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ABSTRACT Protein arrays are systematically arranged, large collections of annotated proteins 

on planar surfaces commonly used for the characterisation of protein binding events against a 

wide range of possible probes. These may include analyses of protein-protein, peptide-protein, 

enzyme-substrate or antibody-antigen interactions from simple reagents to complex mixtures. 

Absence of appropriate image analysis and data processing software may bestow a substantial 

hurdle limiting the uptake of protein arrays in research. We developed a first, automated 

semiquantitative open source software package for the analysis of widely used protein 

macroarrays. The software allows accurate single array and inter-array comparative studies 

through the tackling of intra-array inconsistencies arising from experimental disparities. The 

innovative and automated image analysis process includes adaptive positioning, background 

identification and subtraction, removal of null signals, robust statistical analysis, and protein pair 

validation. The normalized values allow a convenient semiquantitative data analysis of different 
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samples or timepoints, enabling accurate characterisation of sample series to identify relative 

changes for instance in clinical samples in response to diseases and treatment. 

INTRODUCTION 

Protein arrays are a well-established proteomic tool for the simultaneous analysis of thousands of 

interaction partners, generally manufactured in an microarray format through immobilization of 

purified proteins on chemically modified microscope slides [1]. An alternative to the microarray 

format are protein macroarrays produced by printing of annotated libraries of E.coli clones, 

expressing recombinant human protein, on large 22×22cm polyvinylidene fluoride (PVDF) 

membranes [2, 3]. Since their introduction in the early 2000’ the protein macroarrays have been 

frequently used with around 100 published studies in a wide range of applications from protein-

protein [4, 5], peptide-protein [6, 7], enzyme-substrate [8, 9] and posttranslational modification 

interaction studies [10, 11], to antibody specificity validation [12, 13], antibody target discovery 

[14, 15], antibody isotyping [16-18] and clinical autoantibody screening [11, 16, 19]. The 

extensive usage of the protein microarrays can be attributed to two innate characteristics unique 

to the platform: i) E.coli expression clones are spotted directly on PVDF membranes, ensuring 

consistent protein concentrations intrinsic to each individual expression clone, thereby avoiding 

the need for cumbersome large-scale protein purification and characterisation procedures 

essential for the generation of most protein microarray formats; and ii) each individual colony 

spot on the macroarray comprises of a single recombinant human protein and a collection of all 

E.coli proteins, thereby providing a natural blocking background consistent across the entire 

array and hence ensuring excellent experimental signal to noise ratios [20]. 
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While users of protein microarrays may draw on dedicated commercial and open source 

microarray analysis software packages [21, 22], such packages are not suitable for protein 

macroarrays due to the large array size and associated image resolution characteristics [23, 24]. 

Protein macroarray analysis options are thus far limited to image data processing of subsections 

of the array [25, 26] or universal manufacturer-provided scanner software packages [10]. More 

dedicated software packages such as VisualGrid (GPC Biotech) [19, 27] or Aida Image Analyser 

(Raytest) [5, 28] rely either on operator-based decision making or fixed spot diameter 

measurements which are not suitable for semiquantitative comparative studies. Here we aim to 

develop an automated open source software package dedicated to semiquantitative analysis of 

protein macroarrays. We use MathWorks MATLAB version 2019b as the platform. The code is 

available for use in the supplementary information section.  

EXPERIMENTAL PROCEDURES 

Protein Macroarrays: HexSelect protein macroarrays (Engine GmbH, Germany) were prepared 

as previously described [19]. Briefly, protein macroarrays were incubated with diluted volunteer 

serum (1:100) for 16 h. Mouse anti-human IgG antibody (GG-7, Sigma-Aldrich), alkaline 

phosphatase (AP)-conjugated goat anti-mouse IgG antibody (A1418, Sigma-Aldrich) and 

AttoPhos substrate (S1000; Promega) were used as detection reagents. The arrays were scanned 

using GE Typhoon FLA 9000 Gel Imaging Scanner (GE Healthcare, Chicago, IL, USA). 

MATLAB Programming: MATLAB code is written specifically for the HexSelect protein 

macroarrays imaged using a 16-bit scanner at a resolution of 10 pixels/mm. The user interface 

built into the code requires MATLAB version 2019b or later to work properly. We used 

uncompressed TIFF files converted from the scanner RAW file without any compression or 
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noise removal for the best results. All images were checked to ensure that there was no pixel 

saturation, i.e. all pixel values were well within the linear dynamic range of 0 to 65,535. These 

macroarrays contain 57,600 “dots” that are grouped into 2,304 “cells”. Each cell consists of a 5 

X 5 array of 25 dots, including the marker dot at the centre and 12 pairs of clones in a specific 

configuration as previously shown [19]. Each dot is represented by 9 X 9 pixels on the image.  

RESULTS AND DISCUSSION  

Image loading and aligning of the array 

A protein macroarray TIFF images was loaded from the MATLAB folder via a user dialogue. 

The image may be mirrored depending on the side of array that was scanned. The images used in 

this study were all the same size at 2,250 X 2,250 pixels.  

An accurate dot positioning is critical for large protein arrays as minute distortions present in the 

substrate accumulate throughout the entire array. Nevertheless, the large dimensions facilitate 

accurate physical placement in terms of orientation and thus substantially reduce positioning 

errors arising from rotation. Array scanners tend to sacrifice spatial resolution to improve 

intensity resolution and signal-to-noise ratio (SNR) by using charge-coupled device (CCD) 

cameras with relatively large pixels. Therefore, positioning accuracy is paramount to reliable 

data.  

Physical distortion of the array substrate is non-linear and heterogenous. As such, the ubiquitous 

3-point interpolation positioning method that assumes perfect grid-like array structure fails to 

accurately determine dot locations in large arrays. To address this issue, we implement a two-

stage positioning method that includes a 4-point interpolation positioning method followed by a 
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secondary adaptive position refinement aided by marker dots located at the centre of each cell. 

The coordinates of the marker dots at the four corners of the array are the only user inputs 

required by our method.  

The 4-point positioning method forms a quadrilateral with evenly interpolated spacing as an 

initial approximation to locate marker dots. As the dots were printed black with high contrast, the 

centre of each marker dot is accurately determined via simple pixel intensity thresholding. Once 

determined, the pixel coordinates of the centre of each marker dot form the centre of each cell. 

Figure 1 shows positions of the marker dots acquired using this method.  

 

 

Figure 1. Determining the positions of the marker dots. (a) Unprocessed image of the protein 

array. The heterogenous background is clearly visible. (b) Image overlaid with green marker 

positions matching the positions of printed black marker dots. 
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Reconstruction of array 

The array is next reconstructed such that the image analysis is only applied to regions of interest 

(2,160 X 2,160 pixels). Each cell is redefined by using the marker dot centre as datum, such that 

the cell area is ±22 pixels in the horizontal and vertical direction from the centre pixel. To check 

the accuracy of the marker dot position and subsequent reconstruction, the code samples 6 X 6 

cells that are evenly spaced across the entire array. A sample result is shown in Figure 2. 

 

 

Figure 2. Sample cells to illustrate positioning accuracy throughout the entire array. The colour 

is applied by MATLAB and normalised according to pixel intensity. The marker dots are visible 

at the centre of each cell in dark blue as they have the lowest pixel intensities.  
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Removal of null results 

The protein arrays contain null results that include marker dots and dots that do not produce any 

signal, hereby referred to as blank dots. Each cell can have up to 2 pairs of blank dots that should 

be excluded from subsequent statistical analyses. Marker dots were removed based on previously 

known positions whereas blank dots were removed based on divergence of the pixel intensity 

field. Dots with signals form sinks in the divergence field. Figure 3 shows the position of the 

blank dots and marker dots throughout the entire array.  

 

 

 

 

 

 

Figure 3. Detected blank dots in the array. Visible straight boundaries between regions of different 

blank dot densities suggest artefacts during array production. 

Background subtraction 

We do not include any user input for background subtraction to improve reproducibility. To 

quantify the signal strength of each dot, the background pixel offset and gain should be 

subtracted. For large arrays with human-derived samples, local variations in offset and gain are 



 8 

significant. Variations were observed even within one cell. As such, we assume that offsets are 

only homogenous at the dot level. Within each dot, the background offset pixel value is defined 

as the intensity of the pixel(s) that expresses no fluorescence. As such, this corresponds to the 

pixel with minimum intensity. Dots with extremely strong signal can fill the entire dot space with 

fluorescent signal. In these cases, background pixel values would be abnormally high and 

detected as outliers. Outlier background values will be replaced by local median background 

value instead.  

The locality of a dot is defined as the sample of dots contained within a radius of 4 dots from the 

dot of interest, similar to a moving window. Selection of radius size takes into account of 

competing factors. A small radius will have a higher homogeneity of pixel gain but suffers from 

statistically unreliable small samples. A 3-dot radius completely covers the area of one cell with 

29 dots. At the worst case, only 4 dots lie outside of the cell. As such, a 3-dot radius locality can 

be susceptible to errors within a cell. A 4-dot radius yields 49 dots which includes 24 dots 

outside of the cell at worst. As such, the 4-dot radius is used in our analysis. Figure 4 shows the 

comparison between a 3-dot and 4-dot radius locality.  

  

 

 

 

Figure 4. (a) 3-dot and (b) 4-dot radius localities in an array. 
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Next, the entire array is reworked by subtracting each pixel with its corresponding offset, Figure 

5. Once the offset is removed, only the variable gain component remains. The gain component 

can be determined if a known reference value is available. Since the arrays do not contain a 

reference value, only relative gain values can be determined. 

 Figure 5. (a) Before and (b) after background subtraction. Note that our background subtraction 

method did not suppress the strong signals within the array. 

Pixel value summation 

Pixel values within each dot is summed to obtain the total pixel intensity. Unlike other platforms, 

we do not require a shape mask to determine region of interest within the dot. In our case, the 

entire dot (9 X 9 pixels) will be included in the dot pixel sum since the background pixel value is 

negligible after the background subtraction process. The result is a 240 X 240 numerical array. 

Median absolute deviation (MAD) calculation 
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Since there is no reference to an absolute value, we define overexpression as a dot that has 

significantly higher intensity than dots in its locality. Since an overexpression is a statistical 

outlier, we measure the degree of spread of each dot from the local centre of distribution in terms 

of pixel intensity. The median absolute deviation (MAD) is calculated for each locality. Each dot 

of interest will yield an absolute deviation from median which is normalised with respect to its 

local MAD. As such, the local gain component is eliminated. The result is the number of MADs 

from median which is reported as a relative quantification of expression levels. Since the local 

offset and gain components were removed, the number of MADs from median can be used to 

compare levels of expressions across arrays from different samples and time points. 

The number of MADs from median for all 57,600 dots are stored in a linearised array with their 

corresponding x and y coordinate to facilitate matching with the protein library. Figure 6(a) 

illustrates the outliers detected based on the customisable MAD threshold > 3. As the output is a 

generic numerical array, the results can be analysed or filtered in Microsoft Excel or MATLAB. 

These results can be stacked for comparison or longitudinal study purposes. 
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Figure 6. Output results. (a) Dot pairs with MAD > 3 highlighted in red. (b) Histogram of dot 

count vs. number of MADs from median. Note that this array contains extremely strong signals 

that have MAD > 50.  

CONCLUSIONS 

We developed a first, automated semiquantitative open source software package for the analysis 

of widely used protein macroarrays. The software allows accurate single array and inter-array 

comparative studies through the tackling of intra-array inconsistencies arising from experimental 

disparities. The innovative and automated image analysis process includes adaptive positioning, 

background identification and subtraction, removal of null signals, robust statistical analysis, and 

protein pair validation. The normalized values allow a convenient semiquantitative data analysis 

of different samples or timepoints, enabling accurate characterisation of sample series to identify 

relative changes for instance in clinical samples in response to diseases and treatment. The 

associated code is available for use in the supplementary information section.  
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