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ABSTRACT: High-throughput experimentation (HTE) is an increasingly important tool in reaction discovery. 
While the hardware for running HTE in the chemical laboratory has evolved significantly in recent years, there 
remains a need for software solutions to navigate data-rich experiments. Here we have developed phactor™, a 
software that facilitates the performance and analysis of HTE in a chemical laboratory. phactor™ allows 
experimentalists to rapidly design arrays of chemical reactions or direct-to-biology experiments in 24, 96, 384, or 
1,536 wellplates. Users can access online reagent data, such as a chemical inventory, to virtually populate wells 
with experiments and produce instructions to perform the reaction array manually, or with the assistance of a 
liquid handling robot. After completion of the reaction array, analytical results can be uploaded for facile 
evaluation, and to guide the next series of experiments. All chemical data, metadata, and results are stored in 
machine-readable formats that are readily translatable to various software formats. We also demonstrate the use 
of phactor™ in the discovery of several chemistries, including a light-enabled reagent-free sp2–sp2 deaminative–
decarboxylative carbon–carbon coupling and a low micromolar inhibitor of the SARS-CoV-2 main protease. 
Furthermore, phactor™ has been made available for free academic use in 24 and 96 well formats via an online 
interface. 
 

 
INTRODUCTION 
Miniaturized high-throughput experimentation (HTE) 
has emerged as an accessible, reliable, economical, 
and environmentally friendly technique for the rapid 
discovery of new reactivities.1-33 Curated HTE data 
proves to be increasingly valuable for predictive 
models,15-20 While in experimental practice, the 
community has gravitated towards liquid handling 
techniques in glass shell microvials with tumble stir 
dowels, or in plastic 384 or 1,536 wellplates1,4-14, a 
standard for HTE data handling has yet to be 
established. The organizational load required to perform 
a simple 24-well reaction array is generally manageable 
by repetitive notebook entries or with spreadsheets, yet 
managing multiple reaction arrays in a single day, or 
running ultraHTE in 1,536 wellplates,1 is challenging 
without information management software. Moreover, 
no readily available electronic lab notebook (ELN) can 
store HTE details in a tractable manner21,22 or provide a 
simple interface to extract data and results from multiple 
experiments simultaneously.23,24 To continue developing 
HTE research and position data outputs for machine 
learning studies, detailed reaction data must be easily 
accessible for and standardized rapid extraction and 
analysis.25-27 

With these issues in mind, we developed the 
software phactor™ to streamline the collection of HTE 
reaction data. Our primary objective was to develop a 
robust yet generalizable HTE workflow solution that  

 
 

captures the nuances of chemical experimentation while 
reporting data in a standardized, machine-readable 
format. phactor™ minimizes the time and resources 
spent between experiment ideation and result 
interpretation. This enables creativity by freeing up time 
otherwise used thinking about experiment logistics, 
facilitates reaction discovery and optimization, and 
serves as a tool to bolster the amount of available 
reaction data reported in a standardized format. We 
have provided phactor™ as a free web service to the 
academic community, which can be accessed at 
https://phactor.cernaklab.com.  

The workflow of a typical high-throughput 
experiment involves design of the reaction array, 
preparation of reagent stock solutions, dosing of stock 
solutions according to the reaction array recipe (either 
by hand or with robotics), analysis of reaction outcome, 
followed by visualization and analysis of data and 
documentation of results. A standardized reaction 
template classifies substrates, reagents, and products 
(Figure 1A). 



 
Figure 1. (A) Anatomy of a reaction as encoded by 
phactor™. (B) High-level software workflow of phactor™. 
Reaction arrays are designed from chemical inventories 
and reaction informatics. Resultant data is stored in 
delimited text (CSV) or in a relational database (SQLite3). 
phactor™ can convert results to Open Reaction Database 
(ORD)20 and Chemical Description Language (XDL)48 and 
is readily compatible with optimization programs such as 
EDBO+46 and LabMate.ML.47 (C) Workflow of phactor™. 
Once the reaction array is designed, phactor™ provides 
human readable or machine instructions to execute the 
dosing manually or robotically. (D) phactor™ supports 
custom volumes allowing for reaction arrays to be 
performed at any scale. At minimum, the hardware needed 
to execute a reaction array is an autopipette and an array 
reactor block. (E) phactor™ facilitates the design and 
execution of ultraHTE in 1,536 wellplates.  
 
 
Interconnecting experimental results with online 
chemical inventories through this shared data format 
creates a closed-loop workflow for HTE-driven chemical 
research (Figure 1B) and enables rapid reaction array 
design and analytics. While developing phactor™, we 
sought to maximize the automation of data movement 
and processing. Recognizing the rapidly accelerating 
chemical research software ecosystem,28-48 the 
philosophy behind phactor™’s data structure was to 
record experimental procedures and results in a 

machine-readable yet simple, robust, and abstractable 
format to naturally translate to other system languages. 
As such, the inputs and outputs of phactor™ can be 
procedurally generated or modified with basic Excel or 
Python knowledge to interface with any robot, analytical 
instrument, software, or custom chemical inventory 
containing metadata such as reagent location, 
molecular weight, CAS number or SMILES string (e.g., 
the organophosphorous ligand platform Kraken).49 
Examples of interfacing phactor™ outputs with ORD,20 
XDL,48 or EDBO+46 are given in the Supporting 
Information. 

The event workflow of a typical phactor™ 
experiment is shown in Figure 1C. The user selects 
desired reagents from the inventory for automatic field 
population or enters specific reagent entries manually, 
such as for a custom substrate. Once all relevant 
chemicals are selected, the reaction array layout is 
designed automatically or manually, as the user prefers. 
Reagent distribution instructions are generated to be 
executed either manually or by an interfacing liquid 
handling robot. Last-minute changes in the face of 
unforeseen circumstances during reaction setups, such 
as poor chemical solubility, chemical instability, or the 
need to premix reagents before dosing can be made at 
any time. Stock solutions are prepared in vials or 
wellplates and distributed to their respective locations on 
the reaction wellplate. Once the reactions are complete, 
they are quenched and analyzed. Any data with a well 
location map can be uploaded. This allows both data on 
reaction performance (e.g., UPLC-MS conversion) and 
biological assay results (e.g., bioactivity data) to be 
viewed in concert. 

The workflows for executing HTE can vary 
depending on available equipment and desired 
throughput of the experiment. phactor™ incorporates 
these parameters into its user interface to ensure a 
consistent workflow experience agnostic of hardware 
capabilities (Figure 1D). Examples herein demonstrate 
phactor™ integrated with the Opentrons OT-2 liquid 
handling robot for experiments of 384-well throughput or 
less, and the SPT Labtech mosquito® robot for 1,536-
well ultraHTE (Figure 1E). Regardless of 
instrumentation or throughput, all results are stored in 
the same format, facilitating analysis of results across 
multiple experiments. Reaction discovery and library 
synthesis campaigns utilizing standard 24-, 96-, 384- 
and 1,536-well experiments are described in detail.50-55  
 
RESULTS AND DISCUSSION 
 
Phactor™ facilitates the discovery of new reactivity. Our 
lab is broadly interested in novel amine-acid coupling 
reactions50,51,53-55 and particularly amine-acid C–C 
coupling reactions53,55. As part of our studies, we have 
been exploring mild benzoic acid decarboxylation 
methods.56-60 Using phactor™, we discovered very 
simple reaction conditions for a decarboxylative–
deaminative amine–acid sp2–sp2 C–C coupling reaction 
between acid 1 and p-toluidine, activated as its 
diazonium salt (2), to give biaryl product 3 when carried 
out with UV irradiation in DMSO for 18 hours.  

Ultimately 424 experiments were performed 
over a series of 24 and 96-well reaction arrays to explore 
this novel catalyst-free reactivity (Figure 2A). For each 



reaction array, stock solutions were created manually 
according to the phactor™ recipe, and the appropriate 
volume was dispensed manually into glass shell 
microvials in each solution’s designed location. 
Parylene-coated stir dowels were added to each vial, 
and the reaction array was sealed in an aluminum block 
and then stirred at room temperature for 18 hours. Once 
the reaction was complete, aliquots of each well were 
added to an analytical plate containing one molar 
equivalent of caffeine solution in acetonitrile for UPLC-
MS analysis. By utilizing high-throughput reaction 
informatics, the output files provided by phactor™ for 
each experiment were collated and processed for user 
visualization. Isoquinolines 1, 4, 5, and 6, and diazonium 
salts 2, 7, 8, 9, 10, and 11 produced appreciable yields 
(measured by product/internal standard integrations) in 
methanol, DMSO, and a 1:1 mixture of methanol and 
DMSO (Figure 2B). An array performed in the campaign 
is shown in Figure 2C, where the four acids and six 
diazonium salts in Figure 2B were irradiated in methanol 
under UV light for 18 hours. An interactive heatmap that 
stacks the UPLC-MS chromatograms from each well in 
a separate 96-well experiment from the campaign is 
shown in Figure 2D. Timepoints can be selected to 
identify mass signals, reaction inputs, expected 
products, and UV intensities by simply uploading the 96 
raw UPLC data files. Kernel density estimate plots 
grouped by reagent and irradiation treatment (Figure 
2E) reveal that blue light irradiation modestly 
outperforms both UV and white light irradiation and that 
the 1:1 mixture of methanol and DMSO performs better 
than DMSO or methanol individually when considering 
average yields, but pure methanol generated the highest 
yielding products. Scatter plotting shows blue light 
having a slight edge in reaction performance, although 
white and UV light do perform well (Supporting 
Information). The conditions producing the highest yield 
between acid 1 and diazonium salt 2 were found to be 
methanol and blue light irradiation, which was scaled up 
to 0.1 mmol scale and yielded 50% of 3.  

 
Figure 2. (A) Standard conditions for catalyst-free light-
enabled decarboxylative–deaminative sp2–sp2 C–C 
coupling. (B) Sampling of substrates explored. (C) Screen 



designed in phactor™ towards the development of the 
reactivity. (D) Interactive UV heatmap generated from the 
UPLC-MS data of a 96-well reaction array in the discovery 
campaign. (E) Kernel density estimate plots generated from 
phactor™. Model substrates 1 and 2 performed best, 
followed by other diazoniums with electron-donating 
substituents. 
 
 
Experimental Analysis. Diverse chemistries 
discovered with the aid of phactor™ are shown in Figure 
3. Figure 3A shows the discovery of a deaminative aryl 
esterification.50,51 In the reaction array design, an amine, 
activated as its diazonium salt (2), a carboxylic acid (12), 
one of three transition metal catalysts, with or without 
silver nitrate as an additive, and one of four ligands were 
to be added to each reaction well in acetonitrile, then 
stirred at 60 ºC for 18 hours. phactor™ automatically 
designed the reagent distribution recipe by splitting the 
plate into a simple four-row and six column multiplexed 
array. At competition, a solution containing one molar 
equivalent of caffeine was added to each well as an 
internal standard. An aliquot of each reaction was 
transferred to a plastic plate, then diluted with 
acetonitrile for UPLC-MS analysis of the desired ester 
product (13). UPLC-MS output files were analyzed by 
the commercial software Virscidian Analytical Studio, 
which provided a csv file containing peak integration 
values for each of the 24 chromatographic traces. This 
file was fed into phactor™ to record the experimental 
outcome and produce the heatmap shown in Figure 3A. 
Analysis on phactor™ indicated an 18.5% assay yield 
using 30 mol% CuI and AgNO3, and these specific 
conditions were triaged for further study.  

In the example of Figure 3B, we optimized the 
penultimate step in our synthesis of umifenovir,52 an 
oxidative indolization reaction between 14 and 15 to 
produce 16. Inspired by the conditions of Glorius,61 a 
reaction array was performed using copper catalysts 
and ligand/additive combinations. Four copper catalysts: 
cuprous iodide, cuprous bromide, tetrakis(acetonitrile) 
copper(I) triflate, or cupric acetate, at 20 mol% were 
distributed into the four rows while combinations of 

magnesium sulfate (0.0 equiv or 1.0 equiv) with 2-(1H-
tetrazol-1-yl)acetic acid (L1), or 2,6-
dimethylanilino(oxo)acetic acid (L2) at 40 mol% were 
distributed into the columns as DMSO solutions, with 3.0 
equivalents of  cesium carbonate added to every well as 
a suspension in DMSO. The reactions were manually 
arrayed in a glovebox, sealed, and stirred at 55 ºC for 18 
hours. Well B3 (copper bromide with L1 and no 
magnesium sulfate) was found to perform best, and a 
0.10 mmol scale-up reaction produced desired indole 16 
in 66% isolated yield. 

In Figure 3C, the allylation of furanone 17 or 
furan 18 by allylating reagents 19 or 20 was 
investigated. For each combination of nucleophile and 
electrophile, one of three ratios of Pd2dba3 to (S,S)-
DACH-phenyl Trost ligand L3 loadings were added, 
followed by the addition or omission of potassium 
carbonate as a base. Each reaction was run in toluene 
for 24 hours at room temperature. The reactions were 
quenched then analyzed by UPLC for conversion and 
selectivity. Multiplexed pie charts generated by 
phactor™ reveal the conditions of well D3, with a 2:1 
palladium catalyst to ligand loading and no base 
generated the desired γ-regioisomer with the greatest 
selectivity, along with α-allylation and its olefin isomer 
when 18 was used (see Supporting Information). 
 In Figure 3D, an organocatalyzed asymmetric 
Mannich reaction between aldehyde 23, p-anisidine 
(24), and ketone 25 was optimized via solvent and 
catalyst reaction array and analyzed by TLC. One of six 
chiral secondary amine catalysts C1 - C6 (see 
Supporting Information) at 20 mol% loading was added 
to the three starting materials, and the reaction was run 
in one of four different solvents: DMSO, THF, 
acetonitrile, or toluene. After 24 hours at room 
temperature, the reaction array was quenched and 
analyzed yielding a bright fluorescent spot at Rf value 
0.4. Well A3 was scaled up with slight modification to 
confirm the fluorescent compound as undesired 
quinoline product 27 in 30% isolated yield (60% to 
limiting reagent 23), derived from two equivalents of 
aldehyde 23.



 
Figure 3. Specific examples of chemistries designed and discovered using phactor™. The reaction array design and 
results are shown here as displayed on phactor™. Product/internal standard ratios are calculated using the observed 
UV-derived peak area, while assay yields account for differences in product absorptivity by calibrating to authentic 
samples of products. See Supporting Information for details. (A) Preliminary esterification hit leading to publication.51 
(B) Optimized oxidative indolization conditions towards the synthesis of umifenovir.52 (C) Allylation catalyst/ligand 
concentration ratio and base reaction array analyzed by conversion and selectivity. (D) Mannich reaction optimization 
with a solvent/catalyst reaction array and analyzed by TLC, yielding in undesired product 27. 
 

 
With the software, HTE becomes an exercise in 
workflow execution, with automation of the 
organizational aspect of the experiment. This allows  
 

 
chemists to focus on the design and analysis of the 
reaction array, rather than workflow details (Figure 4). 
Figures 4A-4C displays three examples of 24-well 
experiments.



 



Figure 4. (A)-(I) Novel chemistries discovered with reaction arrays designed with phactor™. All input and output files 
used to produce reaction arrays (A)-(F) are provided via online repository in addition to all compiled HTE results in a 
machine-readable format. Reaction schemes can be found in the Supporting Information. 
 

 
Figure 4A shows an amide coupling reaction array 
performed in preparation for an ultra-high throughput 
direct-to-biology assay (vide infra), with the aim of 
producing inhibitors of the SARS-CoV-2 main protease 
(MPro).62 A screen of three anilines, two coupling agents 
HATU or DCC/HOBt and a carboxylic acid, with or 
without base, produced all desired products. Amide 28 
was produced in high conversion using HATU, DMAP, 
and DIPEA. Figure 4B and Figure 4C follow up on the 
deaminative decarboxylative sp2–sp2 C–C coupling 
described in Figure 2. Reaction array 4B screened four 
isoquinoline based acids against six diazonium salts in 
1:1 DMSO:MeOH solution under blue light irradiation, 
generating product 29. Product 30 was found when the 
corresponding acid and diazonium were treated with 
white light in 100% methanol as shown in Figure 4C. 
Figures 4D-4F contain 96-well experiments designed 
with phactor™. Figure 4D and Figure 4E show the 
results from a recently reported deaminative 
decarboxylative carbon–carbon cross coupling53 that 
generate products 31 and 32. To follow up on our initial 
report (ref. 55), the catalysts, four additives, four ligands, 
and two reductants were tested in Figure 4D, and it was 
found that 31 was afforded at 47% product/internal 
standard with NiCl2•glyme as the catalyst, 4,4’-di-tert-
butyl-2,2-bipyridine as ligand, zinc as the reductant, and  
 
 

 
lithium perchlorate as an additive.  After additional 
optimization, the reaction array in Figure 4E was run to 
test the reaction’s scope. Product 32 was afforded with 
optimal conditions of NiBr2•glyme, 4,4’-bis-
trifluoromethyl-2,2’-bipyridine, and manganese in 1:1 
dioxane:acetonitrile. Figure 4F shows the results of a 12 
ligand – eight metal catalyst screen expanding on a 
recently reported sp2–sp3 decarboxylative deaminative 
C–C coupling from an acid activated as a twisted amide 
and an amine activated as a Katritzky salt, optimizing 
the yield of model product 33.55 Figures 4G-4I show 
several ultraHTE reaction arrays. Figure 4G and Figure 
4H are two reaction arrays produced towards our aryl 
amine esterification reaction. Both reaction arrays were 
substrate scope experiments, producing compounds 
such as 34 and 35. In Figure 4G, lutidine and copper(I) 
BF4 salt tetrakis acetonitrile in benzonitrile showed good 
scope, and further optimized conditions replacing 
lutidine with collidine expands the chemistry’s scope and 
reproducibility across quadruplicate measurements as 
shown in Figure 4F. Finally, Figure 4I shows the 
chemistry results of a direct-to-biology reaction array 
towards the creation of novel SARS-CoV-2 MPro 
inhibitors, generating amides such as 36. Files needed 
for all 24 and 96 well experiments shown in Figure 4 are 
provided as examples to learn the phactor™ workflow 
as well as the layout for each of these reaction arrays 
are displayed in the Supporting Information.



Figure 5. phactor™ facilitates ultraHTE direct-to-biology campaigns. (A) Event workflow for performing ultraHTE using 



phactor™ and a Mosquito robot. (B) Design of 1,280 well amide coupling plate. 80 amines were selected to react with 
carboxylic acid 37. Eight conditions were run in duplicate for each amine. (C) Results of the amide coupling shown as 
a product/internal standard integration ratio from a 2-minute LCMS injection of each well. The Mosquito robot is utilized 
to split the size 1,536 into four size 384 plates for LCMS and bioassay analysis. (D)  Percent inhibition of SARS-CoV-
2 MPro when treated with a sample of the reaction mixture from the corresponding well. The 1,280 plate is visually 
recreated. (E) IC50 curves for three scaled up compounds chosen from the reaction array. Compounds 38-40 display a 
range of assay and inhibitory responses. 

 
Discovery of a low micromolar inhibitor of SARS-
CoV-2 MPro via direct-to-biology assay. An amide 
coupling experiment was planned based on an inventory 
of amines, largely anilines, and a tetrahydroquinoline 
carboxylic acid pharmacophore found to be a potent 
inhibitor of MPro.62 A preliminary 24-well amide coupling 
assay was performed to test the effectiveness of various 
amide conditions for the acid and anilines (see Figure 
4A and Supporting Information). A diluted aliquot from 
each well was subjected to a RapidFire™ MS binding 
assay to determine concentration-response curves.63 
Curves were found to correlate with yield and literature 
reported IC50 values were replicated utilizing this assay.  
Following an optimized direct-to-biology workflow 
(Figure 5A), amide reactions were executed with the aim 
of making diverse amides in which were directly tested 
for activity against MPro in a single experiment. Eight 
amide conditions were tested in duplicate for each of the 
80 amines, resulting in 1,280 reactions (Figure 5B). A 
key step in this workflow is the distribution of the 1,536-
well reaction plate into four 384-well analysis assay 
plates suitable for UPLC-MS or RapidFire™ analysis. As 
such, some of the wells in the 1536-well reaction plate 
were not utilized to account for the four control columns 
necessary in each of the four 384-well RapidFire™ 
assay plates to allow calculation of Z’ prime for the assay 
(0.961).64 This distribution as well as the chemical and 
biological assay results are shown in Figure 5C and 
Figure 5D. Additional data analyses comparing chemical 
yield to biological response are shown in the Supporting 
Information. We note that reproducibility is a common 
concern in HTE and ultraHTE, and analyses of repeat 
experiments are provided in the Supporting Information. 
Both chemistry and biology assays are shown to be 
consistent, with 87% and 93% of data points having less 
than 10% error in the respective assays. From these 
analyses, three amides (38, 39, and 40) were chosen for 
scale up and IC50 determination, two of which (38 and 
39) were previously unreported in the literature. 
Compound 39 was found to have a IC50 of 5.06 µM 
(Figure 5E), competitive with the best known MPro 
inhibitors in this series. Notably, scaled-up IC50 trends 
perfectly matched the percent inhibition trends obtained 
on the nanomole scale.  
 
 
 
 
 
 
 

 

 
Figure 6. phactor™ enables rapid machine learning 
analysis of multiple reaction arrays in tandem. 
Standardized output files can be rapidly merged to 
create massive datasets. (A) tSNE of all products made 
in the catalyst-free light-enabled decarboxylative–
deaminative sp2–sp2 C–C coupling detailed in Figure 2, 



colored by average yield. (B) tSNE of all products made 
in the decarboxylative–deaminative sp3–sp3 C–C coupling 
detailed in ref. 53, colored by average yield. 
 
Conclusion 
 

We present the HTE ELN phactor™, which records 
all details of the entire experiment to allow for robust 
reproduction and accelerates discovery. Furthermore, 
the details are stored in a machine-readable yet 
tractable and interpretable format using an SQL 
database to facilitate the use of downstream algorithms. 
(Figure 6) As all reaction arrays are stored in a 
centralized database, bulk statistical analysis of multiple 
reaction arrays can be performed. phactor™ provides 
an exposed API that can be used to develop interfaces 
to other robots, assays, and software. Examples of 
various integrations and code infrastructures are shown 
in the Supporting Information. We hope that phactor™’s 
ease of use and further development provides increased 
accessibility to HTE in the chemistry community. 
Registration free and non-commercial use of phactor™ 
in 24- and 96-well formats is available through 
https://phactor.cernaklab.com/. 
 
Supporting Information 
 
Experimental procedures, characterization data, copies of 
all spectral data, instructions on using the software, sample 
files, sample interfacing code, and further discussion is 
provided free of charge via the Internet at 
https://pubs.acs.org.  
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