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Abstract

The Marcus model forms the foundation for all modern discussion of electron transfer (ET). In this model,

ET results in a change in diabatic potential energy surfaces, separated along an ET nuclear coordinate. This

coordinate accounts for all nuclear motion that promotes electron transfer. It is usually assumed to be dominated

by a collective asymmetric vibrational motion of the redox sites involved in the ET. However, this coordinate

is rarely quantitatively specified. Instead, it remains a nebulous concept, rather than a tool for gaining true

insight into the ET pathway. Herein, we describe an ab initio approach for quantifying the ET coordinate and

demonstrate it for a series of dinitroradical anions. These mixed valence systems span a range of behaviors in

which the unpaired electron is either localized or delocalized. Using sampling methods at finite temperature

combined with density functional theory calculations, we find that the electron transfer can be followed using

the energy separation between potential energy surfaces (for localized systems) and the extent of electron

localization (for delocalized systems). The precise nuclear motion that leads to electron transfer is then be

obtained as a linear combination of normal modes. Once the coordinate is identified, we find that evolution

along it results in a change in diabatic state and optical excitation energy, as predicted by the Marcus model.

Thus, we conclude that a single dimension of the electron transfer described in Marcus–Hush theory can be

found in the real systems as an intuitive nuclear motion.

1 Introduction

The transfer of electron density is implicated in nearly every chemical transformation and, for this reason, there

has long been an intense interest in developing models for describing, predicting, and quantifying the pathways

of electron transfer (ET). For the past 60 years, the dominant model has been the classical Marcus–Hush

theory.1,2
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The theory originally described by Marcus treats ET between two separated redox sites (i.e., intermolecular

ET), giving rise to two electronic states, termed a and b. These states are represented on a reaction coordinate

diagram by two harmonic potential energy surfaces (PES) as shown in Figure 1a. The electron transfer occurs

when the nuclei (internal and solvent) are distorted such that the two surfaces have the same energy, at which

point there is some probability of ET. This can be represented using Fermi’s golden rule yielding:3,4

kET =
2π

ℏ
∣∣Vab

∣∣2 1√
4λkBT

exp

(
− ∆G

kBT

)
, (1)

where Vab is the electronic coupling between the states (taken to be small in the original treatment), ∆G is

the activation energy, and λ is the so-called reorganization energy, which is the vertical energy gap between the

reactant minima and the product PES. The reorganization energy can be obtained by measuring this electronic

transition, termed the intervalence charge transfer (IVCT) transition. Because the surfaces are treated as

harmonic surfaces, measuring the IVCT energy provides the barrier to thermal ET: λ/4. Though this is a

convenient way to parameterize the model, it disregards the specifics of the ET coordinate. A more chemically

meaningful treatment would consider the nuclear motions involved in the ET and then derive a spring constant

(f) for this motion as well as separate the minima (d) of the PES along the ET coordinate such that the

reorganization energy is recaptured as λ = d2f .
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Figure 1: One dimensional potential curves of Robin–Day classes separated along the ET coordinate (q). The vertical arrow

of length d2f represents the reorganization energy. Vab is the potential coupling between the initial diabatic states Ga and Gb

that leads to the adiabatic states G1 and G2.

The insight that would be gained by obtaining a precise description of the ET coordinate is made clear

when considering systems with large degrees of electronic coupling. Hush expanded Marcus’ theory for such

systems, retaining the connection between the electron transfer coordinate, the barrier to electron transfer,

the curvature of the PES, and the displacement along the ET coordinate. Again, it was common to combine

the effects of curvature and separation into a reorganization energy, though there have been treatments that

explicitly consider the spring constant and separation.5 Large electronic coupling functions to mix the diabatic

states Ga and Gb and produces two adiabatic states: a ground state G1 and an excited state G2 (Figure 1b

and c). Thus, for significant coupling, ET will occur adiabatically, in which case the pre-exponential factor will

reduce to a nuclear frequency along the ET coordinate νq. The resulting classical expression for the ET rate

will be:6

kET = νq exp

(
− ∆G

kBT

)
(2)

so that the importance of understanding the nuclear motions along the ET coordinate becomes obvious.

The ET coordinate is also implicated in other effects of electronic coupling, namely that increasing electronic

coupling produces a movement of the ground state PES minima towards one another along the ET coordinate.
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If coupling is strong enough, the minima merge, and the molecule has a single stable configuration with the

unpaired electron delocalized over the redox sites. The shape of the ground state PES is so important that

the dominant classification scheme for mixed valence systems, proposed by Robin and Day,7 is based upon it.

In this classification, systems with minimal coupling (i.e., diabatic) are termed Class I, systems with a single

minimum are termed Class III, and the intermediate case is termed Class II. Movement along q away from the

minimum in Class III therefore implies a greater extent of localisation, whereas movement along q between the

minima in Class II leads to electron transfer. It is well established that solvation has a pronounced influence on

the shape of the potential and can even lead to a switch in Class.8,9 While electronic coupling in these complexes

is often discussed without reference to the PES spring constant and minima separation, it is also true that the

final shape of the surface depends not only on the size of the electronic coupling, but also on the curvature and

separation along the ET coordinate.10 Having a direct way of identifying the shape of the PES would therefore

be of great value for disentangling these different contributors, comparing the properties of different chemical

systems in more detail, and quantifying environmental effects.

The lack of attention paid to the spring constant and separation between PES minima comes from both

experimental and theoretical limitations. On the experimental side, the primary probe of mixed valence

molecules has been the IVCT band. The position, intensity, and shape of the IVCT band can be used

to estimate the magnitude of electronic coupling.8,11 However, this band contains limited information about

the spring constant of the surfaces and the separation of the PES minima. While vibronic progressions and

resonance Raman experiments can shed some light onto these parameters, one cannot guarantee that all motion

that contributes to ET will be captured. Nevertheless, determining these parameters remains of interest and

other approaches have been devised, such as using the change in dipole moment upon excitation of the IVCT

transition.12,13 In this approach, the idea is that electronic coupling, which reduces the separation between

minima, will also reduce the degree of charge transfer and thereby the change in dipole moment upon ET.

Thus, one can compare the magnitude of the observed dipole moment change to what would be expected

without coupling and obtain an estimate of the shift in the minima due to coupling. However, this approach has

several drawbacks. For one, estimating the change in dipole moment in the absence of coupling is difficult.14,15

Additionally, this approach cannot be used for Class I (often no IVCT band intensity) and Class III (no charge

transfer) species. Finally, even if the approach were valid, what would be measured is not the ET coordinate

directly, but a separation along it. Therefore, any specific chemical information about the nuclear motions

involved is not obtained.

Efforts to determine the ET coordinate based in theory have also been made. As is common in light

induced ET, one can attempt to perform a linear interpolation between the reactants and transition state, or

the reactants and the products in order to understand what nuclear motions are implicated in ET. However,

this approach is also restricted to Class II systems where two well defined minima and a transition state exist.

For MV systems that are sensitive to the solvation environment, a linear interpolation approach would not be

able to evaluate any solvent-induced change in nuclear motion or the decoupling of solvent and solute motion.

Finally, as our results will show, a linear interpolation approach may furthermore contain motions that do not

contribute to the ET process.

Taking into consideration the state of the art in ET research, there remains a need to describe the ET

coordinate in a quantitative manner—including the nature of the nuclear motion, the separation along the ET
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Figure 2: Structures and charge state of the studied mixed valence systems for which we demonstrate our approach.

coordinate, and the spring constant associated with the PES. Herein, we describe one such approach based

upon quantum chemical calculations, demonstrating it for the mixed valence systems meta-dinitrobenzene

(m-DNB•−), para-dinitrobenzene (p-DNB•−), 2,6-dinitronaphthalene (2,6-DNN•−), and 2,7-dinitronaphthalene

(2,7-DNN•−), see Fig. 2.

These molecules have been well characterized experimentally and computationally so that the IVCT band

and the rate of ET are known. They served as model compounds for exploring the adiabatic ET rate16 or for

development of reliable electronic structure methods for MV systems.17 The Robin–Day classification of these

compounds depends on the solvation environment18. In vacuum, all four compounds are expected to be Class

III, while when placed in a dielectric continuum of acetonitrile, m-DNB•− and 2,7-DNN•− transition to Class

II.19 Alcohol solvents, which are capable of hydrogen bonding, show a very strong localization effect and high

ET barriers.18.

We propose a method to identify the ET coordinate of a MV system regardless of its Robin–Day Class, which

is achieved with a sampling procedure covering a representative set of thermally populated nuclear configurations

and subsequent analysis of the electronic structures in this ensemble. The coordinate we identify appears to be

an intrinsic property of the mixed valent molecule and can be used to predict the barrier height or reorganization

energy of the system. We also show that, while this approach largely substantiates the Marcus–Hush model, it

also raises some questions regarding interpretation of the model and reveals some of its limitations.

2 Methodology

For many years, computational predictions of spectroscopic properties of MV compounds were hampered by

the fact that most theoretical methods tend to favour either a localized or a delocalized description. Solutions

to this problem were found and discussed in seminal work by Martin Kaupp and coworkers.19 While one may

think that wavefunction methods would be the best choice to adequately capture all important aspects of MV

electronic structures, they can account for the Coulomb correlation only perturbatively and will thus favor a

localized description of the system.19 In fact, the importance of Coulomb correlation in systems which tend to

delocalize calls for a treatment of the electronic structure with Density Functional Theory (DFT).19 However,

the approximated exchange correlation in most DFT functionals leads to the so-called self-interaction error

(SIE) which stabilizes delocalized electronic states.20 Hence, in many of the standard functionals, Class III
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situations are favoured as a consequence of the SIE,19 which may lead to an incorrect assignment of a MV

compound to Class III.

A practical approach towards correcting this behaviour has been found in adjusting the amount of exact

exchange in global hybrid functionals.21 Furthermore, a proper treatment of the environment proved to have a

significant impact on electronic localization or delocalization.22,23 Protocols like this were shown to perform well

for MV systems ranging from small organic molecules17,22,24 to large dinuclear inorganic complexes.25,26,27 A

novel and more rigorous approach towards a balance between correcting the SIE and an accurate description of

exchange correlation was presented in the form of local hybrid density functionals.28,29 In these functionals, the

amount of exact exchange depends on the position in real space: exact exchange dominates in regions of high

or zero electron density, whereas regions of homogeneous electron density (i.e. bonding regions) are dominated

by DFT exchange. Local hybrid functionals perform extraordinarily well in the prediction of spectroscopic

properties of MV compounds, making them the state-of-the-art for theoretical studies of such systems.30,31,32

To assess the interplay between the geometric and electronic structure of an MV system, it is clear that the

picture derived from a single nuclear configuration will not represent reality. Therefore, a sampling procedure is

needed that covers a set of thermally populated nuclear configurations with their associated electronic structures.

The nuclear ensemble method33 presents a simple and powerful method for simulating vibrationally resolved

electronic spectra34,35, for obtaining the initial conditions for non-adiabatic dynamics36, or for exploring phase

space properties.37 The most common way to generate a nuclear ensemble is ab initio molecular dynamics which,

however, comes with a great computational cost.38

A significantly less demanding method for moderately sized molecules is the so-called Wigner sampling,39

which is achieved by approximating the PES by a harmonic potential and evaluating the Wigner function40 for

thermally accessible vibrational states. The Wigner sampling method showed great performance when predicting

absorption spectra41 and capturing temperature effects in the intersystem crossing of 2-nitronaphtalene.42 A

strength of Wigner sampling is that it offers a more realistic sampling than ab initio molecular dynamics for

high-frequency vibrational modes, because it accounts for the zero-point energy.41 However, it does not capture

the decreasing spacing between levels and altered nature that is expected for an anharmonic oscillator and

so undersamples anharmonic low-frequency modes. While we have chosen to use Wigner sampling here, it is

conceivable that other sampling methods will perform equally well as long as a representative set of geometric

and electronic structures is used.

Theoretical studies on mixed MV often assume a direct pathway between two well-defined structures, either

adiabatic minima43 or an adiabatic minimum and a totally symmetric structure17. Approaches to identify the

ET dimension based on a statistical ensemble (like molecular dynamics) are either missing or do not focus on the

interplay between electronic and geometric structure.44 In state-of-the-art theoretical research of MV systems,

a unified strategy towards a coordinate that describes electron transfer (Class II) or localisation (Class III) and

that can be used to disentangle intra-molecular motion from solvent motion is missing.

Herein, we introduce a new approach for identifying the intramolecular ET coordinate. The starting point

is an optimized geometry that represents an adiabatic minimum of the system and the Hessian matrix obtained

from a frequency calculation. The phase space of the system under study is sampled using the Wigner sampling

method as implemented in the SHARC package45 at room temperature in vacuum or in implicit solvation. This
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Figure 3: a) Schematic depiction of the approximated potential energy surface (black curve) employed in the Wigner sampling

method. b) Definition of chemical fragments in a MV molecule to identify the electron position from a spin population analysis.

idea is illustrated in Fig. 3a) where the potential energy surface is approximated around the adiabatic minimum

by a harmonic potential. A representative set of nuclear configurations is selected by evaluating the Wigner

function for the relevant vibrational states whose thermal populations are estimated in Monte–Carlo fashion.45

The next step is to run time-dependent DFT (TD-DFT) calculations with a small number of excited states for

each selected geometry.

For each of the structures, it can be easily evaluated where the unpaired electron is localized: the position

of this electron is defined as the weighted average of the spin populations si on specified molecular fragments,

as illustrated in Fig. 3b) and given in Eq. 3,

e−pos. = 1 · s1 + 2 · s2 + 3 · s3. (3)

The electronic properties, i.e., the electron position or the excitation energy as discussed in more detail in

the results section, are then correlated with the distortion in the direction of vibrational modes. To obtain these

displacements, a transformation from Cartesian coordinates to normal coordinates is carried out according to

Eq. 4, where C is a transformation matrix (obtained from the frequency calculation at the adiabatic minimum),

M is a diagonal matrix of atomic masses, r is a vector of Cartesian coordinates, and r0 is the equilibrium

configuration,

qi =

3N∑
j=1

CT
ijM

1/2
ij (rj − r0j ). (4)

3 Computational methods

All calculations were carried out using the TURBOMOLE package46. The local hybrid functional LH20t30 was

employed; in the SI we show additional tests using the BLYP3521 functional. Calculations used the def2-TZVP
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basis set47 for the carbon, nitrogen and oxygen atoms, and the def2-SVP basis set47 for hydrogen atoms. The

resolution of identity approximation for computation of the Coulomb integrals48 was used. The convergence

criterion for the self-consistent field method was set to 10−8 Eh. As the integration grid, m3 in TURBOMOLE

notation was used to obtain the energy. Solvation effects were modelled implicitly using a conductor-like

screening model49 (COSMO) with acetonitrile (ACN) as the modeled solvent. The five lowest excited states

were determined using TD-DFT without the Tamm–Dancoff approximation and the same settings as described

above. The phase space of all studied molecules was sampled using the Wigner sampling method as implemented

in the SHARC package45 at 300 K. 500 structures were generated as representative of the ensemble. Any scans

performed along linear interpolation coordinates or the electron transfer coordinates identified with our approach

used the LH20t/def2-TZVP electronic structure method described above and a step size of 0.002 or 0.005 Å. To

evaluate the electronic structure progression along the Marcus dimension, CASSCF and NEVPT2 calculations

were performed. The results and the respective computational details are given in the SI.

4 Results and discussion

4.1 Linear interpolation of Cartesian coordinates

Before demonstrating our approach for identifying the intramolecular ET coordinate, we show the results

obtained from a linear interpolation of Cartesian coordinates (LICC) as has been used in the literature so

far.43 This method requires two well-defined structures in Cartesian coordinates, usually an adiabatic minimum

and a totally symmetric structure representing the transition state. The reaction coordinate is obtained by

linear interpolation between those structures.

We note that this approach cannot be applied to Class III systems where only one well-defined structure

exists. Since MV systems can switch from localized to delocalized just by varying the solvation environment,18,50

LICC cannot identify the ET dimension in Class III systems and could not be used to decouple intramolecular

and solvent motion. In addition, mapping the potential curves obtained by a LICC approach for a Class

III system onto the diabatic (i.e. uncoupled) states of the underlying Marcus theory is thus precluded, and

hence the progression of coupling strength, nuclear motion or force constants in a series of Class III systems

or for borderline Class II/Class III cases10 could not be evaluated. Regardless of these conceptual limitations,

we tested the LICC approach on m-DNB•− in ACN. The LICC scans were performed between the adiabatic

minimum and the totally symmetric molecule (Fig. 4a), and between the two adiabatic minima (Fig. 4d).

The ET dimensions obtained by LICC (Fig. 4a,d) are not anti-symmetric motions: a twisting motion of

the oxygen atoms of one nitro group dominates the overall motion, and some hydrogen and carbon atoms of

the aromatic ring have non-negligible contributions. In the adiabatic minimum, where the unpaired electron is

localized on one side of the molecule (in this case, the nitro group on the left-hand side), the other nitro group is

further away from the aromatic bridging unit and is slightly distorted, which will decrease the potential coupling

with the bridging unit. A twisting motion is expected to be an important part of the ET only in cases of very

large distortions.26 For a nitro group perpendicular to the aromatic plane, the conjugation with the rest of the

molecule breaks, and the potential coupling would thus tend to zero, making the ET adiabatically forbidden.
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Figure 4: ET coordinates from the LICC approach and corresponding potential energy curves obtained from a scan along

them. a) ET dimension obtained by LICC between the optimized geometry (adiabatic minimum) and the totally symmetrical

one. b) Unrelaxed scan along the LICC dimension, with labels indicating the values of the reorganization energy, the electronic

coupling, the height of the barrier, and the offset of the second minimum. c) Change of the electron position along the scanned

coordinate according to the definition of fragments in Fig. 3 and Eq. 3. Panels d, e, f depict the same quantities for the ET

coordinate obtained with LICC between the two adiabatic minima.
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Unrelaxed scans along the two types of LICC coordinate (Fig. 4b,e) produce double-well potentials that

change smoothly everywhere. For the LICC scan between the adiabatic minimum and the totally symmetric

molecule, the minima do not have the same energy: the second minimum is destabilized by 741 cm−1, which

is more than half of the ET barrier. The potential obtained by scanning between the two adiabatic minima is

symmetric and the barrier height agrees well with the value obtained by simulating experimentally measured

EPR spectra (1000 cm−1).51 The electron position as quantified by Eq. 3 changes upon overcoming the potential

barrier in both cases (Fig 4c, f), with a sharper transition in the scan between the two adiabatic minima.

Clearly, the results of the LICC approach depend on the choice of the reference structures, and therefore

it is unclear whether the ET coordinate obtained with a solvent model would lead to meaningful potentials

when transferred into vacuum. Furthermore, a strong limitation of LICC is that it can only be applied to Class

II systems, since for Class III systems no second geometric reference structure besides the adiabatic minimum

exists. We will show in the following sections that by exploiting properties postulated in the Marcus model

when interpreting the ab initio calculations, we arrive at a chemically intuitive dimension that drives electron

transfer in Class II and leads to electron localization in Class III systems.

4.2 Electron transfer driven by vibrational modes

The ET coordinate represents nuclear movements associated with the transfer of the unpaired electron between

the redox centres in the mixed-valent system. An intuitive concept of the ET coordinate is an anti-symmetric

vibrational mode.52,53,54 In organic MV systems, the unpaired electron is often found on a multi-atom functional

group, i.e. more delocalised than in inorganic complexes where the redox sites are mostly restricted to metal ions.

Therefore, the ET coordinate cannot be conceived of as intuitively as in many inorganic complexes.55 Herein,

we present a method for obtaining the ET coordinate from ab initio calculations representing an ensemble.

Our task is to find an association between the distortions in the direction of each vibrational mode with a

property that is most sensitive to progression along the ET coordinate. According to the Marcus model and the

Robin–Day classification, this electronic property is the electron position in Class III cases, or the excitation

energy in Class II cases. In Class III systems, even a small movement along the ET coordinate away from the

adiabatic minimum can localize the electron on one of the redox centers to some extent. The electron position

is thus an intuitive property to be correlated with vibrational motions.

This is, however, not the case in Class II systems, where in the vicinity of the adiabatic minimum the

unpaired electron stays localized on the respective redox center. A dramatic change of electron position will

occur only near the top of the barrier. The property that can uniquely define the ET coordinate in Class II

system is the excitation energy to the first excited state. As the system progresses from the adiabatic minimum

to the top of the barrier, the excitation energy will decrease. The nuclear configuration with the lowest excitation

energy will thus correspond to the top of the barrier, as can be readily seen from the Marcus model (Fig. 1). We

note that Class III systems cannot be treated this way because the excitation energy increases with the absolute

value of nuclear displacements along the ET dimension. Consequently, the information whether a negative or

positive displacement of any vibrational mode pushes the ET dimension forward or backward is lost.

Computing the correlation between a normal coordinate and the relevant ET property will reveal which

vibrational modes contribute to the unique ET dimension. To this end, we plotted the relevant ET properties
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Figure 5: Normal coordinates plotted against the electron position with the corresponding vibrational mode for p-DNB•− in

ACN. Plot labels show the number of the vibrational mode and its harmonic frequency, ρ in the top-left corner indicates the

respective correlation coefficient. All other normal modes exhibit a lower absolute value of ρ.

against the normal coordinates, see Fig. 5 for a Class III case and Fig. S2 for a Class II case. We focus here on

the Class III case because there are no alternative methods to gain insight into the ET coordinate for Class III

systems. In the Class III example shown in Fig. 5, a correlation with the electron position can be seen for some

normal coordinates. The correlation with the antisymmetric stretching of C–N bonds (mode 29) is apparent at

first glance, while the correlation with the ONO bending motion (mode 18) is less strongly pronounced. The

importance of these modes for the ET dimension agrees with chemical expectations, i.e., the ET is associated

with changing the distance between redox center (NO2 group) and bridging unit (benzene ring). All other

vibrational modes correlate much less with the electron position. Very similar observations are made for a Class

II system where, as explained above, the correlation is established using the excitation energy (see Fig. S2).

In both cases, there is no ultimate measure for deciding whether or how much these modes contribute to

the ET dimension. In other words, it is not clear how much they contribute to the reorganization energy λ.

Correlating the normal coordinate with the relevant ET property can only identify the relative importance of

the vibrational modes. This finding underscores the need for a unified ET coordinate for which one would then

know the spring constant f and the separation of the minima d, and therefore λ.

4.3 Marcus dimension of the electron transfer

As shown above, the ET dimension cannot be assigned to a single normal mode. A general approach towards

composing the sought after ET dimension from the vibrational modes is to quantify how well aligned each mode

is with the Marcus model. A linear combination of all vibrational modes should therefore result in the unique

ET dimension, as proposed by Rudolph Marcus and refined in the Marcus–Hush model.1

The correct combination of vibrational modes is obtained by a multi-component fit of all vibrational modes

to the electron position for a Class III system, or to the excitation energy for a Class II system, see Eqs. 5a)

and 5b), respectively. This procedure will account for all vibrational degrees of freedom. The independent
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variables in the multi-component fit are the displacements in the direction of the vibrational modes (qj) and

the dependent variable is either the electron position (e−pos.) or the excitation energy (∆ED0−D1):

b0 + b1 · q1,i + · · ·+ b3N−6,i · q3N−6,i = e−pos.,i (5a)

b0 + b1 · q1,i + · · ·+ b3N−6,i · q3N−6,i = ∆ED0−D1
i (5b)

The coefficients bj are used to construct the Marcus dimension as a linear combination of vibrational modes,

which are vectors of Cartesian displacements of individual atoms. The resulting Marcus dimension will therefore

also take the form of a vector of Cartesian displacements.

Fig. 6 shows the result of the fit for p-DNB•− (panel a) and m-DNB•− (panel b) as examples. By comparison

of Fig. 6a with Fig. 5 we can again identify mode 29 as the most prominent motion for the Marcus dimension in

p-DNB•−. There are four other vibrational modes with significant contributions, some of them (e.g. mode 36)

comprising only motions of hydrogen atoms. Motions like this are not expected to be a part of the Marcus

dimension. Their large contributions are due to the fact that these vibrational modes will cancel out the more

subtle motions of hydrogen atoms contained in the C–N stretching and O–N–O bending modes (e.g. modes

26 and 29), which drive the ET. The role of these modes is thus to cancel out the motion of atoms that are

not important for the Marcus dimension. The remaining modes have small, but non-zero, contributions which

would be overlooked if the Marcus dimension was determined only from the correlation plots.

b)a)

Figure 6: Coefficients obtained from the multi-component fit, including sketches of the normal modes with the largest

coefficients. The resulting Marcus dimensions as linear combinations of the normal modes with expansion coefficients obtained

from the multi-component fit are shown as sketches. a) Results for p-DNB•−, where the fit used the electron position according

to Eq. 5a. b) Results for m-DNB•−, where the fit used the excitation energy according to Eq. 5b.

A similar situation is observed for m-DNB•−, see Fig. 6b. The vibrational modes with the largest coefficients

contain C–N stretching motions. These modes are accompanied by motions of hydrogen atoms which are

canceled out by other modes identified in the fitting procedure.

The fact that many modes contribute in non-negligible amounts shows that the Marcus dimension should

not be thought of as a single anti-symmetric normal mode. Therefore, it is not possible to fully equate the

absorption in a specific infra-red or Raman region with the ET coordinate: some important contributors to the

Marcus dimension may be infra-red or Raman silent, or they may appear outside of the region of interest. In

addition, there may be irrelevant absorption bands in the energetic region of interest.

The obtained Marcus dimensions for all dinitroradical anions are plotted in Fig. 7. The Marcus dimension

is a motion localized on the nitro groups and the carbon atoms they are attached to. The most prominent
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parts of the motions are C−N bond stretches and N−O bond stretches. The hydrogen atoms and all carbon

atoms that are not part of the C−N bonds do not contribute significantly to the Marcus dimension. All motions

are anti-symmetric which agrees with ET coordinate described by the Marcus model52,53,54, and very similar

amongst each other, which is expected for structurally and electronically similar compounds. We emphasize

here that our procedure elucidates the participation of each atom in the reaction coordinate without making

any prior assumptions, other than assuming the validity of the Marcus model.

m-DNB●−

2,6-DNN●− 2,7-DNN●−

p-DNB●−

Figure 7: ET dimensions obtained from multi-component linear fits; shown here are the results for calculations in ACN. m-

DNB•− and 2,7-DNN•− are Class II examples, and thus the fit was performed using the excitation energy to lowest doublet

state as the ET property. p-DNB•− and 2,6-DNN•− are Class III examples, and thus the fit was performed using the electron

position as the ET property.

Upon repeating the whole procedure in vacuum, where all studied systems belong to Class III, qualitatively

the same motions are obtained (see SI). We note that even though m-DNB•− and 2,7-DNN•− switch from a

localized to a delocalized system, the same Marcus dimension is observed. The results support our ansatz of

using the electron position or the excitation energy as dependent variables in the multi-component fit, which

clearly gives equivalent results. Moreover, these findings provide additional evidence that the motion identified

in our procedure is the intrinsic ET coordinate in the respective molecule.

4.4 Scan along the Marcus dimension

As further evidence that the dimensions found above correspond to those originally proposed in the Marcus

model and that the ET results from nuclear motion along this dimension, an unrelaxed scan was performed

along the vibrational coordinate shown in Fig. 7. In practice, the Marcus dimension is obtained as a vector

of Cartesian displacements from the equilibrium configuration. This vector can be normalized and progress
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Figure 8: Reconstructed potential energy curves from geometries displaced in the direction of the Marcus dimension for p-

DNB•− in ACN. The scan was performed with a step size of 0.005Å. The change of the electron position in the ground and

excited states is illustrated in the upper panel using natural transition orbitals and quantified in the lower panel according to

Eq. 3.

along the Marcus dimension can be measured in terms of the displacement of the nuclei from their equilibrium

position.

First, we show the results for p-DNB•−, a Class III system. The potential energy surfaces of the ground and

the first excited states are plotted in Fig. 8, where the localization or delocalization of the unpaired electron is

illustrated by natural transition orbitals. The scan results in two nested parabolic-like surfaces with different

curvatures. The adiabatic minimum is characterized by an electron delocalized over the entire molecule. Any

motion along the Marcus coordinate will localize the electron to some extent on one of the nitro groups. This

localization is reversed in the excited state. We therefore conclude that the system behaves according to Marcus’

theory of ET and that the identified ET coordinate is correct.

Moving on to a Class II system, m-DNB•− in ACN (see Fig. 9), the ground state energy profile is a double-

well potential and the excited state is a harmonic-like potential with the minimum centered just above the top

of the ground state barrier. The qualitative agreement of the ab initio energy profiles with the Marcus model is

a necessary, but not sufficient, condition to demonstrate that this dimension is the ET coordinate. The motion

along the Marcus dimension should result in a change of the diabatic state. In other words, by overcoming

the ground state barrier the unpaired electron has to be transferred to the other center. At the equilibrium

configuration (position 0 Å in Fig. 9), the unpaired electron is localized on the left-hand side nitro group in

the ground state and on the right-hand side one in the excited state. At the top of the barrier, the unpaired

electron is delocalized over the entire molecule. Once the barrier is overcome, the electron is localized on the

right-hand side nitro group in the ground state and on the left-hand side one in excited state. This behaviour

agrees exactly with the Marcus model, and hence the Marcus dimension we obtained from the multi-component

fit is the dimension that facilitates electron transfer.
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Figure 9: Reconstructed potential energy curves from geometries displaced in the direction of the Marcus dimension for m-

DNB•− in ACN. The scan was performed with a step size of 0.002Å. The change of the electron position in the ground and

excited states is illustrated in the upper panel using natural transition orbitals and quantified in the lower panel according to

Eq. 3.

There are, however, two regions with some deviations from the Marcus model: I) The double-well potential

obtained from the ab initio scan is not symmetrical. Since the m-DNB•− is a symmetrical system, both adiabatic

minima in the double-well potential must have the same energy. The initial minimum (position 0 Å in Fig. 9)

was found by geometry optimization and is therefore described properly. Displacing the molecular geometry

along the Marcus dimension results in the second minimum which is higher by 350 cm−1. Of course the obtained

potential could be symmetrized easily, but we choose not to do this at this point because we do not expect to

gain any additional insight from a symmetrized potential. We interpret the offset between the minima as the

stabilisation that would be achieved by nitro group twisting, which implies that the electron transfer itself does

not require twisting of the nitro group (see Fig. 7). In the LICC approach, this nitro group twisting is included,

even though as suggested here it may not be inherently required for ET.

II) The ground state potential does not change smoothly at the top of the barrier; instead, it exhibits a

cusp. The same is seen in the excited state where the energy minimum takes the shape of a cusp. This appears

to be a direct result of our approach, considering that the size of the scan steps is 0.002 Å and it is therefore

unlikely that the curvature was missed due to a too widely spaced grid. This observation does not agree with the

Marcus model, where the potential curves are smooth everywhere. The top of the barrier is in the region of an

avoided crossing so that a multideterminant method might be necessary. In the SI, we compare the scans of the

potential energy curves obtained from DFT with wavefunction methods (CASSCF, CASSCF/NEVPT2). We

show that the cusp might be an artifact of using a single reference method. However, a proper description of the

potential curves requires a strongly correlated method due to the expected importance of dynamic correlation.

This is relatively easily captured with an appropriately chosen density functional, but when using wavefunction

methods it appears that very large active spaces in combination with a pertubative treatment will be needed.
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Comparing the obtained potential with those resulting from the LICC approaches (Fig. 4), we notice that

barrier from our approach is much thinner (LICC: 0.2Å and ca. 0.3Å vs. here: 0.12 Å). The barrier is ca.

200cm−1 higher than those obtained from LICC. This relatively small difference suggests that our approach

does not reveal the minimum energy pathway, which is not a surprising result since the only constraint enforced

in the fit is a correspondence to the Marcus model. We note that the potential curve resulting from the Marcus

model applied to a many-dimensional system does not have to coincide with the minimum energy pathway for

translating the coordinates of one adiabatic minimum to those of the other adiabatic minimum.

Our findings suggest that the adiabatic minima are actually spatially very close to each other in the many-

dimensional space of atomic nuclei: they have to move by only 0.12 Å to reach the other adiabatic minimum.

Considering that the barrier is rather thin and the height agrees with literature expectations,51,56 heavy-atom

tunneling might be an important process for the ET. Even though this suggestion may be surprising at first

sight, heavy-atom tunneling in organic compounds was found to be important for many reactions.57,58,59 It

may therefore be worthwhile to reconsider the importance of heavy-atom tunneling for intramolecular electron

transfer. For the two Class II systems studied here, we estimated the transmission coefficients through the barrier

as 0.34 for m-DNB•− and 0.13 for 2,7-DNN•−, respectively (see SI for details). These perhaps unexpectedly

high values suggest that ET might be observable even at very low temperatures. Having a tool at hand that

facilitates the evaluation of whether heavy-atom tunneling is relevant for intramolecular ET is an additional

demonstration of the utility of being able to specify the ET coordinate and to quantify the electronic structure

evolution along it.

4.5 Parameterization of the Marcus model

With the procedure described above, the Marcus model can now be recovered in the potential obtained from a

ab initio calculation. To this end, an analytical potential is parameterized to the Marcus–Hush theory so that

it matches as closely as possible to the ab initio potential.

There are four quantities that ultimately characterize the ab initio potential energy surfaces: i) the excitation

energy at the adiabatic minimum, ii) the height of the barrier, iii) the excitation energy at the top of the barrier,

and iv) the distance between the adiabatic minimum and the top of the barrier. These are depicted in both

panels of Fig. 10. The Marcus model has three parameters: the potential coupling Vab, the separation of the

minima of the diabatic states d, and their force constants f . Only the potential coupling 2Vab can be read

immediately from the scan; it is the excitation energy at the top of the barrier. With the knowledge of the

potential coupling we can relate other quantities obtained from the scan to the Marcus model. A more detailed

discussion on how to choose the input values for the parameterization and description of the entire procedure

is given in the SI.

The resulting parameters of the Marcus model will depend on the choice of parameterization procedure

(sketched in Fig. 10). If the parameterization uses the potential coupling, the height of the barrier, and

separation of the adiabatic minimum from the top of the barrier (parameterization A, Fig. 10a), the obtained

potential energy curves will agree better with the ground (D0) than with the excited state (D1), see Fig. 10a.

This is due to the fact that the reorganization energy from the ab initio scan does not enter the parameterization.

In contrast, if the parameterization uses the reorganization energy, the separation of the adiabatic minimum
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and the top of the barrier, and the potential coupling (parameterization B, Fig. 10b), the shape of the potential

curves for both ground and excited state will be better represented. However, the height of the barrier will not

agree with the ab initio potential.

2Vabd/2

ΔG

2Vabd/2

d2f

a) b)

Figure 10: Potential energy curves obtained from the scan and from the parameterized Marcus model with two different

parameterization procedures. As input parameters were used: a) the excitation energy at the top of the barrier, the height of

the barrier and the distance from the left adiabatic minimum to the top of the barrier; b) the excitation energy at the top of

the barrier, the excitation energy at the adiabatic minimum and the distance from the left adiabatic minimum to the top of

the barrier. Results for m-DNB•− in ACN.

The results illustrate that the Marcus model faithfully captures the general shape of the potential curves

but does not result in quantitative agreement with the ab initio potential. This is reflected in the parameters

obtained for the barrier height ∆G and the reorganization energy λ, see Table 1. A disagreement might be

expected given that the Marcus model assumes harmonic diabatic states which might not be the case in a real

system for which the anharmonicities of the diabatic states enter the ab initio potential. This is known in the

literature and the model can be corrected by using “quartic augmented” diabatic surfaces.60 In addition, the

electronic structures at the top of the barrier are not described perfectly, but since the error introduced by the

electronic structure method cannot be avoided or removed, the predicted shapes of the potential energy curves

cannot be expected to agree exactly with the shapes in the Marcus model. We note that parameterizing the

Marcus model for a specific system is not a straightforward procedure; in most cases it can be expected that a

compromise between describing well either the barrier height or the reorganisation energy will need to be found

to best represent the system.

Perhaps the most surprising result is the separation of the diabatic states d, which is unexpectedly low in

all cases. Prior experimental studies of dinitroradical anions16,61 made use of the generalized Mulliken–Hush

formula12 to estimate the separation of diabatic states from the transition dipole moments, evaluated either

experimentally61 or by using semi-empirical calculations.16 The d values ranged from 2 to 6 Å and were not

clearly connected to the distance between the redox centers.

To elucidate in more detail which values for the separation of the diabatic states are realistic, we propose

the following thought experiment. Starting from the Marcus model with a reorganization energy λ = f · d2 ≈

8000 cm−1 and a potential coupling 2Vab ≈ 2500 cm−1 —values of this magnitude agree with this work as well

as prior computational17 and experimental51,62 studies— the separation of the diabatic states is set to d = 2Å,
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Table 1: Results from parameterization of the Marcus model. Rows labelled A and B correspond to the parameterization

procedure illustrated in Fig. 10 a) and b), respectively.

∆G [cm−1] λ [cm−1] 2Vab [cm−1] d [Å]

A
m-DNB•− 1 233 9 652 2 752 0.125

2,7-DNN•− 1 644 10 386 2 111 0.135

B
m-DNB•− 737 7 434 2 752 0.129

2,7-DNN•− 970 7 510 2 111 0.138

ab

initio

scan

m-DNB•− 1 233 7 434 2 752 0.120

2,7-DNN•− 1 644 7 510 2 111 0.132

the lowest value of the range mentioned above. The remaining degree of freedom in the Marcus model is the

spring constant f . Assuming that one nitrogen atom is moving, the corresponding harmonic frequency ω2 = f
µ

would be approximately 50 cm−1.

Our results show that the Marcus dimension is mostly confined to C−N bond stretches, for which the

expected harmonic frequencies are around 1000 cm−1. The computed harmonic frequencies and phonon masses

for all species studied herein agree with this estimate, see SI. Clearly, d has to be on the order of tenths of

Ångström, as is demonstrated in our results, and it cannot be related to the real space distance between the

redox moieties. Instead, since the Marcus dimension is a collective motion, d has to be thought of as a distance

in the multi-dimensional space of atomic nuclei.

4.6 ET rate constant

In systems that conform to the Marcus model, the ET rate can in principle be assessed with the Marcus equation

(Eq. 1).3,4 The expression is based on Fermi’s golden rule and is thus valid only for small values of the potential

coupling Vab. Another assumption employed in the Marcus equation is that all vibrational motions involved

in the ET are small in frequency (ℏω ≪ 2kBT ); this is the so-called high temperature limit.3 The Marcus

equation is widely used to predict the ET rate in proteins63, the rate of the photoinduced ET64, or the rate of

the inter-system crossing.65

For large potential couplings Vab, the ET can be assumed to happen only adiabatically, i.e., once the

nuclei reach the top of the barrier the probability of the electron tunneling is close to one.4 In this case, the

pre-exponential factor will reduce to a nuclear frequency along the ET coordinate νq and the ET rate can be

calculated according to Eq. 2. The nuclear frequency νq is a well defined concept only in the harmonic potential.

In the double-well potential this value has to be estimated, and we propose to use the harmonic approximation

at the adiabatic minimum to obtain the force constant and subsequently the harmonic frequency (see SI for

more details). Regardless of how νq is estimated, the value is approximately 1013 s−1.
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Table 2: ET rate constants in 1010 s−1 for Class II systems in ACN at 300 K. The classical rate is computed using Eq. 2. The

Marcus equation refers to Eq. 1 with input values taken from parameterization scheme A.

m-DNB 2,7-DNN

Classical 8.16 1.22

Marcus eq. 125.7 9.52

Experiment 4.63a,b 0.31c

aValue from Ref. [56]; bRef. [51] reported value 1.54 1010 s−1; cValue from Ref. [16].

A comparison of ET rates according to the Marcus equation with the adiabatic rates is shown in Table 2.

The adiabatic, i.e. classical, rate was computed using the barrier height from the scanned potential and the

harmonic frequency at the adiabatic minimum. The parameters for the Marcus equation were taken from

parameterization procedure A.

The ET rates listed in Table 2 favor the description with the more simplistic Eq. 2 over that with the Marcus

equation (Eq. 1). We can identify two reasons for this finding: I) Both systems under study have large potential

coupling values Vab, which are outside the scope of the Marcus equation. II) The nuclear frequency in the

Marcus dimension is larger than 2kBT . Note that the Marcus dimension is confined mainly to the stretching of

C–N and N–O bonds which have frequencies of ca. 1000 cm−1.

For systems with large potential coupling Vab, the ET mechanism is adiabatic and the ET rate should be

assessed classically (i.e., with Eq. 2). Since the biggest error is introduced by the electronic structure method,

choosing a different method of estimating the nuclear frequency νq would improve the value of the ET rate

only through error cancellation. Classical treatment of ET is only possible for high temperatures; heavy-atom

tunneling which might drive ET at low temperatures should in principle be possible due to the very narrow

barrier. Another case where the classical theory will fail is a photoinduced ET which is, however, beyond the

scope of this paper.

5 Conclusions

We propose a method for identifying the nuclear coordinate that promotes electron transfer in mixed valence

systems by exploiting properties postulated by Marcus–Hush theory in the analysis of a thermally representative

ensemble of ab initio calculations. As the characteristic electron transfer property, the electron position is chosen

for Class III systems with complete delocalisation of the unpaired electron, and the excitation energy is chosen for

Class II systems where a small barrier separates two adiabatic minima with localisation of the unpaired electron

on one of the redox centers. The electron transfer coordinate, also termed Marcus dimension, is obtained as a

linear combination of vibrational modes. A ramification is that the Marcus dimension is not simply equivalent

to the absorption in a certain IR or Raman region; the ab initio analysis considers active and silent modes

across all energies.

The method was demonstrated on a set of organic radical compounds with two nitro groups as the redox

centers. The Marcus dimension was found to be a chemically intuitive antisymmetric motion mostly restricted
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to the redox centres (nitro groups) and the atoms of the bridging unit (aromatic core) that they are attached

to. The motion is qualitatively very similar for structurally similar compounds, and is retained even after

an environmentally induced change from Class II (m-DNB•− and 2,7-DNN•− in ACN) to Class III (both in

vacuum). We have thus shown that our approach identifies the nuclear coordinate that is the electron transfer

pathway in Class II compounds and leads to charge localization in Class III compounds. Scans along the Marcus

dimension clearly demonstrate that the expected potential shapes are obtained, and furthermore provide the

basis for recovering the Marcus model from ab initio calculations. To the best of our knowledge, this is the first

approach for identifying the electron transfer coordinate that is applicable across all Robin–Day Classes.

The Marcus dimension we identify for Class II compounds appears to be an intrinsic property of the molecule,

which implies a separation of the transition from one adiabatic minimum to the other into the electron transfer

process and a distinct structural relaxation. This is underscored by comparison of our approach with the

previously employed Linear Interpolation of Cartesian Coordinates, which is exclusively applicable to Class II

compounds and renders a motion at odds with expectations that is furthermore clearly dependent on the choice

of reference structure. It may be possible to devise an experimental test for our suggestion of separable electron

transfer and structural relaxation events.

Our results point towards the electronic structure method continuing to be a limitation for theoretical studies

of MV compounds. The Marcus dimension shows a cusp in a narrow region of the nuclear configuration space

where an avoided crossing is expected; even though local hybrid density functionals perform exceptionally well

in the adiabatic minima, it appears to fail here due to its single-reference nature. Treating this region with

multiconfigurational methods (CASSCF/NEVPT2) provides qualitatively acceptable results but suggests that

the extent of dynamical correlation requires larger active spaces or alternative strongly correlated methods.

The ab initio scans along the Marcus dimension show a small separation of the minima. The parameterization

of the Marcus model results in a similar separation of the diabatic states of ca. 0.12-0.13 Å, i.e., a much thinner

barrier for electron transfer than had been previously suggested. This small distance in the multi-dimensional

space of atomic nuclei suggests that heavy-atom tunneling may be a relevant contributor to intramolecular

electron transfer. We estimated transmission coefficients of 0.34 for m-DNB•− and 0.13 for 2,7-DNN•−. Low

temperature experiments may confirm this finding in future, which would be one way of obtaining experimental

support for the concept of the Marcus dimension introduced here.

With a method for identifying the Marcus dimension of electron transfer in any mixed valence system for

which TD-DFT calculations on a representative ensemble can be obtained, a more rigorous and quantitative

discussion of electron transfer is now possible. It provides an opportunity to evaluate ET mechanisms involving

molecular orbitals or electronic states proposed in the literature, e.g. incoherent hopping vs. coherent superexchange

mechanisms, or two-state vs. multi-state models.6,55 Our approach is the first to provide the spring constant of

the nuclear motion and the separation of the adiabatic minima. Individual access to all parameters of the Marcus

model holds promise for disentangling electronic structure behaviour arising from the electronic coupling, the

curvature of the PES and the separation of the minima, as well as quantifying the influence of environmental

effects.
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