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Abstract 

Despite being a technology of several decades, high pressure homogenization (HPH) 

remains widely used in food and pharmaceutical industries, often as an essential unit 

operation in liquid product processing. Continual advances in the technology are made 

on multiple fronts, on equipment innovations by the manufacturers, new applications by 

users and advances in process understanding by multidisciplinary scientists alongside 

subject matter experts amongst industry practitioners. While HPH is comparatively simple 

conceptually, the homogenization process involves complex engineering physics which 

is influenced by the varied processing conditions and highly diverse inputs with each use-

case requiring its own treatment. The successful application of a HPH process indubitably 



requires practitioners to draw upon insights from multiple domains and the optimization 

for each case. Thus, this timely review aims to outline the more recent trends and 

advancements in HPH process understanding and novel applications involving HPH from 

both academic and industrial perspectives.  

1. Introduction 

High pressure homogenization (HPH) was first introduced in the early 20th century by 

Auguste Gaulin (Gaulin, 1904) for processing milk using pressures up to 30 MPa to 

improve product stability. The basic operational principle of HPH remains unchanged 

since and it involves using a high-pressure pump to force the fluid through a small orifice. 

The early successes expanded the user-base of HPH and it has become an integral unit 

operation in liquid product processing in several industries such as food and beverages 

(F&B) (Harte, 2016; Levy et al., 2020; Patrignani and Lanciotti, 2016), pharmaceuticals 

(Kluge et al., 2012; Yadav and Kale, 2020), waste water treatment (Zhang et al., 2012), 

material production and processing (Azoubel and Magdassi, 2010; Phanthong et al., 

2018; Xu et al., 2011) and biotechnological processing (Kelly and Muske, 2004; 

Samarasinghe et al., 2012). This list is certainly non-exhaustive and will likely continue to 

expand.  

In conjunction with the introduction of new HPH applications, much work from both 

industry and academia is required to better understand the impact of the HPH process. 

Various research studies have considered the theoretical aspects of the homogenization 

process such as how fluid flow in the HPH valve (Håkansson et al., 2010; Taghinia et al., 

2016) and the mechanistic appreciation of complex processes like HPH assisted 

emulsification (Gupta et al., 2016a; Håkansson et al., 2013). Other studies were directed 



at the operational aspects of HPH such as exploring methods for process optimization 

(Davoudpour et al., 2015; Dopp and Reuel, 2018) and improved process monitoring and 

characterization (Besseling et al., 2019; Ralbovsky et al., 2022). Concomitant equipment 

innovations such as the design of new homogenization valve geometries (Donsì et al., 

2012; Gall et al., 2016; Yadav and Kale, 2020) and ultra-high pressure homogenization 

(UHPH) which employs homogenization pressures between 300-400 MPa (Georget et 

al., 2014). These incremental innovations reflect the continued dynamism and ingenuity 

of the equipment manufacturers. These efforts by various stakeholders facilitate 

improvements for existing applications as well as exploring new opportunities.  

This review will provide a concise overview of the latest developments and applications 

involving HPH with the requisite contemporary explanation of the HPH process and its 

uses. The update by the authors will therefore mainly focus on publications of the last one 

to two decades. It should be noted that in many of the applications mentioned, HPH forms 

only part of the overall processing strategies. Often, published studies involved lab or 

pilot-scale facilities where such operations are adequate for the task. This can lead to the 

situation where for a given application, there might be comparatively fewer studies in the 

literature that specifically use HPH even though it is a viable option. In a sense, this 

presents an exciting opportunity as HPH is a well-established, robust and highly-scalable 

process option that allows for routine use and continually tested for possibilities to 

accelerate the development and commercialization of new processes or products.  

2. Recent Applications of HPH 

2.1.  Food and Beverage Applications 



Having its roots in the F&B sector, HPH continues to remain an integral unit operation in 

many well-established applications such as ensuring food safety and improving physico-

chemical properties of foods such as fruit juices and dairy products (Comuzzo et al., 2014; 

Levy et al., 2020; Patrignani and Lanciotti, 2016; Salehi, 2020). Thus, many publications 

still explored areas for improvement or advancement in these more traditional F&B 

applications. For brevity, this review will avoid dwelling in these areas but emphasize 

instead on new and emerging applications.   

Alongside the concerns about food sustainability and climate change, developments into 

alternative foods such as plant-based dairy and meats (Aschemann-Witzel et al., 2021), 

lab-cultured meats (Chriki and Hocquette, 2020), precision-fermented proteins (Lawton, 

2021; Teng et al., 2021; Zollman Thomas and Bryant, 2021) and insect proteins (Loveday, 

2019) are gaining significant consumer and commercial interest. The application of HPH 

in processing alternative foods is functionally identical to traditional foods as similar 

process objectives are desired such as improved product stability and sensory properties 

(Codina-Torrella et al., 2017; Levy et al., 2021), enhanced structural and physico-

chemical properties (Dong et al., 2011; Song et al., 2013) and improved processability 

(Gul et al., 2017). The similarities in process objectives and implementation are 

encouraging as considerable literature and industrial know-how in processing traditional 

foods can be relevant in facilitating process development and scale-up of alternative 

foods production. Similarly, HPH has also been found to be useful in the valorization of 

meat scraps and waste into nutritional and functional products (Chen et al., 2020) which 

serves to improve sustainability for the meat industry. 



HPH has also contributed to the development and production of innovative foods with 

improved health benefits such as functional foods, often with enhanced sensory 

properties and stability. Nanoemulsions, dispersions of two immiscible liquids emulsified 

with droplets of around 100nm (Gupta et al., 2016b), have facilitated this trend. These 

nanoemulsions benefit relevant food products by incorporating lipophilic ingredients as 

an optically transparent form which can improve product appearance and stability, protect 

sensitive compounds and enhance bioavailability of functional ingredients 

(Aswathanarayan and Vittal, 2019; Donsì et al., 2010; Yang et al., 2012). HPH has been 

used for preparing nanoemulsions of functional ingredients such as fatty acids and 

carotenoids in food products (Silva et al., 2012), flavoring and coloring agents 

(Aswathanarayan and Vittal, 2019), and various cannabinoids (Banerjee et al., 2021; 

Lewińska, 2021). An interesting recent application is the use of essential oil 

nanoemulsions as a natural antimicrobial additive to foods (Aswathanarayan and Vittal, 

2019; Donsì and Ferrari, 2016) which can be leveraged to meet increasing consumer 

desire for foods with natural ingredients. 

2.2.  Pharmaceutical and Biotechnological Applications 

Recent pharmaceutical uses of HPH have relied on established capabilities of HPH 

related to comminution by high shear, in novel applications and improving existing 

products or processes. Broadly, pharmaceutical usage of HPH can be divided into two 

categories: excipients, particularly polymeric types, processing and active pharmaceutical 

ingredients (APIs), especially as nanoparticulate systems, for enhanced drug delivery. 

More recently, HPH uses in the biotechnology and biopharmaceutical industries are also 

more common.  



2.2.1. Processing Excipients 

Polymers and gums such as alginates and cellulosic derivatives are common 

pharmaceutical excipients used for drug delivery systems. These polymeric systems are 

widely used as thickeners or stabilizers in vehicle liquid for drug delivery and tissue 

engineering (Curvello et al., 2019), suspensions (Lin and Dufresne, 2014) or transdermal 

products (Raghav et al., 2021). HPH is often used in the production and/or modification 

of these polymers. In oral solid dosage forms, polymeric excipients are also used as fillers, 

binders and disintegrants among others (Debotton and Dahan, 2017). 

HPH is often applied in the modification of polymers and gums as it can alter the 

characteristics of polymers by the intense high shear and turbulence. Examples of such 

modifications include changes to rheological properties (Eren et al., 2015; Porto et al., 

2015), viscosity reduction (Harte and Venegas, 2010; Inguva et al., 2015), zeta potential 

(Prateepchanachai et al., 2017), molecular weight and hydrodynamic radius reduction 

(Belmiro et al., 2018). These modifications can improve processability and enable new 

formulation strategies such as incorporating excessively viscous polymer gels into 

formulations (Inguva et al., 2015) or enhancing product quality by improved film strength 

and water resistance (Shahbazi et al., 2018). However, the HPH process is also 

recognized to have the potential to adversely impact certain excipients such as protein 

emulsifiers (Ali et al., 2018) and such a possibility should be considered.  

2.2.2. Processing of APIs 

Size reduction capabilities of HPH on APIs confer several advantageous properties to the 

final drug product. A particular application is in the formation of nanocrystals and 



nanosuspensions of APIs. By preparing the API as a nanosuspension, the dissolubility is 

increased which improves the bioavailability of poorly water-insoluble drugs. By improving 

drug solubility, commercialization of  drugs would be possible as previously, they were 

deemed unviable due to poor solubility (Rabinow, 2004). While this paradigm of thought 

is not new, recent literature reports focused on developing a better understanding 

between the product and process such as the impact of formulation choices (Paredes et 

al., 2016; Sun et al., 2011; Van Eerdenbrugh et al., 2008), HPH operating conditions 

(Kluge et al., 2012; Oktay et al., 2019), and process type and configuration e.g. HPH vs 

other techniques for producing nanoparticulates (Kakran et al., 2012; Y. Li et al., 2015; 

Salazar et al., 2012; Zhou et al., 2018).  

Another noteworthy HPH application for the processing of APIs is in the formation of 

nanoemulsions. The hydrophobic drug is dissolved in an oil phase which is then 

emulsified as an oil-in-water (O/W) nanoemulsion for use in a variety of drug delivery 

systems such as sprays, creams and capsules (L. Chen et al., 2020; Singh et al., 2017). 

The benefits of pharmaceutical nanoemulsions include improved bioavailability, stability 

and for controlled release (Gué et al., 2016; Singh et al., 2017). Examples of 

pharmaceutical nanoemulsions processed using HPH include nanoemulsions of various 

APIs (Kotta et al., 2015; Sharma et al., 2015; Tagne et al., 2008; Tran et al., 2017), 

DNA/nanoemulsion complexes for gene therapy (Schuh et al., 2018) and vaccines (Fox 

et al., 2013; Haensler, 2017; Peshkovsky and Bystryak, 2014). 

Outside the pharmaceutical sector, recent studies exploring various aspects of the 

nanoemulfisication process have yielded better process and product understanding by 

optimizing emulsifier type and use concentration (Qian and McClements, 2011; Silva et 



al., 2015; Uluata et al., 2016), HPH operating conditions and equipment design (Donsì et 

al., 2012; Silva et al., 2015; Wan et al., 2019), process type and configuration (Calligaris 

et al., 2018, 2016) and the development of semi-empirical scaling laws (Gupta et al., 

2016a). Many insights from these studies provided relevance of HPH use to prepare 

nanoemulsions for both the pharmaceutical and allied industries. 

2.2.3. Nanoparticle Systems 

Nanoparticulate systems in the pharmaceutical industry form an important platform for 

achieving a range of clinical and therapeutic objectives to introduce improved and/or 

targeted drug delivery or efficacious and safer imaging agents (Bobo et al., 2016). This 

review avoids the discussion of the various types of nanoparticulate systems and their 

different therapeutic and clinical functions as there are already some excellent reviews 

(Bhatia, 2016; Bobo et al., 2016; Mitchell et al., 2021). In summary, HPH has emerged as 

a viable mechanism for the processing of three classes of nanoparticulate systems: lipid-

based nanoparticles (Pardeike et al., 2009), polymeric nanoparticles (Vinchhi et al., 

2021), and inorganic/hybrid-type nanoparticles (Grüttner et al., 2007; Qi et al., 2014).   

The involvement of HPH in processing therapeutically relevant nanoparticles has grown 

incrementally. Most literature reports focused on developing nanoparticulate products 

and formulations for different APIs (Vinchhi et al., 2021; Soni et al., 2020), using lipid-

based and polymeric nanoparticles gene therapy (del Pozo-Rodríguez et al., 2016)), 

molecular targeting agents (Grüttner et al., 2007; Natarajan et al., 2008), and imaging 

agents (Lee et al., 2004; Yang et al., 2019). The HPH process has been explored within 

the context of nanoparticle production in order to develop improved process insights for 



scale-up, process control, and optimization (Homayouni et al., 2014; Hu et al., 2016; 

Lomis et al., 2016; Qi et al., 2014; Soni et al., 2020). 

2.2.4. Biopharmaceutical and Biotechnology Applications  

Most recent biopharmaceutical and biotechnology applications involving HPH have relied 

on its well-established cell disruption/lysis capability. The applications include the 

production of cell-free protein synthesis systems using various cell types (Carlson et al., 

2012; Failmezger et al., 2018; L. Zhang et al., 2020), downstream processing for 

recombinant protein and virus-like particle production, by batch or continuous operation 

(Effio and Hubbuch, 2015; Tam et al., 2012; Wilken and Nikolov, 2012) along with 

extraction of oils and other products from algae (Günerken et al., 2015; Samarasinghe et 

al., 2012; Spiden et al., 2013). 

Further analysis of process and product specific nuances and avenues for improvement 

such as the interplay between upstream and downstream unit operations on product 

quality (Eggenreich et al., 2020; Hutterer et al., 2013; Slouka et al., 2018), improved cell 

disruption process monitoring strategies (Eggenreich et al., 2017), energy density of algal 

cell disruption (Yap et al., 2015), and strategies for process optimization (Dopp and Reuel, 

2018; Metzger et al., 2020; Pekarsky et al., 2019).   

2.3. Advanced Materials and Chemical Applications 

2.3.1. Advanced Polymer Production and Processing 

Natural biopolymers are again being explored as alternative and sustainable materials for 

many uses such as synthetic polymer replacements (Vinod et al., 2020), therapeutic 

applications, and electronic materials (de Amorim et al., 2020). HPH, sometimes with 



other techniques like enzymatic hydrolysis, has been successfully applied to the 

production of biopolymers such as nanocellulose (Kawee et al., 2018; Lenhart et al., 

2020; Li et al., 2012; Wang et al., 2019), starch nanoparticles (Ahmad et al., 2020; 

Apostolidis and Mandala, 2020; Shi et al., 2011; Wang et al., 2021), chitin nanofibers 

(Mushi et al., 2019; Ono et al., 2020; Salaberria et al., 2015; Satam and Meredith, 2021),  

and silk nanofibers (Uddin et al., 2020).  

Often, native biopolymers do not possess the requisite physico-chemical properties for 

subsequent processing or for the final product. Structural modifications by chemical 

treatment to alter rheological properties or adding modifiers like plasticizers and similar 

materials to form composites may be necessary (Aaliya et al., 2021; George et al., 2020; 

Harish Prashanth and Tharanathan, 2007; Kaur et al., 2012). In most cases, HPH is used 

primarily for the production of the material of interest and subsequent processing steps 

may utilize other techniques (Rizal et al., 2021; Rocca-Smith et al., 2019). In certain 

cases, HPH was also used in subsequent modification and processing steps such as in 

the modification of starch nanoparticles (Apostolidis and Mandala, 2020; Shahbazi et al., 

2018), rheological and structural modifications of polymer dispersions (Fu et al., 2011), 

and formation of nanofibrillated cellulose composites with nanoclays (Garusinghe et al., 

2018; Shanmugam et al., 2021; Yong et al., 2018). 

Nanocellulose deserves particular attention as a cellulosic material of nanoscale 

dimension and with three main forms in the literature, nanocrystalline cellulose (NCC), 

bacterial nanocellulose (BNC), and nanofibrillated cellulose (NFC) (Phanthong et al., 

2018; Thomas et al., 2020). The different types of nanocellulose have attracted significant 

interest from academia and  industry due to the many advantageous properties, being a 



biodegradable natural product of high strength and stiffness along with the possibility of 

surface chemical modifications, among many others (Phanthong et al., 2018; Salas et al., 

2014). Nanocellulose has been utilized in many sectors such as foods (Gómez H. et al., 

2016), composite materials and packaging (Kargarzadeh et al., 2017; F. Li et al., 2015), 

electronics (Sabo et al., 2016), biomedical and pharmaceutics (Jorfi and Foster, 2015; 

Kamel et al., 2020), and environmental remediation (Mahfoudhi and Boufi, 2017). As 

previously mentioned, HPH has been established as the convenient, scalable and 

comparatively environmentally-friendly technology to process and produce nanocellulose 

and its derivatives.  

HPH has also found application in the broader sustainability trend of upcycling and 

valorizing agri-food remains or waste into usable materials like bioplastics (Otoni et al., 

2021). Examples of HPH use in this context include the production of nanocellulose and 

other nanofibers from agricultural wastes and other sources (Hongrattanavichit and Aht-

Ong, 2020; Li et al., 2012; Pacaphol and Aht-Ong, 2017; Salaberria et al., 2015), bio-

based adhesives from soybean meal (Y. Zhang et al., 2020), and biopolymer films from 

fruit and vegetable wastes (Kang and Min, 2010; Wu et al., 2020).  

2.3.2. Nanoscale Materials and Fluids 

HPH has been applied to the scalable production of many exciting nanomaterials through 

liquid-phase exfoliation such as boron nitride nanosheets (Guerra et al., 2018; Shang et 

al., 2016), transition metal dichalcogenide nanosheets (Piao et al., 2018; Shang et al., 

2016), and graphene and its variants (Arao et al., 2016; Chen et al., 2020; Qi et al., 2017; 

Shang et al., 2015). Subsequent application of these nanomaterials often requires the 

dispersion of the nanostructured material in some media and in some cases, the 



dispersion produced from the liquid-phase exfoliation step can be used directly (Backes 

et al., 2020; Johnson et al., 2015). Correspondingly, HPH is suitable for use to directly 

produce a wide variety of dispersions and has been demonstrated as an effective 

technique for dispersing and potentially modifying nanomaterials (Azoubel and Magdassi, 

2010; Li et al., 2019; Schlüter et al., 2014; Tölle et al., 2012). Many studies have reported 

successful use of HPH as a processing step to produce advanced materials such as 

graphene films and inks (Tölle et al., 2012), polymer composites incorporating 

nanomaterials for improved mechanical, thermal and electrical properties (Appel et al., 

2012; Chatterjee et al., 2012; Clausi et al., 2020; Shayganpour et al., 2019; Wu et al., 

2021; Xu et al., 2020), and nanofluids which will be discussed.  

Nanofluids contain various types of nanoparticles like metal nanoparticles and their 

oxides or carbon nanotubes/graphite in a base fluid have emerged as a promising 

advanced thermal fluid to improve the heat transfer performance and thermal efficiency 

in systems for engine cooling or building temperature management (Saidur et al., 2011). 

HPH has successfully been used to produce nanofluids containing carbon nanoparticles 

like carbon nanotubes, diamond, graphite, or graphene (Fontes et al., 2015; Oliveira et 

al., 2017; Sica et al., 2021) and metal oxides (Fedele et al., 2011). Similarly, 

homogenization has been applied for the production of phase change material emulsions 

which are currently being researched for use as advanced thermal fluids and energy 

storage media (Wang et al., 2019). 

3. Advances in Process Understanding 

3.1.  Mechanistic Modelling of HPH 



The HPH process involves complex fluid mechanics (primarily shear, turbulence, 

cavitation, and impact) which can be engineered to obtain desired process and product 

outcomes. With improvements in computational and experimental resources available to 

researchers, extensive computational fluid dynamics (CFD) simulations and experiments 

have been performed to elucidate theoretical features of fluid flow in the homogenizer, to 

better understand how HPH operation relates to product characteristics and seek 

avenues for process improvement. Despite these advances, it is often helpful to first 

consider the governing physical laws and theory prior to numerical simulations / 

experiments. Meaningful insights in the form of scaling relationships and qualitative 

understanding of flow features relevant to the process of interest can be obtained with 

significantly less effort (Håkansson, 2019; Jahnke, 1998; Vinchhi et al., 2021; Yadav and 

Kale, 2020). 

Applying CFD to study HPH is complicated as there are multiple complex fluid processes 

that occur within the homogenization valve and in many applications, often two or more 

phases such as solid-liquid, liquid-liquid and/or liquid-gas phases are involved and 

needed to be accounted for (Jahnke, 1998). Due to these complexities, direct numerical 

simulation (DNS) of the governing fluid mechanics equations e.g., Navier-Stokes equation 

for Newtonian flows, are often intractable for real operating conditions. As such, 

researchers have often employed the Reynolds averaged Navier-Stokes (RANS) model 

with different turbulence models or large eddy simulations. Håkansson et al., (2012) 

provide an excellent overview of the various CFD studies on homogenization valves using 

the RANS model by different groups. In that study, it was reported that while RANS with 

some variants of the 𝑘𝑘 − 𝜀𝜀 turbulence model can reasonably model the inlet section of the 



valve but failed to adequately describe flow in the outlet chamber (post constriction) when 

compared with experimental data. In an effort to improve the accuracy of CFD 

simulations, recent studies have employed large eddy simulations to study flow in 

homogenizer valves with much greater success (Taghinia et al., 2016, 2015).  

CFD has also been applied to study specific phenomena of interest such as droplet 

breakage and emulsion formation or the impact of equipment design and operation both 

by academia (Håkansson, 2022, 2018) and industry (see Section 4). The emulsification 

process in homogenizers has been modelled using the governing equations of fluid 

dynamics that are typically coupled with the dynamics of the dispersed phase using a 

population balance model (Becker et al., 2014; Dubbelboer et al., 2014; Håkansson et 

al., 2013, 2009; Inguva et al., 2022; Raikar et al., 2010) or a discrete phase model (Casoli 

et al., 2010; Zahari et al., 2018). These models are able to track the evolution of the 

droplet size distribution by accounting for effects such as breakage, coalescence 

(Maindarkar et al., 2012) and adsorption of an emulsifier (Håkansson et al., 2013). These 

models can be implemented in commercially available software such as ANSYS or in 

open-source codes such as OpenFOAM (da Rosa and Braatz, 2018; Passalacqua et al., 

2018). The implementation of these models conventionally requires a parameter 

estimation step which reduces the general applicability of these models to some extent. 

It is possible to employ multiphase flow CFD techniques such as the volume-of-fluid 

interface capturing method (Malekzadeh and Roohi, 2015; Mukherjee et al., 2018) or 

smooth particle hydrodynamics (Wieth et al., 2016) to model droplet and emulsion 

formation. This approach is far more predictive as only a handful of physical constants 

such as the interfacial tension and viscosities are required to formulate the model but it 



can be significantly more computationally expensive if not currently intractable, 

considering the highly turbulent flow present in HPH valves. 

As a final point, many newer applications of HPH involve molecular length scales like the 

production of nanofibrillated cellulose (Abdul Khalil et al., 2014) or graphene-based 

materials (Shang et al., 2015). While CFD and other continuum-scale techniques might 

be able to provide some insights into the process (Stafford et al., 2021), it may not be 

adequate to provide a complete picture of the process. At these length scales, mesoscale 

and molecular-scale methods such as dissipative particle dynamics (J. Zhang et al., 2020) 

and molecular dynamics (Choi et al., 2014; Li et al., 2017) can be used in conjunction 

with continuum-scale methods like CFD to study HPH process in a multiscale manner. 

However, despite the existence of several mesoscale/molecular-scale studies for specific 

phenomena / system such as emulsions and colloids, there is a paucity of literature for 

multiscale modelling and simulations of HPH processes and this presents an exciting 

opportunity for new research.  

3.2. Data-Driven / Empirical Modelling  

In many cases, it may be impractical or even intractable to develop an adequately detailed 

mechanistic model for HPH processes. Thus, empirical/ semi-empirical and data-driven 

models that relate input and output variables are often modelled for product development 

and optimization (Garcia-Ortega et al., 2015). These models are also very useful for 

developing digital twins and process simulations for the whole process where HPH is an 

important unit operation. The diversity of HPH applications does mean that there is no 

universal model to describe the relationship between key input and output variables as 

the specific application determines important variables and factors.  



Models attempted involve variables related to particle size distribution for emulsification 

or nanoparticle production processes (Dubbelboer et al., 2014; Durán-Lobato et al., 2013; 

Lebaz and Sheibat-Othman, 2019), viscosity reduction of polymers (Harte and Venegas, 

2010; Inguva et al., 2015), cell disruption for intracellular product recovery and sludge 

disintegration (Ekpeni et al., 2015; Kelly and Muske, 2004; Tam et al., 2012; Y. Zhang et 

al., 2012), and nanocellulose production (Davoudpour et al., 2015). Two modelling 

strategies are of particular interest; response surface model (RSM) which employs a 

multi-dimensional first order or second order polynomial to curve-fit experimental data 

conducted as part of a design of experiment (Khuri and Mukhopadhyay, 2010). The first 

approach is conceptually straightforward and can be implemented easily as it is already 

commonly used to model HPH processes (Davoudpour et al., 2015; Gul et al., 2018). The 

second approach is machine learning based approaches e.g., neural network / gaussian 

processes / k-nearest neighbors that are being applied in HPH settings (Bhilare et al., 

2019; Patil et al., 2016). Machine learning approaches offer the potential for better 

regression and predictive performance than RSM in addition to facilitating the 

construction of more complex models that integrate more data-streams.  

3.3.  Process Analytical Technology 

While process analytical technology (PAT) as a concept has mainly gained prominence 

in the pharmaceutical and fine chemicals industries (Chew and Sharratt, 2010; Simon et 

al., 2015), many of the principles and techniques such as the real-time monitoring of 

process and product parameters and multivariate data collection and analysis methods 

are relevant and useful for the broader manufacturing sector (Jerome et al., 2019; van 

den Berg et al., 2013). The use of analytical tools for process control and monitoring for 



HPH is highly application specific as each product and process will require the monitoring 

and evaluation of different properties of the system using different platforms and 

technologies. Therefore, two sub-sections will describe the topic under (a) monitoring and 

control of the HPH process, and (b) analysis and characterization of products. A 

discussion of the relevant data collection, mathematical and statistical methods will not 

be covered as these topics have been extensively discussed in the PAT literature.  

3.3.1. Monitoring and Control of the HPH Process 

 

Figure 1. Schematic of 2-Stage HPH process with temperature (TT), pressure (PT) and 
flow (FT) sensors/transmitters. 

 

As shown in figure 1, HPH is a conceptually simple unit operation. Various conventional 

sensors such as temperature, flow and pressure sensors can and are typically integrated 

into the equipment for standard process control and monitoring. For a given process 

configuration such as a single 2-stage homogenizer, the main manipulated variables are 

the homogenization pressure of the different stages and number of passes. The pressure 

can be automatically controlled with the use of a pressure controller such as in GEA 

XStream Lab homogenizer as an example. Another parameter that can be easily 



monitored for additional process insight is the power consumption of the homogenizer. 

While not as extensively discussed in the HPH literature, power consumption 

measurement is a common PAT tool in many unit operations such as granulation 

(Hansuld and Briens, 2014) and mixing (Bowler et al., 2020) to characterize different 

stages of the process and determine the process end-point. While such analysis may not 

be directly applicable to the continuous nature of HPH operations, power measurement 

can help to monitor the process for deviations. The HPH equipment may be monitored by 

its acoustic emission for improved process insights. The use of acoustic measurement to 

better understand the occurrence of cavitation during operation and its impact on the 

emulsification process has been expounded (Håkansson et al., 2010; Schlender et al., 

2015b). While not explored thus far, possible incorporation of acoustic emissions and 

other monitored variables as output variables in a multivariate data-driven model of the 

process which can then be leveraged for enhanced process monitoring, control, and 

optimization.    

3.3.2. Analysis and Characterization of Products 

The trend to further develop and incorporate PAT for better product and process 

understanding has facilitated significant technological advancements in ancillary areas 

such as new or improved sensor technologies for inline process integration and 

multivariate data analytic methods to handle complex sensor data streams  (Grassi and 

Alamprese, 2018; Rüdt et al., 2017; van den Berg et al., 2013; Zhao et al., 2015). 

Recently, several noteworthy studies explored new technologies and the integration of 

PAT for process monitoring and control (Besseling et al., 2019; Eggenreich et al., 2017; 

Ralbovsky et al., 2022). Table 1 summarizes the various PAT tools employed for HPH. 



Considering the diversity and increasing sophistication of HPH applications that require 

precise control, additional work by all stakeholders is necessary to holistically fuel the 

exciting challenge of advancing the development and incorporation of PAT in HPH 

processes. 



Table 1. Summary of process/product variables of interest and analytical technologies available for PAT. Where possible, 
examples provided are applied within the context of HPH, but some examples are drawn from other areas such as 
chemical synthesis.   

Process/Product 
Variable of 

Interest 

Available Analytical 
Technologies (Process 

Integration Format) 
Comments Examples 

Temperature Thermocouple (inline) Sensors can be integrated at both the inlet 
and outlet to monitor temperature change. 

(Martínez-Monteagudo 
et al., 2017; Poliseli-
Scopel et al., 2013) 

    
Pressure Pressure transducer 

(inline) 
Pressure gauges typically come standard with 
the HPH equipment. 

 

    
Flowrate Flowmeter (inline) Various flowmeters with different operating 

principles are available. Select a flowmeter 
type best suited for the application. 

(Poliseli-Scopel et al., 
2013; Schlender et al., 
2015a) 

    
Acoustic 
emissions 

Microphone / Acoustics 
emission sensor 

Signal processing such as amplification may 
be necessary. Currently used to characterize 
cavitation patterns. 

(Håkansson et al., 2010; 
Schlender et al., 2015b) 

    
Power 
consumption 

Power meter  See various citations in 
Hansuld and Briens, 
(2014) 

    
Imaging / 
Visualization of 
fluid flow 

1. Particle image 
velocimetry (inline) 

2. High-speed imaging 
(inline) 

High-speed imaging and particle image 
velocimetry to characterize fluid flow features 
such as the velocity profile, cavitation 
patterns and droplet breakage. 

See various citations in 
Bisten and 
Schuchmann, (2016) 



Imaging of 
products 

1. Inline imaging 
2. Optical / Electron / 

Atomic force 
microscopy (offline) 

Inline imaging of the HPH process remains 
relatively unexplored with many studies using 
scaled models. Offline imaging using various 
microscopy techniques is well-established. 

(Ralbovsky et al., 2022) 

    
Turbidity Turbidity sensor (inline / 

at-line / offline), 
Spectrophotometer (inline 
/ at-line / offline) 

 (Linke and Drusch, 
2016; Spiden et al., 
2013) 

    
Particle Size 1. Dynamic light 

scattering (DLS) (at-
line / offline) 

2. Spatially resolved DLS 
(inline) 

3. Laser scattering (at-line 
/ offline) 

4. Focused beam 
reflectance 
measurement (FBRM) 
(inline) 

 DLS: (Qian and 
McClements, 2011; Yu 
et al., 2013) 
Spatially resolved DLS: 
(Besseling et al., 2019) 
Laser scattering: 
(Samarasinghe et al., 
2012) 
FBRM: (Ralbovsky et 
al., 2022) 

    
Viscosity / 
Rheological 
properties 

1. Viscometer (inline / at-
line / offline) 

2. Rheometer (offline) 

Rheometers are better at characterizing 
rheological properties than viscometers; 
choice depends on process / product 
requirements. 

Viscometer: (Inguva et 
al., 2015; Pu et al., 
2015) 
Rheometer: (Fu et al., 
2011; Qian and 
McClements, 2011) 

    



Chemical 
properties / 
Composition 

1. X-ray diffraction (XRD) 
(offline) 

2. Spectroscopic 
techniques (Raman, 
UV-Vis, NIR etc.) 
(inline / at-line / offline) 

3. Chromatographic 
techniques (HPLC, 
size-exclusion etc.) (at-
line / offline) 

4. Nuclear magnetic 
resonance (NMR) 
(online / at-line / offline)  

The choice of analytical technique and 
integration format depends on the application 
and process requirements. Cost can also be 
an important factor. 

XRD: (Apostolidis and 
Mandala, 2020; Li et al., 
2012) 
Spectroscopic: 
(Ralbovsky et al., 2022; 
Shang et al., 2016, 
2015) 
Chromatographic: 
(Eggenreich et al., 2017; 
Salaberria et al., 2015) 
NMR: (T. Li et al., 2015; 
Ono et al., 2020) 



4. Industrial Insights and Perspectives 

4.1.  Industrial Outlook 

The HPH industry is pushed by innovation and technological advances, pulled by the 

need for scale-up of successful “startup" products, and inspired by an increasing focus 

on sustainability at lowest possible total cost of ownership. While HPH will remain integral 

to multiple traditional applications, several high growth areas in the HPH market have 

recently emerged and include complex foodstuff products, pharmaceutical/nutraceuticals, 

and new industrial products related to the transition to a more sustainable and circular 

economy. In this regard, many of the active areas of research involving homogenizers 

are closely aligned with industrial trends.  

Developments in traditional, high-volume, and low-complexity applications (e.g., fresh 

milk) are ongoing and will continue to be an important driver to meet demands for 

increased throughput at lower homogenization pressures while yielding the same or 

better homogenization effect. Simultaneously, major global dairy and food players are 

investing in differentiating some of their products by adding supplements like vitamins 

and fibers to turn them into healthier and more profitable products. These higher-end 

products typically require higher homogenization pressures. Key developments to take 

note of in this space include improved product and process understanding and more 

efficient homogenizer valves designed with the latest CFD tools. 

Some of the emerging applications (e.g., certain novel biotech applications, new foods, 

battery materials, and NFC/PHA) will either fizzle out while others will grow and mature 

into main-stream applications with large capacity, 24/7 production plants on a global 



scale. Consequently, HPH machine designs and materials will evolve to better suit these 

emerging applications in an industrial setting.  

HPH manufacturers are actively developing designs and solutions to better meet 

customers’ expectations and to align processes with increasingly challenging regulatory 

guidance for simpler, more robust cleanability and achieving and maintaining sterility for 

longer time than presently possible. Improvements in materials of construction and design 

of wear parts in contact with the product are important to reducing maintenance frequency 

and costs. In-line measurements of product quality attributes, other than what is currently 

commonly available (e.g., temperature, flow, density, viscosity, turbidity etc.) will become 

viable even for lower margin products and will allow application of quality-by-design 

concepts in future homogenizer design and process control. 

4.2. Case Studies from Industry 

With widespread industrial application of HPH, the following case studies are presented 

to convey noteworthy points drawn from various recent industrial applications at the 

different stages of operation. Multiple empirical observations and “rules of thumb” are also 

provided as a reference to the reader. It is hoped that both industry practitioners and R&D 

scientists alike will find some of the information presented in this section relevant when 

working HPH. In some cases, specific details are omitted as this information is proprietary 

and/or commercially sensitive. All identifying information has also been removed. 

4.2.1. Process Scale-Up 

Introduction 



Scale-up of HPH processes can often be very challenging as optimal operating conditions 

identified at a laboratory/pilot scale may not directly translate to satisfactory product 

quality and/or process conditions in scale-up runs. In this case study, a pharmaceutical 

company scaled-up (~30X the capacity of a table-top HPH) production of an API 

dispersion with 1~3 µm particles. The scale-up process was challenging but succeeded 

with inputs from both the pharmaceutical company and equipment manufacturer.  

Case Study and Results 

A table-top HPH system was used to identify the optimal process operating conditions for 

a product of the desired quality, quantified by size and size distribution determinations. 

As part of the scale-up procedure, the equipment manufacturer performed CFD studies 

and relied on prior experience to scale up the radial diffuser homogenizing valve size and 

profile. Initial trials conducted on the production scale equipment failed to achieve the 

desired particle size reduction as the particles were too large, even with the same 

operating pressure and number of passes. Increasing the operating pressure was not an 

option as the identified operating conditions were already near the limit of the machine 

and higher pressures increased the polydispersity of the particle size distribution. To 

resolve the issue, experiments were carried out on the production machine to 

characterize the relationship between product flowrate and particle size distribution. The 

CFD model was updated using the experimental data which enabled the equipment 

manufacturer to modify the size and shape of the homogenizing valve, yielding the 

desired outcome. Shortly after, an even larger production scale HPH system (~6X larger) 

was ordered and the scale-up was not problematical as the updated CFD model and 



process insights gained from the first experience proved to remain valid at the larger scale 

and the first batch of product met quality specifications.  

Conclusions 

Scale-up, especially for complex products and mixtures, remains a highly empirical 

exercise, drawing upon deep process and product know-how from both the user and 

equipment manufacturer. The following points should be considered in scale-up: 

• Modelling techniques like CFD can facilitate scale-up but remains relatively 

immature and needs to be used in conjunction with product and process know-

how.  

• Radial diffuser type homogenizer valves are much more industrially validated and 

successfully scaled-up when compared to other types such as fixed orifice or 

opposing jet valves. 

• Radial diffuser type homogenizer valves are much more amenable to scale up 

compared to other valve types. There are many variants, with multiple adjustable 

design parameters (Figure 2) to suit a desired application at a given production 

scale 



 

Figure 2. Schematic of a radial diffuser type homogenizer valve. The valve diameter, 
effective diameter, travel, and impact distance are important valve design parameters that 
can be adjusted to achieve the desired fluid dynamic effect for a specific application.  

4.2.2. Process Optimization 

Introduction 

An industrial-scale process for the production of NFC was being implemented. While the 

process conditions identified and successfully transferred from R&D to industrial-scale, 

the production process was deemed commercially unviable as the operating expenses 

(OPEX) was excessively high. Process optimization was necessary to reduce OPEX as 

much as possible along with capital expense (CAPEX) to acceptable levels.  

Case Study 

The process originally specified a 5,000 L/hr homogenizer rated for 150 MPa. The energy 

consumption per pass at 150 MPa was 46 kWh/1000L of product. The cellulose raw 

material had natural variations and contained abrasive contaminants. The removal of 

these contaminants was neither necessary (the contaminants did not impact final product 



quality) nor practicable (the process would then be too expensive and complicated). At 

these operating conditions, the machine experienced unacceptable levels of wear which 

resulted in significant cost for parts replacement and labor alongside production 

downtime. 

To address this issue, multiple avenues of optimization were undertaken by both the 

equipment manufacturer and process development team. The equipment manufacturer 

carried out CFD studies to optimize the homogenizing valve geometry to enhance the 

desired fluid dynamic effect necessary for NFC fibrillation at gentler operating conditions. 

The process development team also optimized the pre-processing steps which typically 

consist of hydrolysis / enzymatic reduction steps.  

Results 

The combined efforts of the equipment manufacturer and process development team 

resulted in the process being able to produce NFC of acceptable quality at 60 MPa which 

reduced energy consumption per pass to 18.3 kWh/1000L of product. The gentler 

operating conditions also reduced parts wear, required labor, and frequency of 

maintenance by ~15X. Furthermore, as lower pressures were used, a larger machine 

(14,000L/hr machine rated at 70 MPa) could be supplied at lower price, thus, reducing 

the CAPEX per unit capacity by ~5X. These cost savings derived from optimizing both 

the HPH and upstream processes made the operation commercially viable and 

successful.  

Conclusion 



The following rules of thumb can be used when considering avenues for process 

optimization and better economies: 

• At the same rated operating pressure, machine price ratio changes to the capacity 

ratio to the power of 0.5 or even lower: 𝐶𝐶2
𝐶𝐶1

 ~ ��̇�𝑉2
�̇�𝑉1
�
0.5

, where 𝐶𝐶𝑖𝑖 is the cost of machine 𝑖𝑖 

rated for capacity �̇�𝑉𝑖𝑖. 

• At the same rated capacity, machine price ratio changes to the rated pressure ratio to 

the power of 1.5 or even higher: 𝐶𝐶2
𝐶𝐶1

 ~ �𝑃𝑃2
𝑃𝑃1
�
1.5

, where 𝑃𝑃𝑖𝑖 is the rated pressure of machine 

𝑖𝑖. 

• The power consumption of the HPH process can be estimated using the following 

formula: Power Consumption (kW) =  
V̇� Lhr�×P(bar)

36000×  η
, where η is an efficiency factor and 

can range from ~0.50 to 0.92. 

• Consider possible pre-processing steps to more efficiently utilize HPH. One common 

example is to use a lower-energy dissipation method (e.g., rotor-stator high shear 

mixer) to perform pre-dispersion/crude emulsion formation as extensively as possible 

prior to using a high-energy dissipation device. This strategy generally helps improve 

product quality and reduce OPEX and CAPEX.  

• Actively consider process economics at the R&D stage to better align R&D with 

manufacturing. 

 

4.2.3. Process Troubleshooting 

Introduction 



HPH is often used as an intermediate unit operation in the process to achieve a specific 

goal such as cell disruption or emulsification. Correspondingly, the final product quality in 

relation to HPH performance is dependent on both successful HPH operation and 

upstream and/or downstream operations. Two case studies are presented here which 

illustrate how factors upstream or downstream of the HPH process can adversely impact 

the quality of product and efficiency of process. 

Case Study 

In the first case, a manufacturer had over many years successfully produced bovine 

growth hormones using an E. coli culture process with HPH for cell disruption and 

achieved ~95% cell rupture efficiency in two passes. However, the cell rupture efficiency 

dropped to < 60% from one batch to the next which seriously affected productivity. 

Technicians from the HPH manufacturer first repaired and/or replaced all relevant 

mechanical parts and certified the machine as good as new. However, this did not 

improve cell rupture efficiency which remained < 60%. The manufacturer organized an 

audit led by a senior process specialist to further diagnose the problem and identified a 

process change upstream (initially assumed as non-material) that caused the drop in cell 

rupture efficiency. 

In the second case, a high-fat, high-viscosity non-Newtonian emulsion food product was 

produced using HPH. The product had a comparatively lower surfactant loading without 

adverse impact on product stability as the high viscosity impeded coalescence of fat 

globules. The manufacturer experienced a recurring problem where emulsion failure 

occurred in the packaging and free oil would appear on top of the product in the package 



which resulted in significant costs arising from recalls and waste handling. The problem 

was only recently addressed during an audit and fixes were recommended. 

Results 

In the first case study, a new storage tank (without a cooling jacket) was installed between 

the fermentation vessel and downstream processes (centrifugal separation and HPH cell 

disruption) to reduce the time taken to empty the fermentation vessel (with cooling jacket) 

from ~3 h to ~15 min, enabling higher fermenter utilization. As a result, the E. coli cells 

were held in the storage tank at the fermentation temperature in a low nutrient 

environment for up to an additional ~3 h, during which cell wall morphology significantly 

changed, impacting cell rupture efficiency. As a diagnostic test, the new storage tank was 

bypassed and cell rupture efficiency was immediately restored. The long-term solution 

involved installing an inline cooler to chill the cell culture to < 10°C enroute to the storage 

tank. With the intervention, cell rupture efficiency (a slight increase in efficiency was 

observed) improved and there was more efficient fermenter utilization. 

During the audit in the second case study, it was determined that the issue arose 

downstream of the homogenizer as product samples were taken directly from the outlet 

of the homogenizer did not experience emulsion failure. The outlet of the homogenizer is 

connected to the fill-heads of the packaging machine by a jacketed pipe of about 50 m in 

length. The flow in the pipe is highly unsteady due to the filling process with intermittent 

start-stop breaks after every few seconds when switching between fill heads. However, 

the flow would also have frequent start-stop pauses over longer periods when there are 

packing line issues. The unsteady flow introduces sharp velocity gradients in the pipe, 

which when coupled with the comparatively lower surfactant content of the product, 



resulted in coalescence of oil droplets and emulsion failure. Changes to the process to 

maintain a steady flow of product in the pipe and to shorten the distance between the 

homogenizer and the filling line are recommended.  

Conclusion 

Understanding the complex interactions between HPH operation, upstream/downstream 

processes and the product is vital for effective operation of the entire process and to 

ensure continuous good product quality. Correspondingly, process design, modification 

and troubleshooting decisions should be made with inputs from subject matter experts 

(e.g., process/product technologists) to ensure holistic decision making with the 

equipment manufacturer. Failure to do so can result in significant costs, from lost in time 

and output-related issues like efficiency and quality. 

5. Conclusions and Outlook 

Even though HPH is a mature technology platform and has become a standard unit 

operation in industry, many challenges either persist or are on the horizon. From a 

theoretical perspective, many knowledge gaps such as a detailed understanding of fluid 

flow in the valve remain. Emerging applications, in particular biological and nanoscale 

applications, contribute many open questions and exciting research and/or commercial 

opportunities. The push for sustainability and economies in more conventional 

applications will drive innovation in process and equipment design. Continued research 

and development by academia, equipment manufacturers, and industry is necessary to 

address these challenges going forward and collaborative efforts between stakeholders 

will become increasingly important. Advances in adjacent fields such as PAT, 



computational simulations, manufacturing, and materials have been and will continue to 

be significant in progressing HPH technology and its use.  
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