic vector potential. Adopting the long-wavelength approximation and

assuming the spatial uniformity of the electric field, A(t) is the integration of the electric

field strength E(t): A(t) = −c
∫ t
dt′E(t′). The wavefunctions in the velocity gauge, ψvg, and

the length gauge, ψlg, are related by a formal gauge transformation:

ψvg(r, t) = ei
qe
ℏcA(t)·rψlg(r, t). (12)

Non-local potentials appearing in the pseudopotential formulation are therefore transformed

according to the expression

V vg
NL(r, r

′) = ei
qe
ℏcA(t)·rV lg

NL(r, r
′)e−i qeℏcA(t)·r′ . (13)

PySCF uses Goedecker Teter Hutter (GTH) separable dual-space pseudopotentials.36 The

matrix elements of the transformed GTH pseudopotential in a Gaussian basis set represen-

tation can be evaluated either analytically or numerically in reciprocal space. Observables

containing the differential operator, such as the electronic velocity, are modified in a covariant

manner as

ξvg(t) =
∑
kα

wkα

〈
ψkα(t)

∣∣∣∣ 1me

(
ℏ
i
∇− qe

c
A(t)

)
+

1

iℏ

[
r̂, V̂ vg

NL

]∣∣∣∣ψkα(t)

〉
, (14)

where the commutator term reflects the non-commutativity of the dipole and non-local

pseudopotential operators20.
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2.3 Optical absorption spectrum

In the length gauge calculation of finite systems (i.e., molecules)37–40, the time-dependent

dipole momenta is induced by an instantaneous electric field pulse of the form E(t) =

F0nδ(t), where n is the polarization direction, F0 the electric field amplitude, and δ(t) is the

Dirac delta function. From linear response theory, the system’s response to an infinitesimally

small external field, F0n, is given by

⟨µk(r, ω)⟩ =
∑
l

∫
d3r′χkl

0 (r, r
′, ω)nlF0, (15)

where µk(r, ω) is the Fourier transform of the dipole moment in the kth spatial direction at

coordinate r, where χ0 is the response function given by

χkl
0 (r, r

′, ω) =
∑
a

⟨0|µ̂k(r)|a⟩⟨a|µ̂l(r′)|0⟩
ℏω − Ea0 + iℏη

−
∑
b

⟨0|µ̂l(r′)|b⟩⟨b|µ̂k(r)|0⟩
ℏω + Eb0 + iℏη

, (16)

where |a⟩ (|0⟩) denotes an excited (ground) energy eigenstate with energy Ea (E0), η is the

broadening parameter, and the excitation energies are given by Ea0 ≡ Ea − E0. In our

RT-TDDFT formalism, we are only interested in the spatially uniform component, and the

oscillator strength can be computed as
∑

kl n
kαkl(ω)nl, where αkl(ω) is calculated as

αkl(ω) ≡ −2ℏω
π

Im

∫∫
d3rd3r′χkl

0 (r, r
′;ω) = ℏω

∑
α

⟨0|µ̂k|α⟩⟨α|µ̂l|0⟩δ(ℏω − Eα0). (17)

The oscillator strength satisfies the frequency sum rule. In the velocity gauge formulation,

the input field transforms to a step-function vector field given by

A(t) = −cF0nθ(t), (18)

where θ(t) is the Heaviside function. In condensed-phase calculation, a convenient observable

is, instead of the dipole, the electronic velocity, whose response is given by

χkl
vd(ω) =

∑
a

〈
0
∣∣[µ̂k, HKS

]/
iℏ
∣∣ a〉 〈a ∣∣µ̂l

∣∣ 0〉
ℏω − Ea0 + iℏη

−
∑
b

〈
0
∣∣µ̂l
∣∣ b〉 〈b ∣∣[µ̂k, HKS

]/
iℏ
∣∣ 0〉

ℏω + Eb0 + iℏη
, (19)

where the subscript vd in the left hand side indicates the dipole to velocity response. As

such, Eq. (17) can be succinctly written as

αkl(ω) = − 2

π
Reχkl

vd(ω), (20)
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In real-time simulation, we calculate the electronic velocity [the dipole (if the target system is

an isolated molecule)] as a time-dependent observable, which is then Fourier-transformed to

numerically calculate the response function χkl
vd(ω) [χ

kl(ω)]. The formal expression Eq. (20)

or (17) is then used to calculate the oscillator strength from the response function.

The dielectric function can be obtained from the expression41

ε(ω) = 1 +
4πiσ(ω)

ω
, (21)

where the dynamical conductivity σ(ω) is given by

σ(ω) =
qe
Ωc

∫
Ωc

d3r

∫
dteiωt⟨Ψt|n̂ · ĵ(r)|Ψt⟩

/
F0, (22)

where Ωc is the cell volume, and ĵ(r) is the electronic current operator. The electronic current

integrated over the unit cell is equivalent to the electronic velocity expectation value given

in Eq. 14. In our numerical implementation, the time propagation is truncated to a finite

range from 0 ≤ t ≤ T , where T is set to 24 fs. The time-series of dipoles/electronic velocities

are multiplied by a Gaussian function of the form e−w2t2/2 (w = 0.1 eV is used in this work)

before a Fourier transformation is taken, which introduces a finite spectral width.

3 Results

This section provides numerical results of our velocity-gauge RT-TDDFT implementation

in the PySCF software package. We first discuss our calculations of the optical absorption

spectra and examine both non-periodic molecules (Section 3.1.1) and periodic solids (Sec-

tion 3.1.2) to validate and verify our implementation. We then discuss real-time electron

dynamics between a (ZnO)4 molecular cluster and a periodic graphene sheet in Section 3.2

as an example of real-time charge transfer in strong external fields.

3.1 Optical Absorption Spectra

To benchmark and validate our velocity-gauge RT-TDDFT implementation, we calculated

the optical absorption spectra of both molecular and condensed-phase systems. The real-

time response to a vector field step-function (Eq. 18) was calculated with F0 set to 0.001
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in atomic units (a.u.). The time step, ∆t, was set to 8.0 as, and the wavefunction was

propagated for 3, 000 steps.

3.1.1 Optical absorption spectra of molecules

As a first test of our implementation, we compare our real-time electron dynamics results for

an isolated CH4 molecule against a variety of benchmark calculations. To enable a fair and

consistent comparison among the various benchmarks, all of the excited-state calculations

for CH4 were executed in the PySCF software package using the Vosko-Wilk-Nusair (VWN)

local density approximation42 and the aug-cc-pvtz43 basis set. The molecular geometry

was optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variant of the Davidon-

Fletcher-Powell minimization algorithm44.

Figure 1(a) compares our velocity-gauge RT-TDDFT optical absorption results against a

standard linear-response (LR) TDDFT calculation. The continuous RT-TDDFT spectrum

was calculated from Eq. 20, and the LR-TDDFT spectrum was obtained from the tdscf mod-

ule in PySCF. The low-energy optical spectrum obtained using RT-TDDFT is essentially

equivalent to that obtained with LR-TDDFT, which validates our velocity-gauge implemen-

tation. As another sanity check on our implementation, we also calculated the LR-TDDFT

spectrum of CH4 with the Gaussian software package59 at the SVWN/aug-cc-pvtz level of

theory and obtained excitation energies of 9.36, 10.40, 11.96, 12.04, 13.03, 13.67, 16.62, and

17.98 eV, which agree well with the excitation peaks shown in Figure 1(a). Our next val-

idation test is shown in Fig. 1(b), which compares the oscillator strength results obtained

from our length-gauge and velocity-gauge RT-TDDFT calculations, using Eqs. 17 and 20,

respectively. We obtained the length-gauge results from the system’s response to a delta-

function electric field strength of F0 = 0.001 a.u., whereas the velocity gauge results were

obtained using the Heaviside function vector field Eq. (18) with the same field strength. The

two results show nearly perfect agreement, indicating equivalence of the two gauge choices

in the linear response regime.

Finally, Fig. 1(c) compares the same oscillator strength distribution calculated from the

dipoles and electronic velocities (see Eqs. (17) and (20), respectively). Except for the ficti-

tious peak around ω ≈ 0 appearing in the velocity spectrum, these two results show good
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Figure 1: Optical absorption spectrum of the CH4 molecule. Panel (a) shows the oscillator

strength distribution of the CH4 molecule obtained with the LDA xc potential and aug-cc-

pVTZ43 basis set. The solid green line shows the RT-TDDFT result, whereas the dotted

red line shows the LR-TDDFT result. Panel (b) shows the RT-TDDFT spectra calculated

using the velocity gauge (VG, solid green line) and the length gauge (LG, dotted blue line)

formulations. Panel (c) compares the velocity (solid green line) and dipole (dotted black

line) spectra. The inset shows the behavior of the spectra around ω = 0.
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agreement. We attribute the appearance of the fictitious peak to the nature of the velocity

spectrum calculated from Eq. (20)46. The consistency between the results obtained from the

length and velocity gauges validate our RT-TDDFT implementation.

3.1.2 Optical absorption spectra of solids

We next investigate the optical response of fully extended periodic systems. As a prototypical

example, we examine a two-dimensional hexagonal boron nitride (h-BN) layer with a lattice

constant of a = 2.504 Å47 and a vacuum layer of 20 Å. We used a 15 × 15 × 1 Monkhorst-

Pack48 mesh for the Brillouin zone sampling, and the VWN42 formulation of the LDA31 xc

functional. The GTH separable dual-space pseudopotential36 and the double-zeta polarized

basis set adapted for DFT calculations with the GTH pseudopotential (gth-dzvp)24 was used.

To enhance the computational efficiency of our calculations, the Gaussian and Plan-Wave

density-fitting scheme28, termed the fast Fourier Transformation (FFT) density-fitting in

PySCF program, was applied. In calculating the dynamical conductivity σ(ω), we followed

the procedure in Ref. [ 49] and introduced a damping factor of the form e−γt with γ = 0.5

eV/ℏ, to reduce numerical error due to the finite time propagation.

To further validate our implementation, we compute the dynamical conductivity of h-

BN and compare it with Ref. [ 49]. Figure 2 shows the frequency-dependent conductivity,

σ(ω), calculated from the real-time response of the system to a weak step-function vector

field Eq. (18) with F0 = 0.001 a.u. and n in the x direction. Our calculation shows that

our computed spectrum agrees relatively well with Ref. [49], where we attribute the minor

differences to the basis set and k-point sampling used in our calculations (Ref. [ 49] used a

real-space grid and sampled over 32 × 32 k-points). As such, the agreement between our

RT-TDDFT calculations with the LDA result of Ref. [49] validates our RT-TDDFT PySCF

implementation for periodic systems.

3.2 Real-time dynamics

With our PySCF RT-TDDFT implementation validated, we next discuss real-time dynamics

in strong external fields. This section examines laser-induced charge transfer dynamics for a
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Figure 2: Dynamical conductivity σ(ω) of monolayer h-BN. The solid red line was obtained

from our RT-TDDFT PySCF implementation, and the dashed gray line was obtained from

Ref. [49].

two-dimensional periodic system whose unit cell consists of a (ZnO)4 molecular cluster and

a 4×4 monolayer graphene sheet, which is a prototypical example of excited-state dynamics

between a (non-periodic) molecule and an extended periodic system [9].

Figure 3 shows our simulation cell, which consists of a 4× 4 supercell of graphene and a

(ZnO)4 cluster. The figure was created using the Avogadro software53. The graphene sheet

is held fixed with an inter-carbon distance of rCC = 1.42 Å, whereas the nuclear configuration

of (ZnO)4 cluster was first optimized by density functional tight binding (DFTB) calculations

using the dftb+ toolkit54 with the 3ob parameter set55, then shifted towards the graphene

sheet by 1 Å. In this geometry, the Zn atom closest to the graphene sheet was 1.71 Å above

the sheet. Our calculations utilized a single k-point. To reproduce the gapless excitation

spectrum of graphene, we shifted the k-point origin byK0 ≡ (4π
3a
, 0, 0), where a (= 2.4596 Å =

4.648 a.u.) is the graphene sheets lattice constant. We applied a Fermi-Dirac distribution

function corresponding to T = 1000 K for smearing the metallic Fermi surface. We used

the Perdew, Burke, and Ernzerhof33 GGA xc functional and the single-zeta molecularly
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Figure 3: Geometry of our simulation cell consisting of a (ZnO)4 molecular cluster and a

4×4 periodic graphene sheet. The purple, red, and dark gray spheres represent zinc, oxygen,

and carbon atoms, respectively.

optimized (molopt) basis set (gth-szv-molopt-sr)24 for our RT-TDDFT calculation. Eq. (10)

was integrated with a time step of ∆t = 6 as, and we applied an ultrashort trapezoidal

pulse of width τp = 20 fs, with an ascending/descending time of 5 fs, shown in the inset

of Fig. 4(a). The wavelength and peak intensity of the pulse was set to λ = 360 nm and

I = 4.0×1013 W/cm2, respectively. We chose λ = 360 nm as our excitation energy since the

local density of states of this hybrid system indicates that a UV photon with this wavelength

would cause an excitation from the valence to the conduction band.

Figure 4 shows the electronic charges time evolution on the (ZnO)4 cluster. We considered

a dividing plane 1.0 Å above the graphene sheet, z = z0 with z0 = 1.0 Å, and defined the

total electric charge Q above the dividing plane as Q(t) ≡
∫
z≥z0

dz
∫∫

dxdy ρ(r, t), which

represents the total number of electrons on the (ZnO)4 cluster. Panel (a) plots the time

derivative dQ/ dt as a function of time. The inset in panel (a) plots the electric field of the

laser pulse, which confirms that the oscillation of the electric charge on the (ZnO)4 cluster is

directly correlated with the oscillations of the laser field. To confirm these effects, Fig. 4(b)

plots the summation of the Mulliken charges of Zn, C, and O represented by the blue,

green, and red lines, respectively. The green line represents the summation of the Mulliken
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Figure 4: (a) Rate of change (dQ/dt) of the total electronic charge Q above the z = 1.0 Å

dividing plane. The inset shows the electric field of the applied laser pulse. (b) Mulliken

charges as a function of time. The blue, green, and red lines track the total summation of

the Mulliken charges on the zinc, carbon, and oxygen atoms, respectively.

charges on the carbon atoms for the entire graphene sheet. Since the total charge of the

system is constant, additional charges on the carbon are provided by the (ZnO)4 cluster.

The oscillations of the Mulliken charges on the Zn and O atoms are partly due to charge

transfer inside the (ZnO)4 cluster; however, the oscillations of charge on the carbon atoms

arise from charge transfer between the (ZnO)4 cluster and the graphene sheet. To show the

spatial distribution of the electronic density at an intermediate time t = 11.22 fs, Fig. 5

plots the charge-density difference, ∆ρ(r, t) ≡ ρ(r, t)− ρ(r, 0), which shows dynamic charge

transfer between the (ZnO)4 cluster and periodic graphene sheet.
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Figure 5: Dynamic charge transfer in a system composed of a (ZnO)4 molecular cluster and

a periodic graphene sheet. The charge density difference was calculated between t = 0 and

11.22 fs, and the green and purple isosurfaces are plotted for ∆ρ = ±0.04 a.u.

4 Discussion and Conclusion

In this work, we have implemented a new RT-TDDFT capability in the open-source Pyhton-

based PySCF software package for calculating excited-state dynamics of periodic systems.

Our implementation uses Gaussian basis functions in a velocity gauge formalism and can be

applied to periodic surfaces, condensed-phase, and molecular systems. We have validated

our custom implementation by computing optical properties of both molecular and extended

periodic systems with explicit time-dependent calculations of ultrafast dynamics in these sys-

tems. Our first validation test on an isolated CH4 molecule shows that our velocity-gauge

oscillator strengths agree well with the LR-TDDFT and length-gauge TDDFT results. To

validate our implementation for periodic systems, we calculated the dynamical conductiv-

ity of a periodic h-BN sheet, which agrees with previously published benchmarks. Taken

together, our calculations show a close agreement between LR- and RT-TDDFT, different

gauge choices, and oscillator strength distributions obtained from our time-dependent dipoles

and electronic velocities. These detailed consistency tests validate our new RT-TDDFT im-

plementation for periodic systems in the open-source PySCF software package.

With these validation tests completed, we then examined real-time, laser-induced charge-

transfer dynamics for a combined (ZnO)4 molecular cluster and graphene system. These

results provide real-time mechanisms of charge transfer dynamics, which cannot be obtained
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from conventional linear response TDDFT approaches. Furthermore, our femtosecond laser-

induced dynamics calculations for this system demonstrates that our implementation can be

used to probe real-time electron dynamics in periodic systems, which is a new capability not

previously available in the PySCF software package. Looking forward, we anticipate that

this new capability could be used by both users and developers of RT-TDDFT for probing

excited-state dynamics of periodic systems. Due to the relative simplicity and widespread

use of the Python language, our RT-TDDFT implementation could be easily used/extended

to other chemical and material systems, which will be incorporated in a future release of

PySCF.
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