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ABSTRACT: Free phosphaborenes (R−P=B−R) are PB analogs of alkynes and their isolation is a long-sought-after goal. Herein, 

we demonstrate that the combination of a π-donating and a π-accepting substituent with bulky flanking arene rings enables the isola-

tion of a crystalline free phosphaborene 5 at room temperature. This electron push-pull cooperation, combined with the kinetic pro-

tection, hinders its inherent tendency to oligomerize. This species features a PB double bond consisting of a conventional σ bond and 

a delocalized π bond. The lone pair of electrons at P slightly contributes to the PB bonding. Preliminary reactivity studies show that 

5 undergoes facile (cyclo)addition reactions with p-methyl benzaldehyde, p-fluoroacetophenone and carbon disulfide, the last of 

which results in facile PB double bond cleavage. Our strategy has a significant impact on the future synthesis of ambiphilic hetero-

diatomic multiply bonded main group species.  

The concept of isoelectronic and isosteric relationships has 

continued to inspire and impact modern synthetic and materials 

chemistry. The rich and vast work on CC/NB isosterism has 

been extremely fruitful for the development of organic/inor-

ganic hybrid architectures with unique physical or chemical 

properties.1 Iminoboranes (R−N+≡B−−R) that are isoelectronic 

with alkynes have exhibited diverse reactivity and have been 

utilized as potent synthons for various organoborane deriva-

tives.2 However, the analogous chemistry based on C≡C/P=B 

exchange has largely lagged behind due to the considerable la-

bility of PB π bonds towards spontaneous oligomerization (Fig-

ure 1a) − a consequence of the high ionic character of group 

13/group 15 multiple bonds.3 Indeed, the synthesis of free phos-

phaborenes (R−P=B−R) has been a long-standing challenge.4 

Such species have only been detected in the gas phase by mass 

spectrometry5 and prior attempts at their observation in the con-

densed phase have never been successful.6-9 The first evidence 

for transient phosphaborenes may date back to the early 1960s 

when Coates and Livingstone boiled a xylene solution of phe-

nylphosphine and dichlorophenylborane, and after the evolu-

tion of hydrogen chloride a diphosphadiboretane (Ph−PB−Ph)2 

was identified as one of the products.7 Even with sterically 

shielding substituents, in 1986 the Cowley5, 8 and Nöth9 groups 

isolated the similar dimers (Ar−PB−tmp)2 and (Et3C−PB−tmp)2, 

respectively (tmp = 2,2,6,6-tetramethylpiperidino; Ar = 2,4,6-

Me3C6H2, 2,4,6-tBu3C6H2). It was not until thirty-one years later 

that, based on chemical trapping experiments, Cowley evi-

denced the transient existence of Mes*−P=B−tmp at elevated 

temperatures (80 oC), which equilibrated with its dimeric di-

phosphadiboretane in solution, although direct observation of 

Mes*−P=B−tmp was still impossible.10 This reversibility al-

lowed further investigations into reactivity patterns of phospha-

borenes with unsaturated C≡C,10 C=O11 and P=Ch (Ch = S, 

Se)12 bonds. 

 

Figure 1. (a) Isosteric relationship between RC≡CR’ and RP=BR’. 

Spontaneous dimerization to diphosphadiboretane (RPBR)2. (b) 

Isolable LA- (I) and LB-stabilized (II) monomeric phosphaborenes. 

(c) This work. 

It has been demonstrated in the landmark works of Nöth13 

and Power14 as well as more recently by Cowley,10, 15 Gilliard,16 

Andrada17 and our group18 that monomeric phosphaborenes I 

and II can be isolated if an adjacent Lewis basic P or Lewis 

acidic B center is properly stabilized via a Lewis acid (LA) or a 

Lewis base (LB), respectively (Figure 1b). This strategy can not 

only quench the ambiphilic nature of monomeric phospha-

borenes, but also provide kinetic protection. In a similar vein, 

LB-stabilized species including phospha-, arsa- and 

stibagallenes (Pn=Ga; Pn = P,19 As,20 Sb21), phospha- and ar-

saalumemes (Pn=Al; Pn = P, As)22 and arsaborenes (As=B)14 

are isolable. For free group 13/group 15 multiply bonded spe-

cies, species R−MN−R (M = In, Ga, Al) have been isolated by 



 

the group of Power.23 Su computationally explored free phos-

phaborenes of the type R−P+≡B−−R and summarized that “… it 

should be possible to synthesize molecules that feature a B≡P 

triple bond possessing both bulky ligands”.24 This encouraged 

us to seek and study isolable free phosphaborenes (Figure 1c). 

In terms of thermodynamic stabilization, the installation of a 

π-donor substituent at the boron center of iminoboranes/phos-

phaborenes has proved to diminish its Lewis acidity and thus to 

some extent inhibits spontaneous oligomerization.10, 25 Likewise, 

the tendency to oligomerize should also be suppressed by the 

presence of a π-accepting substituent at the phosphorus center 

of phosphaborenes, which would modulate its Lewis basicity. 

Additionally, increasing the steric bulk of the substituents 

would certainly be very beneficial for kinetic protection.26 We 

hence considered the utilization of N-heterocyclic boryl 

(NHB)27 and N-heterocyclic imino (NHN)28 ligands, which are 

π-accepting and π-donating respectively, and further are readily 

accessible and sterically tunable for stabilization of phospha-

borenes. Based on density functional theory (DFT) computa-

tions, Cowley showed that Mes*−P=B−tmp (Mes* = 2,4,6-
tBu3C6H2) is 11.0 kcal/mol higher in free energy than its di-

mer.10 Indeed, our calculations at the M06-2X/def2-SVP level 

of theory indicated a favorable dimerization as well for 5’ with 

mesityl substituents on both N-heterocycles (Figure 2). How-

ever, by flanking the PB unit with a more sterically encumber-

ing 2,6-diisopropylphenyl (Dipp) substituent, the dimerization 

of 5 is significantly disfavored by 72.9 kcal/mol. 

 

Figure 2. Free energies of phosphaborenes 5’ and 5 and their cor-

responding dimers. 

Therefore, in targeting 5, we chose the bulky, Dipp-substi-

tuted NHB-phosphane 1 and NHN-boron dibromide 3 as pre-

cursors (Scheme 1). Species 1 was obtained in 91% yield (31P 

NMR: -246.8 ppm, 11B NMR: 35.2 ppm) through a salt metath-

esis reaction of the corresponding bromodiazaborolidine and 

sodium phosphide.29 Successive reactions of 1 with benzyl po-

tassium, trimethylsilyl chloride (TMSCl) and tBuLi eventually 

yielded 2 (31P NMR: -286.4 ppm, 11B NMR: 38.3 ppm) as a 

white solid in 67% yield. In the meanwhile, the boron precursor 

3 (11B NMR: 12.7 ppm) was readily accessible via a cross-cou-

pling reaction of the corresponding N-heterocyclic imine and 

boron tribromide. 

 

Scheme 1. Synthetic route towards 4 and 5. 

With the hope of generating a free phosphaborene, we treated 

2 and 3 in toluene from -50 oC to room temperature (Scheme 1). 

This allowed the formation of 4 and the elimination of LiBr. 

The 31P NMR and 11B NMR spectroscopic studies of 4 revealed 

singlets at -193.7 and 31.0 ppm for the central P(1) and B(2) 

atoms, respectively. The 11B NMR resonance of the cyclic B(1) 

in 4 appears to be 34.4 ppm. X-ray diffraction eventually con-

firmed the formulation of 4 as a phosphinoborane 

[(CH2)(NDipp)]2BP(TMS)B(Br)N=C[(NDipp)(CH)]2 (Figure 

3a). P(1) adopts a trigonal pyramidal geometry, while B(2) is in 

a trigonal planar environment. The lengths of P(1)−B(1), 

P(1)−B(2), B(2)−N(1) and N(1)−C(1) bonds are 1.931(2), 

1.898(2), 1.363(3), and 1.284(2) Å, respectively. 



 

 

Figure 3. Solid-state structures of 4 (a) and 5 (b). Hydrogen atoms 

and solvent molecules are omitted for clarity. Thermal ellipsoids 

are set at the 40% probability level. 

Whereas removal of RX (R = H, TMS; X = Cl, Br) from 

phosphinoboranes was achieved with the aid of Lewis bases, 

which simultaneously led to base-stabilized phosphaborenes,14b, 

15, 17-18 we were delighted to find the slow elimination of TMSBr 

from a C6D6 solution of 4 at room temperature, concurrent with 

the formation of a new species 5 (58% conversion in 20 h, Fig-

ure S2-38). Upon simply heating a C6D6 solution of 4 at 65 oC 

for 4 h, a complete conversion to 5 was achieved. This was ev-

idenced in 31P NMR and 11B NMR spectra by the appearance of 

new resonances (31P: -291.9 ppm; 11B: 53.0 and 38.6 ppm) at-

tributable to P(1), B(2) and B(1), respectively. The P(1) signal 

is low-frequency shifted compared to those of DipTerP=AlCp* 

(-203.9 ppm)22 and (DipNacnac)Ga(Cl)P=Ga(DipNacnac) (-245.8 

ppm)19b (DipTer = 2,6-Dip2C6H3; 
DipNacnac = 

HC[(CMe)(NDipp)]2), but is remarkably low-frequency shifted 

relative to that observed for Mes*P=B(dmap)tmp (62.2 ppm),10 

which might be attributed to the NHB substitution and a differ-

ent bonding scenario of the PB unit. The B(2) chemical shift 

lies within the typical range of di-coordinate boron species and 

is low-frequency shifted compared to that of 

Et3CP(Cr(CO)5)=Btmp (62.9 ppm).13a The straightforward 

route to 5 in the absence of Lewis bases is likely the conse-

quence of electron push-pull ligand effects that lower the am-

biphilicity of 5 (vide infra). 

The species 5 can be stored in the solid state under N2 atmos-

phere for weeks without noticeable decomposition; however, it 

is extremely sensitive to moisture, exposure to which led to a 

complicated mixture within minutes. The electronic spectrum 

of 5 shows two absorptions at 348 and 378 nm (Figure S2-39), 

which are responsible for its colorless character. 

Single crystals of 5 were grown by layering n-hexane over a 

concentrated toluene solution at -35 oC. Gratifyingly, the X-ray 

diffraction experiment unambiguously authenticated the for-

mation of monomeric free phosphaborene 5 (Figure 3b), in 

which four flanking Dipp substituents well protected the central 

P(1)B(2) unit. By contrast with the structure of 4, P(1) and B(2) 

in 5 are di-coordinate, with a much shorter P(1)−B(2) bond 

length of 1.7788(15) Å (compared to 1.898(2) Å in 4). This is 

also shorter than those seen for Mes*P=B(dmap)tmp (1.821(2) 

Å)10 and tBuP(AlBr3)=Btmp (1.787(4) Å),13b while slightly 

longer than that of (Et3CP[Cr(CO)5]=Btmp) (1.743(5) Å).13a 

The shortening of P(1)−B(1) (1.8969(14) Å in 5 vs. 1.931(2) Å 

in 4) and B(2)−N(1) (1.3245(18) Å vs. 1.363(3) Å) bonds was 

seen as well, whereas the N(1)−C(1) bond is slightly elongated 

(1.3017(16) Å vs. 1.284(2) Å). These imply the presence of the 

delocalization of π electrons over the BPBNC chain. The 

B(1)−P(1)−B(2), P(1)−B(2)−N(1) and B(2)−N(1)−C(1) angles 

are 106.00(6)o, 168.47(11)o and 135.6(1)o, respectively. These 

bond angles suggest the high nonbonded character of the in-

plane electron pairs at P(1) and N(1), in line with the electron 

localization function (ELF)30 calculations (Figure S4-4). Nota-

bly, the structural features of 5 are distinctly different from 

those found for iminoboranes that contain a polarized B≡N tri-

ple bond and the linear geometry at both B and N atoms.2 



 

 

Figure 4. Depiction of selected IBOs of 5. (a) P−B σ-bonding or-

bital. (b) Polarized in-plane lone-pair orbital at P. (c) 3-Center-2-

electron π⊥-bonding orbital over BPB atoms. (d) Polarized in-plane 

lone-pair orbital at N. (e) 3-Center-2-electron π⊥-bonding orbital 

over BNC atoms. (f) Push-pull cooperation for stabilization of 5. 

Intrinsic bond orbital (IBO)31 investigations (M06-2X/def2-

SVP), coupled with frontier molecular orbital (FMO) and natu-

ral bond orbital (NBO) analysis, shed light on the electronic 

structure of 5 (Figure 4). IBO results illustrate that P(1) forms 

two σ bonds with B(1) (Figure S4-1) and B(2) (Figure 4a) and 

bears an essentially non-bonding lone pair orbital that lies in the 

BPB plane (91.5% at P(1); 6.1% at B(2)) (Figure 4b). The 

P(1)−B(2) π⊥ bond orthogonal to the BPB plane is distinctly 

delocalized to B(1) forming a 3-center-2-electron (3-c-2-e) π in-

teraction over the B(1)−P(1)−B(2) framework (Figure 4c). Sig-

nificant to note is that the HOMO of 5 (-5.62 eV) is mainly the 

3-c-2-e π⊥ bond rather than the lone pair at P(1) that is located 

in HOMO-2 (-7.07 eV) (Figure S4-2). This means that 5 should 

exhibit predominantly π⊥ bond reactivity and the P(1) π-basicity 

is reduced by the NHB substituent. In a similar vein, the Lewis 

acidity at B(2) is lowered by the strong π-donating ability of the 

NHN substituent (Figures 4d and 4e). Such an π⊥ electron push-

pull cooperation effectively diminishes its ambiphilic nature 

(Figure 4f). NBO calculations (M06-2X/def2-TZVP) confirm 

the multiple bonding character over the BPBNC chain, with Wi-

berg bond indices (WBIs) of B(1)−P(1), P(1)−B(2), B(2)−N(1) 

and N(1)−C(1) of 1.14, 1.73, 1.03 and 1.39, respectively. More-

over, a considerable amount of charge separation is indicated 

by NBO charges of B(1) (0.83 a.u.), P(1) (-0.45 a.u.), B(2) (0.77 

a.u.), N(1) (-1.06 a.u.) and C(1) (0.64 a.u.). As a result, the elec-

tronic structure of 5 is most appropriately described in Figure 

4f with the high delocalization of π electrons over the central 

chain. It is noteworthy that natural resonance theory (NRT) cal-

culations on a simplified model of 5 (Dipp groups are replaced 

with H) show two predominant structures featuring a 

B(1)−P(1)=B(2)−N(1)=C(1) unit (Figure S4-3). 

 

Figure 5. CGMT model (a) and classical model (b) for PB bonding. 

The pattern of the PB bonding in 5 was further probed. As 

our calculations give a triplet ground state of NHB−P and a sin-

glet ground state of NHN−B, the question raised here was 

whether two singlet fragments combine together via the Carter-

Goddard-Malrieu-Trinquier (CGMT) model (Figure 5a)32 or 

two triplet fragments unite via the classical electron-sharing 

model (Figure 5b). Numerous reports document that the size of 

the orbital interaction term (ΔEorb), derived from energy decom-

position analyses with natural orbitals for chemical valence 

(EDA-NOCV) method,33 is a reliable indicator for the type of 

bonding.34 The absolute value of ΔEorb between the triplet frag-

ments is much smaller (-196.1 kcal/mol) compared to that be-

tween the singlet fragments (-313.8 kcal/mol) (Table S4-1). 

These data, combined with the IBO results, suggest that the PB 

double bond character arises from one conventional σ bond and 

one electron-sharing 3-c-2-e π⊥ bond. 



 

 

Scheme 2. Reactivity of 5 towards p-methyl benzaldehyde, p-

fluoroacetophenone and carbon disulfide. 

The reactivity of 5 was next explored (Scheme 2). This spe-

cies underwent a facile [2+2] cycloaddition with p-methyl ben-

zaldehyde at room temperature to afford 6 in 90% yield (Figure 

6a), analogous to Cowley’s transient phosphaborene 

Mes*P=Btmp.11 Note that only one of the expected two pairs of 

diastereomers of 6 was observed spectroscopically. This indi-

cates that either 6 are generated in a stereospecific manner or 

inversion at P is facile. Treatment of 5 with p-fluoroacetophe-

none gave rise to the formation of 7. The 31P NMR spectrum of 

7 displayed a doublet at -233.4 ppm (1JPH = 212.3 Hz), which 

collapsed into a singlet upon proton decoupling, indicating the 

presence of a PH unit. Indeed, X-ray diffraction unveiled the 

phosphinoborane structure 7 derived from an apparent addition 

reaction across the PB unit (Figure 6b). Interestingly, we found 

that 5 cleanly reacted with carbon disulfide in a molar ratio of 

1:2. This led to PB bond scission and ended up with the for-

mation of 8 and 9 (Figures 6c and 6d). 8 represents a rare ex-

ample of a dithiadiboretane,35 while 9 is the first example of a 

1,4,2-dithiaphosphole-5-thione derivative. 

 

Figure 6. Solid-state structures of 6, 7, 8 and 9. Hydrogen atoms 

except C(1)H of 6, P(1)H and C(2)H2 of 7 and solvent molecules 

are omitted for clarity. Thermal ellipsoids are set at the 40% prob-

ability level. 

More than six decades after the first attempted synthesis of 

Ph−P=B−Ph,7 this work shows that free phosphaborenes can be 

stable enough to be isolated at room temperature. The combina-

tion of a π-accepting NHB and a π-donating NHN ligand 



 

framework with bulky flanking arene rings enhances the ther-

modynamic and kinetic stability of 5. This free phosphaborene 

exhibits facile (cyclo)addition reactivity. We anticipate that, by 

employing such an electron push-pull strategy, other hitherto 

unknown ambiphilic heterodiatomic multiply bonded main 

group species will be synthetically accessible. We are working 

on an in-depth study of the reaction mechanism, and on using 

free phosphaborenes as synthons for unusual PB systems. 
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