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ABSTRACT: One of the biggest obstacles to successful polymer property prediction is an effective 
representation that accurately captures the sequence of repeat units in a polymer. Motivated by the 
successes of data augmentation in computer vision and natural language processing, we explore 
augmenting polymer data by rearranging the molecular representation while preserving the correct 
connectivity, revealing additional substructural information that is not present in a single representation. 
We evaluate the effects of this technique on the performance of machine learning models trained on 
three experimental polymer datasets and compare them to common molecular representations. Data 
augmentation improves deep learning property prediction performance compared to equivalent (non-
augmented) representations. In datasets where the target property is primarily influenced by the polymer 
sequence rather than experimental parameters, this data augmentation technique provides the molecular 
embedding with more information to improve property prediction accuracy. 
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Introduction 

Scientists increasingly often employ machine learning (ML) methods to accelerate discovery.1 ML has seen 
many successes in polymer applications such as protein folding, polymer dielectrics, and polymer 
electrolytes.2–4 However, polymers remain one of the most challenging domains for ML applications due 
to their relative complexity as opposed to small molecules.5,6 

We identify two pressing problems in ML for polymers. First, the quality and quantity of data that is 
available is limited. Second, a molecular representation that accurately captures the stochastic and 
continuous nature of polymers is needed. Compared to datasets in other materials domains such as the 
Materials Project7 and drug discovery,8–11 polymer datasets are significantly smaller.1,12,13 Additionally, 
establishing well-defined structure-property relationships is difficult because variations in experimental 

mailto:alan@aspuru.com


methods, processing history, and measuring conditions yield different results.6 For instance, measuring 
the molecular weight of a polymer is different by nuclear magnetic resonance, gel permeation 
chromatography, and viscosity. Due to the high variability of results across the measurements of a single 
property, key experimental polymer properties such as molecular weight and dispersity are often absent 
in datasets, yet they are integral to the performance, self-assembly, and rheological properties of a 
polymer.6,9,10–13 

An appropriate molecular representation for polymers is a non-trivial problem because polymers are 
repetitive, stochastic, and polydisperse. The dispersity and skewness of the molecular weight distribution 
influence the polymer’s physical properties which illustrates the complexity of polymers,19 and 
subsequently the difficulty of ML for polymers since a lot of this information is absent in datasets. 
However, other characteristics such as polymer topology can be represented via BigSMILES or a graph 
neural network.20,21 There are many potential topologies such as block, alternating, random, and graft 
copolymers, which can assemble into different nanostructures.22 By defining the frequency of each 
connection between the monomers of a copolymer in a graph representation, a variety of polymer 
topologies can be represented.21 

Currently, there are effective but limited ways of encoding polymers. Line notations have been 
demonstrated to be an effective and relatively compact representation for polymers as demonstrated by 
Hierarchical Editing Language for Macromolecules (HELM),23 and BigSMILES.20 HELM represents a polymer 
as a hierarchy of atoms, monomers, and simple and complex polymers which is “SMILES-like” because of 
its computational- and human-readable format. The lower-level components (atoms, monomers) can 
combine to form higher-level components (simple, complex polymers).23 HELM is popular among many 
pharmaceutical databases and companies because of its compact notation and versatility across several 
combinations of structure types.24 BigSMILES addresses the stochasticity of a polymer and represents 
complex polymer topologies (random and block copolymers, and ring and branched polymers) by adding 
additional syntax and symbols effectively extending the conventional SMILES notation.20,25 

Molecular fingerprints encode basic substructural information such as functional groups and connectivity 
but do not capture the stochastic, repetitive, or polydisperse nature of polymers.26 Polymeric fingerprints 
are similar, but fragment a polymer into monomers, dimers, and trimers instead of generating fragments 
within a specific radius of each atom.3,27 The success of fingerprint representations is known to depend 
on the task.28 Another alternative is a fingerprint created from an oligomer with more than five repeat 
units which were shown to perform relatively well in property prediction tasks because they can partially 
represent the repeating nature of polymers.29 Despite such advances, representing the repetitive nature 
of a polymer remains a long-standing problem.29 We aim to tackle this problem with data augmentation. 

Data augmentation has been extremely successful in computer vision (CV) and natural language 
processing (NLP)30,31 because it maximizes the amount of information that can be learned from scarce 
data by performing transformations that allow ML models to ignore irrelevant variances. Empirically, 
models trained on augmented data are less error-prone to transformations in real (non-augmented) 
data.30 SMILES representations can be augmented by generating new non-canonical SMILES from the 
same molecule by changing the order in which the molecular graph is traversed each time.32,33 
Augmenting SMILES improves the property prediction performance of a long short-term memory (LSTM) 
neural network (NN) because it can learn the grammar of SMILES notation.32 

In this work, we present a new data augmentation technique for polymers via iterative rearrangement of 
fragments. This data augmentation technique can be used on any polymer because the molecular identity 
of the repeat unit is not restricted to a specific sequence. The only condition for this data augmentation 
technique is for the polymer to have a linear backbone that can be decomposed into 2 or more unique 



fragments. Augmenting data in this way captures the repetitive nature of polymers and reveals new 
substructural information which may improve model performance. First, we compare the performance of 
our augmented representations to that of common molecular representations with well-established ML 
and deep learning (DL) models across three different datasets. These datasets cover different structure-
property relationships in polymers: CO2 Solubility,34 Pervaporation Separation,35 and Swelling.36 To this 
end, we built a rigorous ML workflow which incorporates stratified cross-validation, and automated 
hyperparameter optimization. Next, we evaluate trends in the performance of the augmented 
representations across the three datasets. Finally, we compare the accuracy of our models against the 
results reported in the literature. 

Results and Discussion 

Augmenting Polymer Representations 

Augmenting polymer data by rearranging the fragments of a polymer backbone while preserving correct 
chemical connectivity could expose an ML model to previously unseen substructures (Figure 1), showing 
that the absolute position of a fragment is irrelevant to the properties of the polymer. Additionally, 
fragments need not correspond to the monomer but could be monomer substructures or be spread across 
co-monomers. As mentioned before, the previously unseen substructures along a polymer backbone 
could also be captured by a sufficiently long oligomer.29 However, the length of an oligomer sequence is 
an additional feature that the ML model will implicitly learn when presented with an oligomeric polymer 
representation which could confuse the model. On the other hand, augmenting polymer representations 
by iterative rearrangement yields representations of uniform size while providing additional information. 

 

Figure 1. Advantages of the data augmentation technique demonstrated on a polyetherimide. After data augmentation, hidden 
substructural information is revealed, indicating that the absolute position of fragments can be ignored. 

Encoding augmented polymer representations manually would be a tedious process. Unfortunately, no 
molecular fragmentation tools are available that could automatically fragment polymer backbones. We 
created a semi-automated workflow for augmenting polymer representations that is available as a GitHub 
repository.37 We define the backbone as a linear chain of fragments that results in the simplest 
representation, indicated by the green bonds in Figure 2a.38 Automatically identifying ideal backbone 
fragmentation patterns is very challenging because this task requires a well-defined set of rules. However, 
sidechains or other functional groups may contain the same substructures. The user can manually 
determine the bonds to be broken. The resulting fragments are then numbered (Figure 2b), iteratively re-



ordered, and one-hot encoded (Figure 2c). This rearrangement preserves the polymer sequence while 
generating new encodings thereof. 

 

Figure 2. Illustration of data augmentation for a polyetherimide. a) The polymer is fragmented along the backbone. b) The 
fragments are assigned numbers. c) The fragments are iteratively re-ordered such that the polymer sequence is preserved. 

Augmenting with one-hot encoded fragments can effectively reveal that the absolute position of 
fragments is not relevant to structure-property relationships. However, this approach cannot reveal 
previously unseen substructures. Fingerprints are a robust method of segmenting a molecule because 
they are order-invariant and generate substructures from each atom of the molecule within a specific 
radius while incorporating atomic features such as the number of “heavy” atoms, the valence minus the 
number of hydrogens, atomic number, atomic mass, atomic charge, the number of implicit and explicit 
hydrogens, and whether the atom is in a ring.27 However, as discussed earlier, fingerprints generated from 
a single representation may miss important substructural information. We recombined the augmented 
fragments into single structures and generated the corresponding fingerprints to create a representation 
that benefits from the advantages of both iterative rearrangement and additional substructural 
information from fingerprints. 

 



An alternative to the fragment-based method discussed above is to encode the augmented fragments and 
the recombined augmented fragments as SMILES. The advantage is that the augmented fragments are no 
longer represented as arbitrarily related numbers but rather as SMILES which have some structural 
information. However, the disadvantage is that the model must learn the grammar and syntax of SMILES 
in addition to the structure-property relationships. For this reason, it is important to consider the data 
augmentation of SMILES and the choice of an appropriate model which can effectively learn sequential 
information such as an LSTM.39,40 

Model-Representation Pair Performance Within Datasets 

Below we compare different models (support vector machines (SVM), random forest (RF), gradient-
boosted tree (XGBoost), NN, and LSTM) and representations (SMILES, SELFIES, BigSMILES, BRICS, 
fragments, extended-connectivity fingerprints (ECFP_6), augmented SMILES, augmented fragments, and 
recombined augmented fragments) as they pertain to different experimental polymer datasets. 

CO2 Solubility 

 

Figure 3. Heatmap of model-representation pair performance for the CO2 Solubility dataset. New representations presented in 
this work are marked by red asterisks. 

The CO2 Solubility dataset contains 13 different polymers common to gas solubility experiments (Table 

S1).34 The two continuous variables, temperature and pressure, have a wide distribution of values 

(Figure S1), which is suitable for ML because the data is sufficiently diverse for the models to extract 

information from it. Because temperature and pressure are strongly correlated with the solubility of CO2 

independent of polymer structure (Figure S2), all model-representation pairs are relatively accurate 

(most R2 > 0.7). However, this suggests that the molecular representation will have minimal impact on 

the prediction of CO2 solubility. 



RF and XGBoost methods consistently perform very well for the different representations (R2 = 0.94-

0.99). RF and XGBoost perform better than other models because tree-based methods are robust 

models for capturing relevant features while ignoring other ones.41 DL methods such as NNs and LSTMs 

are more sensitive to molecular representation. As opposed to tree-based models, uninformative 

features can have adverse effects on DL model output.41 For example, the SMILES and BigSMILES 

representations are uninformative features for the NN model because it requires the NN to learn the 

grammar and syntax of these representations. NNs typically do not perform well on sequential data 

because of their inherent architecture and lack of temporal encoding, unlike recurrent NNs or 

LSTMs.40,42 

 

Pervaporation 

 

Figure 4. Heatmap of model-representation pair performance for the Pervaporation dataset. New representations presented in 
this work are marked by red asterisks. 

The Pervaporation dataset contains 16 polymers used in pervaporation separation membranes (Table S2) 

and 6 solvents (Table S3).35 Four polymers – poly(vinyl acetate), alginate, chitosan, and poly(dimethyl 

siloxane) – constitute 73.5% of the data points, which could limit model generalizability to other polymers. 

Many of the continuous input features (Figure S5a) such as temperature, contact angle, and weight 

percent of water on the feed side (xw_wt_%) have a concentration of data points around a few values. 

However, values for temperature and weight percent of water on the feed side are clustered around 

specific numbers (e.g. multiples of 5 and 10) to a statistically unlikely degree, suggesting that the true 

numbers may have been rounded when reported. The solvent solubility parameter values are unevenly 

distributed because there are only 6 solvents in the dataset. The output variable (total flux, J) is unimodal, 



smooth, and heavily skewed toward small values (Figure S5b). Relatively low correlations between the 

gross descriptors and total flux suggest that ML is appropriate for structure-property predictions (Figure 

S6).43 

RF and XGBoost perform well across most of the molecular representations, similar to the CO2 Solubility 

dataset. NNs perform worse than RF and XGBoost on property prediction tasks with a non-smooth feature 

space, as seen by the uneven distribution of input variables (Figure S5), because a tree-based method can 

segment the feature space which makes it easy to learn piece-wise functions.41 The lack of effect from the 

changes in molecular representation suggests that RF and XGBoost rely on the gross descriptors rather 

than the molecular representation to make predictions. As seen in the previous dataset, NN and LSTM are 

more sensitive to molecular representation. For the same reason that a poor representation will 

negatively affect the DL model output, a good molecular representation will have positive effects on the 

model output which is shown by the fingerprint representation on the NN model. 

 

Swelling 

 

Figure 5. Heatmap of model-representation pair performance for the Swelling dataset. New representations presented in this 
work are marked by red asterisks. 

The Swelling dataset contains 9 different polymers (Table S4) and 9 solvents (Table S5).36 The 

distribution of swelling degree (SD) is unimodal and skewed towards an SD of 0-2% (Figure S9). The poor 

performance across all the models and representations can be explained by the limited diversity and 

size of the dataset (only 77 data points). 



One of the most notable differences between the Swelling dataset and the other two datasets is the lack 

of consistent performance across the molecular representations. Without other input variables, RF and 

XGBoost models are dependent on molecular representation for property prediction. Augmented 

fragments perform best for RF and XGBoost which suggests that it can be an appropriate molecular 

representation, leveraging the advantages of our data augmentation technique. However, the results 

from augmented fragments with RF and XGBoost have considerably higher standard deviation and fall 

within one standard deviation of other representations which make it difficult to conclude the 

performance improvement. LSTMs perform poorly on order-invariant representations such as BRICS and 

Fingerprints because LSTMs process information sequentially where the order is important to consider 

and they have limited memory for long-term information throughout the representation.39 The standard 

deviation of performance across training folds is large, suggesting that performance is highly dependent 

on the specific fold since there is such little data. The overall poor performance and high standard 

deviation can be attributed to the lack of data. 

General Trends Across Datasets 

Data augmentation can slightly decrease performance because it exaggerates bias within a dataset. 

Since property prediction in the CO2 Solubility and Pervaporation datasets is dependent on the input 

variables rather than the molecular representation, data augmentation of the molecular representation 

has direct negative effects. This data augmentation technique introduces data bias because the number 

of augmented data points depends on the length of the polymer and the diversity of fragments in the 

polymer. More data points can be created for polymers composed of a larger number of fragments (i.e., 

more possible rearrangements). Consequently, the original distribution of data will be biased towards 

data points with polymers that yield more fragments (Figure S3, S4, S7, S8, S10, S11), resulting in 

overfitting. With the Swelling dataset, the adverse effects are more pronounced. Since the dataset is 

small, the original distribution will be shifted relatively more than other datasets with larger amounts of 

data (Figure S10, S11). Furthermore, SVMs perform poorly because they are limited by data imbalance 

and this data augmentation technique exaggerates this effect.44 

Across all the datasets, it is apparent that LSTMs perform poorly with order-invariant representations 

because they are designed for temporal sequence data.45 While LSTMs perform well with line notations 

(SMILES, BigSMILES, SELFIES, and augmented SMILES), they perform poorly on fingerprints and BRICS 

because the position of bits (fingerprints) or fragments (BRICS) is irrelevant. In contrast, the position of 

characters in SMILES is integral to encoding the molecule’s structure.46  

Fingerprint representations consistently perform best across the three experimental datasets (Figure 3-
6) because they are order-invariant and can capture substructures of different sizes.27,46 The success of 
ECFP can be attributed to the extraction of relevant molecular substructures, and the inclusion of 
molecular features as mentioned before.27,46 These molecular features are not included in the non-
fingerprint representations used in this study which provides ECFP with more information about the 
molecular structure. Other representations must rely on the ML model to implicitly extract this 
information from the structure which is non-trivial. 

Impact of Data Augmentation on ML Model Performance 

NN models are most likely to benefit from data augmentation. The other models will not benefit as much 
because the molecular representation has little effect on RF and XGBoost models, and SVMs perform 



poorly on imbalanced datasets. NNs can take advantage of this data augmentation technique by learning 
to ignore the absolute position of fragments and capturing previously unseen structural information. 

Across the three datasets we examined, data augmentation via iterative rearrangement improves the 
performance of NN models slightly (Figure 6). This improvement is most pronounced in the CO2 Solubility 
dataset, where performance is already high, while differences between conventional and augmented 
fragments are within one standard deviation for the Pervaporation and Swelling datasets. This is 
reasonable because a DL model will improve with a smoother feature space.41 The feature space is 
smoother from data augmentation because the molecular representation slightly changes while mapping 
to the same output which means that each data point occupies a larger area in the feature space. The 
augmented fragments representation improves model performance because it ignores irrelevant 
features, captures the repetitive nature of the polymer structure, and offers new substructural 
information. 

 

Figure 6. Comparison of the performance of neural network models for the CO2 solubility, pervaporation, and swelling datasets 
with and without data augmentation. Error bars represent the standard deviation of R2. 

As one-hot encoded fragments have limited generalizability,26 recombining the augmented fragments into 
a molecular structure makes them more generalizable. To leverage the advantages of both fingerprints 
and data augmentation, the augmented fragments are recombined into a molecular structure (Figure 2) 
from which fingerprint representations could be generated. The resulting fingerprint contains new 
substructural information because the iterative rearrangement creates new bonds that were not 
previously present. 

However, recombined augmented fingerprints do not outperform conventional fingerprint 
representations. The NN models perform equivalently on the Pervaporation and Swelling datasets, while 
their performance decreases on the CO2 Solubility dataset. The lack of improvement could likely be 
attributed to the fact that the extra substructural information generated by augmenting fingerprints is 
not significant enough to yield better model performance. For example, a change in one bit out of 1024 
may not help the model learn something new. 



 

Figure 7. Comparison of property prediction performance between the fingerprints and recombined augmented fingerprints 
representation for the CO2 solubility, pervaporation, and swelling datasets using the neural network model. Error bars represent 
the standard deviation of R2. 

Comparing to the Reported Model Performance 

ML model performance was rigorously evaluated using stratified cross-validation which avoids inflated 
performance by preventing the biased selection of easy data points in the out-of-distribution test set. 
Here, we compare the performance of our best models for each dataset to those reported in the 
literature. 

CO2 Solubility 

Soleimani et al. trained a new model for each polymer using its corresponding data.34 Therefore, the 
resulting models cannot generalize beyond the specific polymer used for training. For the sake of 
comparison, we calculate a global R2 value across all the model predictions for each polymer. Training a 
single model using the aggregated data from each polymer makes our models more generalizable and is 
more challenging because the model cannot overfit to a specific polymer. We found that our best model 
(NN trained on fingerprints) performs significantly better than the reported models. 

Pervaporation 

Wang et al. evaluate their models via 50 random train/test splits (80%/20%), precluding a direct 
comparison with our models. Nevertheless, the approximate model performance from the 50 splits 
reported by Wang et al. is within a single standard deviation of our best model. Additionally, we do not 
know the exact variance of their models’ performance because the results from the 50 splits could only 
be estimated from a figure. 

Swelling 

Xu et al. use several different sampling methods: 500 random train/test (90%/10%) splits, leave-one-out 
splitting, and evaluation on a single split. These splitting techniques offer better results than stratified 
cross-validation (~80%/~20%) splits because there is more training data and less testing data. In addition, 
random split is not a reliable sampling strategy for evaluating a model’s performance because data in one 
split may be easier than in another. The reported models perform significantly better than the models in 



this study which suggests that the task is highly dependent on the specific model and input representation 
configurations. Additionally, we were only able to reproduce the results using a sum of fragments-based 
kernel ridge regression (KRR) model because sufficient details were not provided to fully reproduce the 
reported methods. 

Table 1. Comparison of the best-performing model-representation pairs against reported results. 

Dataset Model Input Representation R2 (± S.D.) 

CO2 Solubility Reference34 Gradient Boosting 
Regression 

Pressure and 
Temperature  

0.9754† 

This work NN Fingerprints 0.9886 (± 
0.0035) 

Pervaporation Reference35 Gradient Boosting 
Regression 

Sum of Fragments 
(custom fingerprint) 

ca. 0.90† (ca. ± 
0.07) 

This work XGBoost Augmented Manual 
Fragments 

0.8339 (± 
0.0820) 

Swelling Reference36 Kernel Ridge 
Regression 
(Laplacian) 

Sum of Fragments 
(custom fingerprint) 

OSN: 0.91† 
PDMS: 0.94† 

This work NN Fingerprint 0.4103 (± 
0.2534) 

† – Authors did not report results from cross-validation. 

OSN: organic solvent nanofiltration membrane, PDMS: polydimethylsiloxane. 

 

Summary and Future Work 

Augmenting polymer data via iterative rearrangement of molecular representations achieves comparable 
performance to that of the best previously reported representations. In polymer datasets that are heavily 
influenced by structure-property relationships, data augmentation provides a better molecular 
representation by extracting more structural information. 

Polymer data augmentation via iterative rearrangement improves the predictive performance of NNs 
trained on the augmented fragments representation because DL models require more data for a smoother 
feature space. Data augmentation increases the amount of data which is a blessing and a curse. With 
more data, more information can be extracted but it requires more computational resources for training. 
Despite the costs associated with data augmentation, it is negligible compared to acquiring more data 
from experiments or computer simulations. 

Data augmentation can increase the amount of data from reasonable manipulations which provides ML 
models with more information. Data augmentation in ML for chemistry is uncommon with only a few 
examples such as randomized SMILES,32,47 and crystal structure augmentation.48 The challenge with data 
augmentation is building informative manipulations for the relevant chemical information. Unlike visual 
data which has many strategies for augmentation,49 generating multiple novel molecular representations 
is difficult because molecules can be naturally represented as graphs which are rotation, translation, and 
permutation invariant.50–52 Graph neural networks could potentially benefit from the new substructural 
information generated by augmentation via iterative rearrangement. In experimental domains where 



data is scarce and costly, data augmentation extracts more information from the available data which 
should be an important consideration for ML workflows. 

Methods 

Datasets 

The datasets are derived from experimentally measured polymer properties and were collected from the 
supporting information of the original work. 

CO2 Solubility 

The CO2 Solubility dataset has 515 data points, 13 unique polymers, and 3 input features: molecular 
representation, pressure (mPa), and temperature (K) in a sorption cell for a pressure-decay 
experiment.34,53 The target property is CO2 solubility in polymers (g of CO2 dissolved / g of polymer). 

Pervaporation 

The Pervaporation dataset has 681 data points, 16 unique polymers, 6 solvents, and 7 input features: 
molecular representation, and the gross descriptors: weight percent of the water on the feed side (%), 
operating temperature (oC), pressure on the permeate side (mbar), membrane thickness (µm), water 
contact angle of the membrane (o), and the Hildebrand solubility parameter (Mpa1/2).35 The target 
property is the total flux of permeation (kg/m2h). 

Swelling 

The Swelling dataset has 77 data points, 9 unique polymers, 9 solvents, and 1 input feature: molecular 
representation.36 The target property is the degree of swelling (l %). 

 

Machine Learning 

Data Augmentation 

Recombining Augmented Fragments into Recombined Augmented Fingerprints 

The polymer is segmented into fragments along its backbone by breaking single bonds (Figure S12a). The 
two atoms previously connected by a broken bond are labelled with an arbitrary element that is absent 
from the dataset in ascending atomic number (Figure S12b). The end groups are assigned arbitrary 
elements in the same manner. The order of the backbone is iterated by rearranging the first fragment to 
the last fragment in the sequence (Figure S12c). The polymer backbone is reconstituted by applying 
reaction SMARTS on the first fragment and the next fragment in the sequence which reacts the arbitrary 
elements together to form a single bond (C-C, C-N, or C-O). The reaction SMARTS is applied to the resulting 
fragment and the next fragment until the whole molecule is reformed. This ensures that the relative order 
of the polymer is preserved (Figure S12d). Only the unique SMILES of the recombined polymers are kept 
to generate new fingerprints. It is important to note that the recombined fragments form many 
symmetrical structures which were eliminated, hence a reduction in the number of data points for the 
recombined augmented fragments. 

Machine Learning Workflow 

The dataset is pre-processed from the SMILES representation into the other representations, and the 
feature and target properties are scaled using min-max scaling. Before training, the dataset is split using 



stratified cross-validation using an 80% train, 20% test split. Hyperparameters of the scikit-learn54 models 
(SVM, RF, and XGBoost55) are optimized using 5-fold cross-validation from the training data to create a 
~64% training fold and a ~16% validation fold. The hyperparameters of the PyTorch models (NN, and 
LSTM)56 were initially hand-tuned, but the networks were not sensitive to any further hyperparameter 
optimization. The PyTorch models were run for 100 epochs to ensure that the models reach convergence. 
To ensure a fair comparison, the training, validation, and test folds of the PyTorch models were configured 
in the same manner as the scikit-learn models which have ~64% of the data for training, ~16% for 
validation, and ~20% for test folds. After training, model performance is evaluated based on the prediction 
accuracy for the test set. Note that the test set does not contain augmented data when evaluating the 
data augmentation technique. 

Molecular Representation and Model Evaluation 

There are numerous molecular representations and ML models to choose from, and the combination’s 
performance can be task-dependent.26,57 We have included some of the most common ML (SVM, RF, 
XGBoost) and DL (NN, LSTM) models to evaluate the impact of polymer representation on model 
performance. To understand the impact of data augmentation, we compared canonical SMILES,46 
augmented SMILES,32,47 one-hot encoded molecular fragments (both augmented and recombined 
augmented), and other common representations (BigSMILES,20 SELFIES,58 BRICS,59 ECFP6).27 
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