
Kylin 1.0: An Ab-Initio Density Matrix
Renormalization Group Quantum Chemistry Program
Zhaoxuan Xie∗, Yinxuan Song∗, Fangwen Peng∗, Jianhao Li∗, Yifan Cheng∗,

Lingzhi Zhang∗, Yingjin Ma†, Yingqi Tian∗‡, Zhen Luo∗§, Haibo Ma∗¶‖

November 29, 2022

Abstract

The accurate evaluation of electron correlations is highly necessary for the proper
descriptions of the electronic structures in strongly correlated molecules, ranging from
bond-dissociating molecules, polyradicals, to large conjugated molecules and transition
metal complexes. For this purpose, in this paper, a new ab-initio quantum chemistry
program Kylin 1.0 for electron correlation calculations at various quantum many-body
levels, including configuration interaction (CI), perturbation theory (PT), and den-
sity matrix renormalization group (DMRG), is presented. In addtion, fundamental
quantum chemical methods such as Hartree-Fock self-consistent field (HF-SCF) and
the complete active space SCF (CASSCF) are aslo implemented. The Kylin 1.0 pro-
gram possesses these features: (1) efficient DMRG implementation based on the ma-
trix product operator (MPO) formulation for describing static electron correlation
within a large active space composed of more than 100 orbitals, supporting both
U(1)n × U(1)Sz and U(1)n × SU(2)S symmetries; (2) efficient second-order DMRG-
self-consistent field (SCF) implementation; (3) externally-contracted multi-reference
CI (MRCI) and Epstein-Nesbet PT with DMRG reference wave functions for includ-
ing the remaining dynamic electron correlation outside the large active spaces. In this
paper, we introduce the capabilities and numerical benchmark examples of the Kylin
1.0 program.
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1 INTRODUCTION

Nowadays the accurate computation of the electronic structures in large and strongly corre-

lated chemical systems is one of the main challenges in the quantum chemistry community.1–5

Here, the strong correlation refers to the situation in many chemical problems such as bond

breaking/formation in chemical reactions and transition metal catalysis in biological photo-

synthesis, in which there are many energetically near-degenerate frontier molecular orbitals

(MOs), making it impossible to approximate the electronic wavefunction by using only one

leading component. In such cases, usually a limited number of possible and important Slater

determinants (SDs) or configuration state functions (CSFs) have to be first identified. For

example, the widely used complete active space (CAS) methods expand the electronic wave-

function using all possible SDs or CSFs within an active space constructed from a limited

number of pre-selected active orbitals. Unfortunately, it is infeasible to obtain the exact full

configuration interaction (FCI) solution for large active spaces, as the dimension of the con-

figuration space grows exponentially with the increasing system size. Nowadays, the largest

exactly solvable active space is 20 electrons in 20 orbitals, i.e. (20e, 20o).

In order to break through the above limitation of small active space (also known as “curse

of dimensionality”), various multi-configurational quantum chemistry methods have been

proposed to achieve near-exact FCI solution, such as FCI quantum Monte Carlo (FCIQMC)6,

perturbatively selected configuration interaction (CIPSI)7, heat-bath configuration interac-

tion (SHCI)8,9, iterative CI with selection (iCI)10,11, etc. Among them, the density matrix

renormalization group (DMRG) method12–15 has become one of the biggest breakthroughs in

quantum chemistry in the last quarter century to tackle the challenge of simulating strongly

correlated molecules.16–21 DMRG’s great success can be ascribed to its efficient compression

and localized representation of quantum states in its wave function’s entangled matrix prod-

uct state (MPS) formulation or the equivalent tensor train (TT) structure in mathematical

language.22 DMRG is now widely used as a benchmark reference when testing new quantum

chemical methods for strong electron correlation problems, and it also evolves from a purely

approximate FCI solver to being fully adapted to a variety of CAS and multi-reference (MR)

methods.23–28

2



Currently, there are three publicly available and popular ab-initio DMRG programs:

BLOCK/BLOCK2 by the Chan group29, QCMAQUIS by the Reiher group20,30 and CheMPS2

by Wouters et al.31. These programs include efficient and highly scalable implementation of

DMRG for quantum chemistry, and provide powerful platforms for production level calcula-

tion of realistic systems and new algorithm development. In the meantime, all of these three

DMRG programs require precalculated two-electron integrals and information about the

active orbital space. Therefore, a general-purpose quantum chemistry programs is usually

involved, or the DMRG calculation is performed employing an interface between a DMRG

code and a general-purpose program, such as PySCF32,33 or OpenMolcas34. In addition, the

formulation of DMRG wave functions is intuitively quite different from that of traditional

quantum chemical multi-configurational wave functions, hindering the application of tradi-

tional wave function analysis tools for the users’ convenient understanding of the electronic

structure features. Moreover, to achieve highly quantitative accuracy for practical molecular

systems, it is desirable to implement post-DMRG treatments to include nonnegligible elec-

tron correlations between CAS and all other (about a few hundreds or thousands of) inactive

MOs (including core orbitals and external orbitals), i.e., dynamic electron correlation caused

by the instantaneous movement of the electrons.28

In this work, we introduce a new ab-initio DMRG program, Kylin 1.0, which can be

used as an independent quantum chemical software, with no necessity to involve additional

packages. Through utilizing a second-generation DMRG language based on MPS and matrix

product operator (MPO), Kylin 1.0 aims to provide an advanced platform for efficient ab-

initio DMRG calculations of large sized active spaces with up to more than 100 active

orbitals (when using a standalone server). In order to make the ab-initio DMRG program

easy-to-use, Kylin 1.0 also features extensive capabilities in pre-DMRG and post-DMRG

treatments, including Hartree-Fock self-consistent field (HF-SCF) and the complete active

space SCF (CASSCF), single-reference and multi-reference CI, single-reference and multi-

reference PT as well as DMRG wave function analysis and geometry optimization. All of

the available methodologies in the Kylin 1.0 package are illustrated in Fig. 1. Kylin 1.0 is

free of charge for academic users and distributed commercially to industry via the website

(http://kylin-qc.com). We will give brief introductions to these methods in Section 2, as well

3



Figure 1: Implemented methodologies in Kylin 1.0.

as some technique features in Section 3. Then we present numerical examples and discussions

in Section 4, and a short summary and outlook in Section 5.

2 METHODOLOGY

2.1 Hartree-Fock SCF, Configuration Interaction and Perturba-

tion Theory

Most ab-initio methods build many-electron wave functions from atomic orbitals (AOs) or

MOs. The simplest many-electron wave functions constructed from MOs are obtained from
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Hartree-Fock SCF calculation at a mean field level. In Kylin 1.0 package, restricted and un-

restricted Hartree-Fock (RHF and UHF) approaches35–37 are implemented with AO integrals

from integral library libcint38. Techniques including Pulay’s direct inversion in the iterative

subspace (DIIS)39, C2-DIIS40 and energy-DIIS (EDIIS)41 are optional to accelerate SCF

convergence. Abelian point group symmetries up to D2h can be identified automatically in

principal axis systems and symmetry-adapted orbital integrals are determined using double

coset42.

To recover the electron correlation energy, which is absent in HF method due to the sin-

gle configuration approximation, the post-HF methods are necessary. One possible solution

is CI method, whose wavefunction is constructed as a linear combination of configurations.

The CI singles-and-doubles (CISD) and full CI (FCI) methods are implemented in Kylin 1.0.

The CISD wavefunction includes HF configuration as well as its single and double excitation

configurations, while the FCI wavefunction further includes all other higher excitation con-

figurations. The CISD and FCI calculations are performed by the graphical unitary group

approach (GUGA),43–48 where the CSF is represented by a complete walk from top vertex

to bottom vertex in the shavitt graph.46–48 The spin-free Hamiltonian can be written as

Ĥ =
∑
pq

hpqÊpq +
1

2

∑
pqrs

(pq|rs)êpq,rs, (1)

where

hpq = ⟨p|ĥ|q⟩ (2)

and

(pq|rs) = ⟨p(1)r(2)| 1
r12

|q(1)s(2)⟩ (3)

are the one-electron and two-electron MO integrals, and p, q, r, s represent the MOs.

Êpq =
∑
σ

ĉ†pσ ĉqσ (4)

and

êpq,rs = ÊpqÊrs − δqrÊps (5)

are the one-body and two-body unitary group operators, where ĉ†pσ and ĉqσ are the elec-

tron creation and annihilation operators acting on the pth and qth orbitals with spin σ
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respectively. The problem of constructing Hamiltonian matrix is thus reduced to the prob-

lem of calculating the matrix elements of these unitary group operators. Since a unitary

group operator matrix element forms a loop in the shavitt graph (e.g. Fig. 3 in Ref48), the

loop-driven algorithm45,46 is performed, which avoids duplicate matrix elements calculation.

In addition, the direct CI algorithm49,50 is also implemented in order to avoid storage of

Hamiltonian matrix elements especially for large-scale CI calculations.

Another widely-used post-HF method, the second-order Moller-Plesset perturbation the-

ory (MP2)51, is also available in Kylin 1.0. The MP2 method uses the sum of Fock operators

as the zeroth-order Hamiltonian, and adds the correlation energy beyond the HF by means

of Rayleigh–Schrodinger perturbation theory (RSPT):

E
(2)
0 =

1

4

∑
pqrs

(pr||qs)(qs||pr)
ϵp + ϵq − ϵr − ϵs

, (6)

where (pr||qs) = (pr|qs)− (ps|qr), and ϵp is the orbital energy. The indices p and q refer to

spin orbitals that are occupied in the reference function, and the labels r and s refer to spin

orbitals that are unoccupied in the reference function (virtual orbitals). For those systems

where a single determinant can be utilized as a reasonable reference, the MP2 method usually

describes the missing electron correlation energy satisfactorily.

2.2 DMRG

The main function of Kylin 1.0 is its DMRG calculation for large active spaces with a few

tens or even more than 100 active orbitals. By using the MPS ansatz, the expansion of the

DMRG wave function of a L-orbital system can be written as

|ψ⟩ =
∑

n1···nL

Mn1
1a1
Mn2

a1a2
· · ·MnL

aL−11
|n1 · · ·nL⟩ (7)

in which |n1 · · ·nL⟩ is the occupation-number representation of the configuration, and Mni
ai−1ai

represents an element of the local rank-3 tensor M [i], which has two link bonds ai−1, ai with

dimensions mi−1, mi and one physical bond ni with dimension d (the number of possible

occupations of orbital i). For simplicity, it is assumed that the dimensions of all link bonds

mi are the same m (dimension parameter). Similarly, one can decompose the global operator
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Ô to the MPO tensors,

Ô =
∑

n1···nL
n∗
1···n∗

L

W
n∗
1n1

1b1
W

n∗
2n2

b1b2
· · ·W n∗

LnL

bL−11
|n∗

1 · · ·n∗
L⟩⟨n1 · · ·nL| (8)

in which W
n∗
i ni

bi−1bi
represents an element of the local rank-4 tensor W [i], which has two link

bonds bi−1, bi with dimensions Di−1, Di and two physical bonds ni, n∗
i . The ground state

energy ϵ can be minimized by introducing the Lagrange multiplier

L = ⟨ψ|Ĥ|ψ⟩ − ϵ (⟨ψ|ψ⟩ − 1) (9)

and solving the equation

∂L
∂M

n∗
k

ak−1ak

=
∂

∂M
n∗
k

ak−1ak

⟨ψ|Ĥ|ψ⟩ − ϵ
∂

∂M
n∗
k

ak−1ak

⟨ψ|ψ⟩ = 0 (10)

site-by-site from one end of the chain of sites to the other. Since we have decomposed both

the wavefunction and the operator in Eq. 10, and the unitarity of the matrix Mni
ai−1ai

is

ensured by the singular value decomposition (SVD) procedure, the first derivatives on the

right side of Eq. 10 can be easily computed because of Mn∗
iMni = 1. By optimizing each

local component Mni
ai−1ai

of |ψ⟩ and sweeping sites until convergence, the minimization in

Eq. 9 is achieved, resulting in |ψ⟩. The decomposed MPS and MPO can be represented in

tensor network form as illustrated in Fig. 2.

If the Hilbert space H and Hamiltonian Ĥ is protected by some on-site symmetries of

group G (e.g. charge, spin conservation and Abelian point group symmetries of molecules),

one can partition a physical bond |ni⟩ into different irreducible representations labelled with

some quantum numbers qni
. Due to properties of density matrices (quasi-density matrices

in spin-adapted case), similarly a link bond |ai⟩ can be divided into subspaces labelled

with qai . According to group representation theory, for such a symmetry-protected tensor,

the product of irreducible representations of all input bonds must equal to that of output

bonds, otherwise the tensor elements would simply vanish. Therefore, symmetry-protected

tensors can be arranged in a block-sparse format considering only the non-zero tensor blocks.

Moreover, for non-Abelian symmetries such as SU(2)S, if we consider an A-tensor labelled

with spin irreducible representations S and its components Sz, the Wigner-Eckart theorem
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Figure 2: The tensor network for MPS, MPO and ⟨ψ|Ĥ|ψ⟩. a) Decomposed wave function as

MPS. Each dot represent a rank-3 tensor Mni
ai−1ai

. b) Decomposed operator as MPO. Similar

to MPS, each block represent a rank-4 tensor W n∗
i ni

bi−1bi
. c) The ⟨ψ|Ĥ|ψ⟩ operation in tensor

network form. Each linked bond means that the two linked tensors should be contracted.

indicates that A can be divided into two parts(
Ani

ai−1ai

)SniS
z
ni

Sai−1S
z
ai−1

SaiS
z
ai

=
(
Ani

ai−1ai

)Sni

Sai−1ai

C
Sai−1 SniSai

Sz
ai−1

Sz
ni

Sz
ai

(11)

which
(
Ani

ai−1ai

)Sni

Sai−1Sai

are reduced matrix elements independent of component Sz and

C
Sai−1 Sni Sai

Sz
ai−1

Sz
ni

Sz
ni

is Clebsch-Gordan coefficient. Therefore, tensors are arranged in a even more

compact format considering only the reduced elements and Clebsch-Gordan coefficients occur

only during tensor contraction.

It should be noted that, the DMRG convergence is largely affected by the orbital ordering,

due to the sequential nature of the sweeping optimization of MPS local tensors. In the Kylin

1.0 package, we implement an orbital reordering procedure based on the widely used graph

theory technique. By constructing an undirected graph between all orbitals and using the

absolute values of the exchange integrals as the weights of the edges, we can easily get an

optimized orbital order by computing the Fiedler vector of this graph.
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2.3 CASSCF and DMRG-SCF

Since multi-configurational wave functions depend greatly on the choice of selected MOs in an

active space, a CASSCF calculation is usually performed, in which both CI coefficients and

MO coefficients are optimized simultaneously by minimizing the total energy. In quantum

chemistry calculations, a set of MOs {ϕi} are usually represented as a linear combinations

of AOs {χµ}, as

ϕi =
m∑

µ=1

C i
µχµ. (12)

To minimize the total energy while maintaining the orthogonality of MOs, one can perform

an unitary transformation U on the MO coefficient matrix C, as

C = C0U, (13)

where C0 is the matrix containing initial MO coefficients, and usually comes from Hartree-

Fock calculations; while the unitary matrix U can be obtained from the SCF procedures in

CASSCF calculations. The total energy E in the CASSCF method can be computed with

E =
∑
tu

⟨t|ĥ|u⟩γtu +
1

2

∑
tuvw

(tu|vw)Γtuvw + Ecore (14)

in which γkl and Γmnkl are respectively one- and two-electron reduced density matrices

(RDMs), and Ecore is a constant containing energies from nuclear repulsion and frozen core

electrons. Since the MO integrals ⟨t|ĥ|u⟩ and (tu|vw) depend only on the orbital coefficients

when the molecular geometry stays fixed, it is clear that the total energy E depends both

on the CI coefficients c and the unitary matrix U. However, it is difficult to minimize the

energy E directly respect to the matrix U. Instead, the matrix U is usually expanded with

an anti-symmetric matrix R, as

U = 1 +R+
1

2
R2 + · · · (15)

in which Rij = −Rji. In some implementations of the CASSCF method such as the first-

order super-CI method,52–59 MOs are optimized by minimizing the total energy E with

respect to the non-redundant elements of R.
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In the Kylin 1.0 package, we implement the efficient Werner-Meyer-Knowles (WMK)

method60–64 in our program to combine efficient orbital optimizations with FCI as well as

DMRG-CI. In the WMK method, the total energy E is expanded to its second order as

E(2) =E0 + 2
∑
kl

⟨∆k|ĥ|l⟩γkl +
∑
kl

⟨∆k|ĥ|∆l⟩γkl

+
∑
klmn

[2 (∆mn|kl) Γmnkl + (∆m∆n|kl) Γmnkl + 2 (∆mk|l∆n) Γmknl]
(16)

in which the first and the second derivatives of MO integrals can be computed explicitly with

the unitary matrix U, or, with the auxiliary matrix T = U−1 for more convenience. Eq. 16

shows that the total energy E can be expanded to the second order of the matrix U, which, as

we can refer to Eq. 15, implies that the total energy E is expanded to the infinite order of the

matrix R. Then the anti-symmetric matrix R can be evaluated by minimizing the functional

of the second-order energy E(2) in Eq. 16 with the augmented-Hessian method.65–69 Near the

final solution, the WMK methods achieve quadratic convergence of the energies obtained in

successive macro-iterations, which usually leads to less macro-itrations than other CASSCF

implementations.

As the DMRG method can be considered as an approximate solution to FCI and CASCI

for large active spaces, it is straightforward to implement the DMRG-SCF method by com-

bining DMRG procedures with orbital optimizations.70,71 Because of the heavy computa-

tional costs of DMRG method when applied to large active spaces, it brings significant

improvements to use WMK method in DMRG-SCF implementation to make use of its fast

convergence. Compared with the CASSCF method, in DMRG-SCF the CI energy and RDMs

are generated from spin-adapted DMRG calculations. Besides, the orbital rotation between

each pair of active orbitals is not redundant and needs to be precisely evaluated. Other than

that, procedures in DMRG-SCF are similar to those in CASSCF.

2.4 MRCI

Despite the CASCI/CASSCF can cover a major part of the electron correlation energy,

called static correlation energy, beyond the HF method, the rest missing electron correlation

outside the active space still results in quantitative or even qualitative errors for the electronic
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structure descriptions of strongly correlated systems. This missing part is named dynamic

correlation energy and usually treated by the pos-CAS methods or multi-reference (MR)

methods.

The uncontracted multi-reference CI (UC-MRCI) is simplest MR-method. It considers

the total configurations within the ”first-order-interacting space” (FOIS)72, and treats them

just like CASCI or FCI, thus it has the exponential growth of configurations and makes the

final Hamiltonian matrix unsolvable for most molecular systems.

There are two widely used contraction schemes in practice to overcome the exponential

growth of configurations in UC-MRCI, the internal contraction (IC)73–77 and the external

contraction (EC)78. The IC-MRCI contracts the configurations by simply applying the pair

excitation operators on the reference state, and it requires the pre-calculation of high order

RDMs in the active space which is computationally challenging for large CAS.

The EC-MRCI doesn’t need the calculation of high order RDMs in contrast to IC-MRCI,

and it groups together configurations with same internal parts and freezes their relative

weights. For example, the single excited states are formed like this:

|ψS⟩ =
∑
a

αS
a (I)|ϕa

S(I)⟩ =
∑
a

αa
t (I)|ϕa

t (I)⟩, (17)

with the EC contraction. Here α coefficients are determined from first-order PT:

αS
a (I) =

⟨ψ0|Ĥ|ϕa
S(I)⟩

E0 − ⟨ϕa
S(I)|Ĥ|ϕa

S(I)⟩
(18)

where |ψ0⟩ =
∑

I c(I)|ϕ(I)⟩ is the reference wave function and E0 indicates the corresponding

reference energy, and every S/P denotes a particular internal(N-1)- /(N-2)-electron configu-

ration.

Since DMRG can be regarded as an approximate FCI solver to large active space, the

DMRG-EC-MRCI79 which combines DMRG and EC-MRCI is also available in Kylin 1.0. By

ultilizing entropy-driving genetic algorithm (EDGA)80, in which the selected-CI calculation

is performed by using only the leading configurations in the reconstructed wavefunction,

DMRG wavefunction can be converted to an approximated wavefunction in configuration

bases.

The efficient UC-MRCI and EC-MRCI with or without DMRG codes now can be per-

formed in Kylin 1.0 package. Considering the the deficiency of size-inconsistency in truncated

11



CI methods, several different correction schemes are also available in Kylin 1.0 package, in-

cluding Davidson correction,81 renormalized Davidson correction,82 Pople correction,83,84

Duch-Diercksen correction85 and Meissner correction.84

2.5 MRPT

MRPT with a better balance between the computational accuracy and computational costs

is probably the most widely used MR-methods nowadays. Since the choice of zeroth-

order Hamiltonian Ĥ0 leads to different perturbation theories, there are various MRPT

approaches. The generalized Fock operator, Dyall Hamiltonian, Epstein-Nesbet partition

and Fink’s Hamiltonian lead to complete active space with second-order perturbation the-

ory (CASPT2)86–88, second-order N-electron valence state perturbation theory (NEVPT2)89,

second-order Epstein-Nesbet perturbation theory (ENPT2)90,91 and retaining the excitation

degree-PT (REPT)92methods respectively.

The multi-reference ENPT2 method is implemented in Kylin 1.0, where the Ĥ0 is chosen

to be:

Ĥ0 =
∑
ij∈Π

⟨Di|Ĥ|Dj⟩|Di⟩⟨Dj|+
∑
a/∈Π

⟨Da|Ĥ|Da⟩|Da⟩⟨Da|. (19)

Here, Π is the variational space spanned by configurations labeled |Di⟩ and |Dj⟩ in active

space, and the rest of this space, spanned by configurations labeled |Da⟩.

Many other MRPT methods have been integrated with DMRG and provided fruitful

DMRG-MRPT approaches, such as DMRG-fully internally contracted (FIC)-CASPT293,94,

DMRG-strongly contracted (SC)-NEVPT295 and MPS-PT96–99 methods. In Kylin 1.0, the

combination of DMRG and MR-ENPT2 is implemented100, similar in essence to DMRG-EC-

MRCI. The solution of a selected CI calculation sampling important configurations(Di/Dj)

is used for building the zeroth-order reference wavefunction in the ENPT2 calculation.
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3 TECHNICAL FEATURES

3.1 Geometry Optimization

Geometry optimization is an essential component for an ab-initio quantum chemistry soft-

ware package, which has been widely used in most computational chemistry studies con-

cerning the structure and/or reactivity of molecules. For large systems, efficient geometry

optimization relies on the availability of analytical ab-initio energy gradient techniques. In

the Kylin 1.0 package, the first-order derivative of CASSCF energy is obtained through the

following formula101:
dE

da
=

∑
pq

γpq
dhpq
da

+
∑
pqrs

Γpqrs
dvpqrs
da

− 2
∑
pq

∑
i≥j

(
1− δij

2

)
C i

pC
j
qXji

dSpq

da
(20)

where a is a nuclear coordinate andX is a Lagrange multiplier102 or generalized Fock operator

matrix103. It should be noted that pqrs denote the AO indices while ij denote the MOs.

Based on this gradient, quasi-Newton steps are performed to locate stationary points on

potential energy surfaces (equilibrium or transition state geometry), where a scaled identity

matrix is selected as a guess to an initial Hessian matrix and then, its inverse is updated via

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula.104 In case of exceptionally large

or small Newton steps, a cubic interpolation method proposed by Davidon105 is used in

the exact line search procedure of each quasi-Newton step. In addition, the algorithm of

conjugate gradients105 is also implemented as an optional optimization method.

3.2 Parallel Execution

Nowadays, the multi-core architecture is widely used on both the personal computer proces-

sors and super-computer server processors. To make fully use of the computational capability

of this multi-core architecture, an efficient parallel implementation is indispensable. Many

parallel algorithms have been developed in a wide range of quantum chemistry methods in-

cluding the Hartree-Fock method106, the CI method107, the coupled-cluster (CC) method108,

and also the DMRG method29.

In the current stage of the Kylin package, the parallelization optimization is mainly fo-

cused on the DMRG process. This parallelization is implemented within the shared memory
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Figure 3: The implemented parallelization algorithm for the DMRG method in the multi-

thread level. The block sparse tensor form of the MPS and MPO are illustrated respectively

as a) and b). The contraction operation should be conducted for the corresponding MPS

and MPO with the same spin symmetry. So the required contraction operations are packed

and reordered into a task list as presented as c). Figure d) shows that required operations

are assigned to different threads to be processed simultaneously.

programming model. Several parallelism of the DMRG process have been applied to imple-

ment this parallelized algorithm include the parallelism within matrix operations, parallelism

over symmetry sectors, operators and sum of sub-Hamiltonians. The parallelism within ma-

trix operations is conducted through linking the matrix operations with the linear algebra

libraries such as the BLAS library or the MKL library. Besides block-sparse formats, tensors

W
n∗
i ni

bi−1bi
in MPOs are implemented as a sparse matrices containing one-site operators. Paral-

lelism over symmetry sectors, operators and sub-Hamiltonians could be achieved by simply

paralleling over all groups of dense tensor blocks with their corresponding matrix indices

and symmetry sectors matched. As the MPOs and MPSs are stored and manipulated within

the block-sparse tensor form, those dense blocks can be processed simultaneously with no

dependence between each other. Fig. 3 illustrates this parallel implementation, showing the

block-sparse tensor and the parallelization of the calculations for corresponding contraction

operations.
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3.3 Mixed precision

Mixed precision optimization is an emerging method for accelerate quantum chemistry meth-

ods, include the integral evaluation109,110, the SCF iteration111 and the CC method112. Pre-

vious works showed that using single-precision instead of double precision can achieve a

better computational efficiency while maintaining the chemical accuracy. With some double-

precision clean-up process, the double-precision accuracy may also be preserved.

Recently a mixed-precision implementation that can improve the computational perfor-

mance of the DMRG method and maintain the double-precision accuracy was introduced

and implemented within the Kylin package113. This implementation is based on the idea

that the the DMRG method is a iterative method and the first several iterations can be

evaluated in a relatively low precision. Followed with a double-precision clean-up procedure,

the double-precision accuracy can be successfully recovered. To make the single-precision

DMRG generate reasonably approximate solutions, the orthogonalization process should

be conducted in double-precision as the Gram-Schmidt process may be numerically unsta-

ble. Also within the double-precision clean-up procedure, a mixed-precision diagonalization

method is applied to achieve a better performance, constructing a two-level mixed-precision

hierarchy.

4 NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, we show some typical multi-configurational quantum chemical calculations

performed with Kylin 1.0. The molecular geometries used in this section are shown in

Figure 4.

Firstly, we test DMRG-FCI (10e, 58o) calculations for water molecules under the equilib-

rium geometry (rOH = re) and a stretched geometry where the OH bond is stretched to 1.5

times its equilibrium length (rOH = 1.5 re). The detailed molecular structures are taken from

the earlier work by Chan and Head-Gordon114. We use the cc-pVTZ (correlation consistent-

polarized valence triple zeta) basis set and then perform a FCI calculation for correlating 10

electrons in all 58 orbitals by DMRG. Fig. 5 illustrates the dependence of DMRG ground

state energy on the size parameter of its wavefunction’s basis set (bond-dimenision number
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Figure 4: The molecular geometries used in this work. They are (a) water, (b) N2, (c)

Cr2, (d) benzene, (e) naphthalene, (f) C12H14 polyacetylene, (g) bis(µ-oxo)-Cu2O2+
2 , (h)

peroxo-Cu2O2+
2 , (i) Fe8S7 cluster, (j) Fe-porphyrin and (k) [(Mn)3O4L4(H2O)2] (L = N,N′-

bis(methylene)-Z-1,2-ethenediamine).
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Figure 5: The ground state energies of water molecules with (a) rOH = re and (b) rOH =

1.5 re calculated by DMRG(10e, 58o) with different bond-dimenision numbers (m). dE is

calculated as the energy difference between the energy by DMRG with the current m and

that by DMRG with previous m.

m). It is clearly shown that the DMRG energy decreases monotonically with the increasing

m, converging to the final FCI solution. The insets of Fig. 5 indicate that the energy varia-

tion with the increasing m has become less than 1×10−4 Hartree. Considering the variational

nature for DMRG, we compare DMRG energies with results by other variational approaches.

One may notice that, DMRG calculations with sufficiently large m will yield (much) lower

ground state energies when compared to those by CISD, which are -76.30994 and -76.10233

Hartree for the equilibrium and stretched geometries respectively. This verifies again that

DMRG can provide a powerful computational tool for very accurate electronic structure

calculations within a finite active space composing of a few tens of orbitals.

Secondly, we show Kylin 1.0’s CASSCF functionality by numerical examples of two

medium-sized naphthalene and C12H14 molecules. The equilibrium geometries of these two

molecules are optimized by density functional theory (DFT) at the level of B3LYP/cc-pVDZ

by using Gaussian16 software115. We then perform CASSCF calculations with the same basis

set (sizes of 180 and 238 for naphthalene and C12H14 respectively) and the π-electrons and

π-orbitals are chosen as the active spaces, i.e. (10e, 10o) and (12e, 12o) for naphthalene and

C12H14 respectively. As we have introduced in the methodology section, Kylin 1.0 adopts the

17



Figure 6: Convergence of CASSCF calculations for the ground states of (a) naphthalene

(10e, 10o) and (b) C12H14 (12e, 12o) molecules by using different CASSCF algorithms. dE

is calculated as the energy difference between the energy at current CASSCF macro-iteration

and the finally converged ground state energy by CASSCF.

efficient second-order WMK method60–64 in our CASSCF implementation. For comparison,

CASSCF calculations based on the first-order super-CI algorithm are also performed by us-

ing OpenMolcas34 as references. One can clearly see from Fig. 6 that, the calculations by the

two different CASSCF algorithms in Kylin and OpenMolcas converge to exactly the same

ground state energy results, verifying the correctness of our WMK-CASSCF functionality

in Kylin 1.0. It is also obvious in the insets of Fig. 6 that the convergence efficiency by the

WMK algorithm is generally comparable to that of the super-CI algorithm. In the slightly

larger system of C12H14 (12e, 12o), WMK converges even faster than super-CI because of its

second-order nature.

Next, we show Kylin 1.0’s DMRG-SCF functionality, which integrates DMRG’s advan-

tage of dealing with large active spaces and CASSCF’s feature of orbital optimization. Here

we take the interconversion between the bis(µ-oxo) and peroxo forms of dicopper complexes

with a Cu2O2+
2 core as a numerical example, which is crucial in oxyhemocyanin and oxytyrosi-

nase in biological catalysis. We employ the ANO-RCC basis sets, and the scalar relativistic

corrections are included by adopting the Douglas-Kroll-Hess Hamiltonian. The detailed

molecular structures are taken from the earlier work by Phung, et al.116 We choose a (24e,
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24o) active space for Cu2O2+
2 core, including the most important correlation effects related

to the Cu−O bonds and the Cu 3d double-shell effect, consisting of twenty Cu orbitals (3d,

3d′) and four O orbitals (2px, 2py). It was shown that the ground-state energy of peroxo

structure of Cu2O2+
2 is lower than bis(µ-oxo) structure, and the relative energy can reach

convergence gradually with the growth of m value.

Table 1: The ground-state energies of the bis(µ-oxo) and peroxo structures of Cu2O2+
2 in

unit of Hartree and their differences in unit of kcal·mol−1 calculated by DMRG-SCF (24e,

24o) with different m values.

m E(bis(µ-oxo)) E(peroxo) ∆E

100 -3455.573778 -3455.673656 62.67

200 -3455.662490 -3455.745492 52.08

400 -3455.708920 -3455.783380 46.72

1000 -3455.730964 -3455.803941 45.79

1500 -3455.752671 -3455.813994 38.48

2000 -3455.758435 -3455.8194004 38.26

2500 -3455.761956 -3455.822788 38.17

To benchmark the performance of our parallel implementation of the DMRG method, we

test DMRG calculations for the Fe-porphyrin system (m = 5000). The molecular geometry

is taken from Li Manni’s work.117 We use the same (32e, 34o) active space as Weser and

co-workers used before,118 which consists of all π orbitals, the four σN orbitals connecting to

the Fe atom, the 4s, 4p and 3d orbitals of the Fe atom, and an additional set of d orbitals

as the double-shell. The ANO-RCC-VDZP basis set119,120 is used in our calculations. The

computing platform is a standalone server containing two Intel Xeon Gold 6126 12-core

CPUs. The total DMRG calculation time for different number of threads are presented

in Fig. 7 with corresponding speed-up comparing to the time of 1 thread. A speed-up of

up to 10.05 is observed for 24 threads, giving a 41.9% parallel efficiency. This parallel

performance is moderately satisfactory by considering the irregular data distribution for

the block-sparse tensor in DMRG and we believe this parallel efficiency can be improved

with further optimizations like improving the load balance and reducing the cache-miss rate.
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Figure 7: Benchmark results of computational time and speed-up for parallel DMRG calcu-

lation with Fe-porphyrin (32e, 34o) with m=5000.

Also, we have planned to develop a hybrid parallel algorithm, combining the shared-memory

model and distributed-memory model, with more parallelism involved to achieve a better

parallel efficiency.

Furthermore, we test the computational performance of our mixed-precision implementa-

tion in the DMRG module. The selected benchmark systems are N2, benzene, Fe-porphyrin

and Fe8S7 cluster systems with active spaces containing up to 114 active orbitals. The de-

tailed information of these benchmark systems and the energy difference between the mixed-

precision implementation and the double-precision calculation are summarized in Tabel 2.

It can be found that, for these different cases with different basis set and point group sym-

metries, the energy errors caused by the mix-precision approximation are mostly much lower

than 1 kcal·mol−1, which is commonly regarded as the chemical accuracy. The benchmark

results of computational time performance are presented in Fig. 8. The result shows that

for different basis sets and point group symmetries with relatively large truncation dimen-

sion, the mixed-precision implementation can perform much faster than the double-precision

version. And the speed-up is achieved up to 2.31, which is even larger than the theoretical

upper-bond of the mixed-precision optimization. This is because of two reasons. The first
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Table 2: Detailed information of the benchmark system and the energy difference for the

mixed-precision implementation. The energy difference is evaluated as ∆E = |Edouble−Emix|

in 10−3 kcal·mol−1.
System basis set active space m point group ∆E

N2 cc-pVDZ (14e, 28o) 3000 C1 11.9

benzene 6-31G (24e, 24o) 5000 C1 0.5

benzene cc-pVDZ (42e, 114o) 1000 D2h 10.9

Fe-porphyrin ANO-RCC-VTZP (32e, 34o) 3000 C1 89.0

Fe8S7 ANO-RCC-VTZP (168e, 100o) 1000 C2v 75.4

reason is that the single-precision floating-point data consumes less memory than double-

precision, which means that more data can be stored in the cache and the cache-miss rate is

reduced. The second reason is the total number of sweep iteration is reduced for some cases.

So that the overall computational time is further reduced.

But for the benzene (42e, 114o) case, the mixed-precision implementation shows no ac-

celeration, even slightly slower than double precision. This is because, for this specific case,

the tensor contraction is not the bottle neck. The task packing process, which matches cor-

responding block tensors together for further contraction, become the most time consuming

step. And this step consumes similar time between double precision and mixed precision.

More benchmark results and discussions for the mixed-precision scheme can be found in

our recent work113. In short, here we show that the mixed-precision implementation provides

an efficient speed-up strategy with the price of vanishingly small numerical errors, which is

highly beneficial to the generally expensive DMRG calculations for large strongly correlated

systems.

Finally, we show Kylin 1.0’s DMRG-EC-MRCI functionality, which can descibe the

static correlation inside the large active space and the dynamic correlation outside the

active space simultaneously. Since high-valent multinuclear oxomanganese complexes are

crucial in photosystem II,121 we use [(Mn)3O4L4(H2O)2] (shown in Figure 4(k)) as an ex-

ample, with L = N,N′-bis(methylene)-Z-1,2-ethenediamine. It is a simplified system of

[(Mn)3O4(bpy)4(H2O)2]4+ (bpy = 2,2’-bipyridine), which has been experimentally deter-
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Figure 8: Benchmark result of computational time and corresponding speed-up for mixed-

precision implementation comparing to double precision. Note that the time is presented in

logarithmic coordinate

mined to have an energy difference of −0.2 kcal·mol−1 between low spin (LS) ground state

(S = 1/2) and high spin (HS) first excited state (S = 3/2).122

The geometry of [(Mn)3O4L4(H2O)2] is taken from Ref123, for both LS and HS state

calculations. The scalar relativistic corrections are included by adopting the X2C124,125

Hamiltonian. The ANO-RCC-VDZP basis set is used for Mn, while the ANO-RCC-VDZ

and ANO-RCC-MB basis sets are used for O, N and C, H respectively. The active space

(43e, 34o) are constructed by atomic valence active space (AVAS) scheme126 using Beijing

Density Functional (BDF) package (development version)127, selecting 3d, 4s of Mn and

2p of bridging O based on HS state ROHF orbitals with ANO-RCC-MB as minimal basis

set and overlap threshold larger than 0.2. The DMRG-CI calculations are performed with

M = 1000. The EC-MRCISD+Q (with renormalized Davidson correction82) calculations

are performed using truncated reference wavefunctions constructed via EDGA80 with CI

completeness of 0.90. The core orbitals are frozen in EC-MRCISD+Q calculation.

The calculated energy difference is listed in Table 3. It can be found that there has

been a sharp decrease of energy difference from DMRG-CI (−10.8 kcal·mol−1) to DMRG-

EC-MRCISD+Q (−0.3 kcal·mol−1), which is in excellent agreement with experiment value.
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Table 3: Energy difference of LS and HS states for [(Mn)3O4L4(H2O)2] (L = N,N′-

bis(methylene)-Z-1,2-ethenediamine). The energy difference is calculated as ∆E = ELS−EHS

in kcal·mol−1. The experiment value is taken from Ref122 for [(Mn)3O4(bpy)4(H2O)2]4+ (bpy

= 2,2’-bipyridine). The DFT energy difference is take from Ref123 at B3LYP level, with basis

sets LACVP for Mn, 6-31G(d) for O, 6-31G for N as well as 3-21G for C and H.

Experiment DFT DMRG-CASCI DMRG-EC-MRCISD+Q

∆E -0.2 21.0 -10.8 -0.3

The significant improvement over DMRG is contributed by the consideration of dynamic

correlation by MRCI and this clearly shows post-DMRG’s powerful ability of quantitative

description of electronic structure properties.
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5 CONCLUSIONS

The present paper introduces a new ab-initio DMRG quantum chemistry software pack-

age, Kylin 1.0, which contains versatile DMRG (DMRG-CI, DMRG-SCF) and pre-DMRG

(Hartree-Fock SCF), post-DMRG (DMRG-MRCI and DMRG-MRPT) modules as well as

other fundamental ones (CI, PT, CASSCF). Numerical examples of various conjuagted and

stretched molecules as well as transition metal complexes have shown that by virtue of

using Kylin 1.0, state-of-art DMRG calculations with more than 100 active orbitals and

post-DMRG calculations with more than 40 active orbitals can be efficiently implemented

at a standalone computer server. It’s also worth to note that, Kylin 1.0 is an independent

quantum chemical software package, and accordingly additional interfaces to other quantum

chemical packages are avoided. Therefore, Kylin 1.0 provides a new, convenient, efficient and

powerful DMRG quantum chemistry platform for electronic structure calculations of large

strongly correlated molecules. In order to popularize ab-initio DMRG calculations in more

real chemistry or material applications at highly quantitative levels, future developments

will certainly, to some extent, feature new post-DMRG methods without using high-order

RDMs and periodic DMRG as well as post-DMRG calculations with/without the relativistic

effect.
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