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Abstract

Reaction additives play a significant role in controlling the reactivity and outcome
of chemical reactions. For example, a recent high-throughput additive screening
identified a phthalimide ligand additive Ni-catalysed photoredox decarboxylative
arylations. This discovery enabled a 4-fold yield improvement by stabilising oxida-
tive addition complexes and breaking up deactivated catalyst aggregates. However,
such large-scale screenings are currently inaccessible to most research groups.
This work demonstrates how these discoveries can be made under much lower
experimental budgets using Bayesian optimisation. We consider a unique reaction
screening setting with 720 additives which forces us to go beyond simple one-hot
encoding of the reaction components. We investigate a range of molecular represen-
tations and demonstrate convincing improvements over baselines. Our approach is
not limited to Ni-catalysed reactions but can be generally applied to, for example,
achieving yield improvements in diverse cross-coupling reactions or unlocking
access to new chemical spaces of interest to the chemical and pharmaceutical
industries.

1 Introduction

Artificial intelligence holds the promise to accelerate chemical sciences1–3. In the last decade,
we witnessed ground-breaking advances in machine learning for de novo molecular design4–8,
synthesis planning9–15, and reaction outcome prediction16–23. More recently, sequential model-based
optimisation algorithms have been investigated to efficiently find optimal conditions for chemical
reactions24–32. As demonstrated in the space of chemical reactions by Shields et al. 29 , Bayesian
optimisation (BO) is particularly well suited for trading exploration and exploitation in the low data
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Figure 1: A visualisation of Bayesian optimisation for additive screening. Starting from the HTE
dataset33, we propagate the data through the reaction encoder to obtain suitable reaction representa-
tions. Using these representations, we organise the latent space and select the initial data points to set
up the Gaussian process surrogate model. The BO loop then runs for a selected number of iterations
during which we reach the global optimum in terms of the highest yield.

regime. Most BO studies report one-hot encodings (OHE) of the reaction components, where no
chemical information is used, to perform remarkably well28,32 even compared to more elaborate
quantum mechanical (QM) descriptors29. While small, OHE still incorporate enough information for
BO to read and exploit, whereas more complex representations bring additional noise.

In this work, we apply BO to explore an additive screening dataset containing 720 additives33. The
dataset consists of four plates with different Ni-catalised photoredox decarboxylative arylations
reactions. Additives are key for altering the reactivity and outcome of chemical reactions34,35. While
Prieto Kullmer et al. 33 used those additives through high-throughput experimentation, not all labora-
tories have access to robotic platforms. Still, synthetic chemists could benefit from efficiently finding
the best additives through BO, i.e. improving a reaction without having to run all possible reactions
(Figure 1). Compared to existing applications of BO to chemical reactions (e.g., Buchwald-Hartwig
reactions with 44 OHE dimensions36), the additive dataset is substantially more challenging. Firstly,
using OHE is not suitable as it has a dimensionality of 720, with only one datapoint corresponding
to each additive. Indeed, applying BO to this representation fails to improve over random search.
Secondly, the additives are structurally more diverse than the components screened in other HTE
studies, which makes the computation of human-labelled local QM descriptors more laborious. We
overcome those limitations by using reaction fingerprints as a representation and a maximal diversity
initialisation scheme. Using as little as 5/10/20 initialisation reactions, we demonstrate that BO
efficiently finds high-yielding reactions in less than 100 single-point optimisation iterations.

2 Methods

2.1 Reaction representations

The most straightforward reaction representation is the OHE encoding of the individual reaction
components. For instance, if the design space contains 15 aryl halides, 23 additives, 4 catalysts, and 3
bases36, the components present in a reaction would be represented by a 1 in a binary reaction vector,
and as a 0 otherwise. More chemically meaningful representations are mixtures of molecular and
atomic QM descriptors as used by Ahneman et al. 36 and Shields et al. 29 . However, the local atomic
QM descriptors are limited to molecules with similar functional groups. Hence, those representations
are not well suited for the additive screening dataset33. Instead, we could represent reactions by
isolating the additives and encoding them using molecular fingerprints37–39. Because the additives are
the only varying part of the chemical reaction in our dataset, they uniquely represent each data point.
The optimisation process remains the same, but by separating them from the rest of the reaction, we
lose information intertwined in the reaction components.
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Simplified molecular-input line-entry system (SMILES)40 have emerged as one of the leading meth-
ods of representing the chemical space of diverse molecules and reactions. Using a molecular graph
representation of the different components in a reaction, they impose a highly informative reaction
depiction suitable for advanced machine-learning models based on textual representation41. Addi-
tionally, their easy conversion to a vectorised form makes them appealing to various computational
models42–44. For instance, the reaction fingerprint by Schneider et al. 42 is computed by subtracting
the molecular fingerprints37,38 of the reactants from the ones of the products. More recently, Schwaller
et al. 43 derived data-driven reaction fingerprints directly from the reaction SMILES (RXNFP) and
Probst et al. 44 introduced the differential reaction fingerprint (DRFP), which is based on the symmet-
ric difference of two sets containing the circular molecular n-grams generated from the molecules
listed left (reactants and reagents) and right (products) from the reaction arrow. We use the RXNFP
and DRFP in our experiments.

2.2 Bayesian optimisation

Many problems in scientific discovery may be framed as global optimisation problems of the form

x⋆ = argmax
x∈X

f(x), (1)

where f : X → R is a function over a design space X . In the case of molecular representations, the
design space is discrete and structured, containing graphs, fingerprint vectors and strings. Equation 1
is a black-box optimisation problem as we do not know the analytic form of f or its gradients and
may only query f pointwise. Furthermore, evaluations of f require laboratory experiments and
so are high-cost and time-consuming. Lastly, our observations of f are subject to a (potentially
heteroscedastic45) noise process. BO is an adaptive strategy that has recently emerged as a powerful
solution method for black-box optimisation problems with proven success in applications including
machine learning hyperparameter optimisation46, chemical reaction optimisation29, protein design47,
and as a subcomponent in AlphaGo48. The Appendix A.4 provides pseudocode for BO and more
details on the algorithm.

2.3 Data initialisation

The BO algorithm relies on sample data to initialise its surrogate model and accelerate the discovery
of the needed outcome. Using Gaussian processes as the surrogate models allows us to work in
the low data regime due to the well-calibrated uncertainty estimates they provide. See49 or50 for a
description of Gaussian process in the context of structural inputs. However, the common machine
learning doctrine where more data brings more clarity still stands. When initiated with more data
points, the surrogate model has a better overview of the underlying function of the data, so the
uncertainty measures are more precise. On the other hand, the chemist’s incentive is to start the
optimisation process early and preserve the time needed for running reactions in the laboratory. These
two viewpoints collide, and there is a need for a balancing solution. Instead of randomly choosing
experiments for initializing the surrogate model, we explore our search space of reactions and select
a diverse sample of points achieving good coverage of the space. In particular, we select a random
initial point in the latent space and look for its matching pair in terms of the maximal distance
(i.e., Jaccard51). We repeat the process for the identified least similar pair, ensuring we removed its
previous match from the distance matrix. This policy allows us to diversify the initial sample of data
points and expand the set coverage.

3 Results & Discussion

Our results show that utilizing BO substantially accelerates the discovery of the optimal additives for
the highest yield improvement. Most importantly, we can achieve these results with novel priors like
the DRFP, an NLP-inspired reaction fingerprint44.

Figure 2 provides an overview of BO performance compared to the random search on different
reaction plates. We used the first reaction plate as a testing ground for model configurations and
their influence on the yield. We ran the experiments on the remaining plates and demonstrated the
compelling influence of BO for finding the best reaction conditions. While both DRFP and RXNFP
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(a) Reaction plate 1 (b) Distribution of the selected points (c) Data initialisation

(d) Reaction plate 2 (e) Reaction plate 3 (f) Reaction plate 4

Figure 2: An overview of the results with different reaction representations. Figures a, d, e, f show
the optimisation path towards the optimal parameters with mean observed value at each iteration over
twenty different-seed trials (Gaussian Process surrogate model, 10 initialisation points). The shaded
regions represent the 95% confidence interval. Figure b shows the distribution of the selected yield
between random and BO search. Figure c depicts the latent space of DRFP reaction representations
using principal component analysis and emphasises the selected initial data points together with the
global optimum.

representations perform well on the first reaction plate, there is an evident divergence in their success
when employed on the remaining reactions. Note that DRFP achieves the best results over all reaction
plates. More importantly, we clearly differentiate the path that the BO with DRFP takes to reach
the optimum, in contrast to the random search. While we cannot equate a chemist’s intuition with
random exploration, relevant research29 acknowledges that scientists show bias due to their expert
knowledge. BO algorithms do not suffer from this favouritism and analyse the search space efficiently,
offering practical suggestions to chemists. Figure 2b shows us that, on average, BO models choose
parameters with higher output over all iterations compared to the random search. The distribution of
BO-selected values is centred around the larger yield increase.

We define a top-n neighbourhood as a set of n reactions with the highest yield for each reaction
plate. Searching for the best reaction inside this set is the main goal of the optimisation process.
However, it is equally important to uncover a variety of reactions that bring a comparable yield
improvement. Table 1 displays the percentage of the top-n yield reactions discovered over all twenty
trials for different reaction plates (10 initialisation reactions). A more comprehensive table with
additional parameters is presented in the A.4. The table shows that BO performs much better than
the random search. The results suggest that BO can help chemists discover relevant conditions for
reaction optimisation even in challenging settings such as this additive design space.

Reaction plate Optimisation top 1 [%] top 3 [%] top 5 [%] top 10 [%]

Plate 1 BO 55 61.67 50 38
Random 25 18.33 15 16.5

Plate 2 BO 65 61.67 58 39
Random 5 10 15 14.5

Plate 3 BO 95 95 76 67
Random 10 10 10 18

Plate 4 BO 80 76.67 76 54
Random 10 20 19 19.5

Table 1: [%] of the top n-highest yields discovered during the 100 iterations of optimisation, starting
from the 10 initial data points.
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4 Conclusion

Bayesian optimisation is a powerful optimisation method that steers the exploration of the search
space towards promising regions. It is especially valuable in the domain of chemistry as it saves
time and resources and allows uncovering of unexplored but high-yielding chemical reactions29. The
main goal of this paper was to determine whether BO provides insights into a challenging additive
screening HTE dataset33, where OHE and QM descriptors are not well suited. We demonstrated that
exploiting BO using an elaborate initialisation scheme and reaction fingerprints efficiently reveals key
additives that lead to yield improvement in chemical reactions.
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A Appendix

A.1 Bayesian optimisation algorithm

The BO algorithm consists of two core components, a surrogate model and an acquisition function.
The surrogate is typically a probabilistic model such as a Gaussian process52 that captures the prior
belief about the nature of f(x). The uncertainty estimates afforded by the surrogate are crucial
in representing knowledge about the unobserved values of the black-box function fx and act to
inform further data collection via a policy known as an acquisition function. The acquisition function,
α(f(x),D), is responsible for selecting the next data point on a given iteration of the BO algorithm.
The acquisition function achieves this by leveraging the uncertainty estimates of the surrogate to trade
off between exploration and exploitation in the black-box objective f(x). The acquisition function
should be cheaper to evaluate relative to the black-box and easy to optimise53–55. Modifications
to classical BO surrogates, which typically assume design spaces, X that are compact subsets of
Rd, are necessary to operate on molecular spaces. We utilise such models in this work49,50,56. The
pseudocode for BO is given in Algorithm 1.

Algorithm 1 Bayesian optimisation (BO)

input: initial dataset D ▷ possibly empty
repeat
select x by optimizing the acquisition function α

x← argmax
x∈X

α(x;D)

y ← Evaluate(x) ▷ evaluate the black-box at the selected input
D ← D ∪ {(x, y)} ▷ update dataset and surrogate

until termination condition ▷ e.g. evaluation budget exhausted
return D

A.2 Data preprocessing

We extracted the reactions on the four Ni-catalysed photoredox decarboxylative arylations reaction
plates from the supplementary information of the study by33. We combined all columns containing
molecular SMILES to form a reaction SMILES. The reactants and reagents were added on the left
side of the “»” and the products on the right side. We canonicalised the reactions with RDKit57.
When a reaction with the same additive was run multiple times within a plate we averaged the values.
Prieto Kullmer et al. 33 approximated the yields using “UV210_Prod AreaAbs” and estimated the
yield improvements by dividing through a baseline reaction without additive.
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A.3 Reproducibility

We implemented the code in Python. We used PyTorch58, PyTorch Lightning59, Gauche50 and
BoTorch60. Different trials were set using a set of seeds ranging from 1 to 20 with PyTorch
Lightning’s seed_everything function. The surrogate model used is a Gaussian process implemented
with SingleTaskGP from Botorch. We used the Tanimoto kernel49,61 from Gauche. Reaction
representations were defined with DRFP44, RXNFP43 and CDDD39 libraries. The acquisition
function is UpperConfidenceBound from BoTorch. We tested beta values [0.1, 0.5, 0.9]. The results
presented in the main paper use UpperConfidenceBound with beta equaling to 0.1. We will release
the code in open source.

A.4 Additional results for initialisation sample sizes

The Table A.4 shows additional results for different initialisation sample sizes.

Reactions Init size Optimisation Beta top-1 [%] top-3 [%] top-5 [%] top-10 [%]

Plate 1

5 BO 0.1 35 40 35 33
0.9 45 51.67 44 36.5

Random 5 13.33 14 15.5

10 BO 0.1 55 61.67 50 38
0.9 55 61.67 50 37.5

Random 20 20 20 18

20 BO 0.1 10 10 9 15
0.9 15 15 14 16.5

Random 10 20 18 16.5

Plate 2

5 BO 0.1 33.33 40.73 47.78 36.11
0.9 25 33.33 43 34

Random 10.53 10.53 20 18.95

10 BO 0.1 65 61.67 58 39
0.9 55 50 48 33

Random 5 10 15 14.5

20 BO 0.1 55 43.33 45 32
0.9 55 46.67 47 33.5

Random 10.53 10.53 20 18.95

Plate 3

5
BO 0.1 60 58.33 51 47

0.9 60 61.67 53 48
Random 15 10 15 17.5

10
BO 0.1 95 95 76 67

0.9 35 26.67 25 28
Random 10 10 10 18

20
BO 0.1 75 75 60 53.5

0.9 75 75 61 54
Random 25 18.33 13 20

Plate 4

5
BO 0.1 80 46.67 40 28

0.9 80 46.67 40 28.5
Random 10 21.67 16 13.5

10
BO 0.1 80 76.67 76 54

0.9 50 50 49 40
Random 10 20 19 19.5

20
BO 0.1 65 28.33 21 24.5

0.9 60 26.67 20 24.5
Random 20 26.67 22 18.5

Table 2: [%] of the top n-highest yields discovered during the 100 iterations of BO with different
initial sample size and beta values using DRFP fingerprints. Comparison with the random search.
Lower beta values correspond to data exploitation while higher values define an exploration strategy.
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