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Summary 

The climate emergency has made it necessary to rethink our economy which relies heavily on 

fossil fuels. Currently, sustainable processes are too costly, but catalysis as a key enabling 

technology has the potential to reduce process costs to a level that makes them economically 

viable. In spite of that, the existing catalyst discovery paradigm depends heavily on serendipity 

and trial and error methods.  What is urgently needed to transform the energy transition is a 

catalyst acceleration platform (CAP) that expedites the development of next-generation 

sustainable processes. To advance the field, we need to use state-of-the-art robotic and 

algorithmic tools to look beyond the well-established systems that dominate the current research 

landscape. Herein, we discuss the requirements for a successful catalyst acceleration concept 

and the societal impact of breakthrough catalytic materials. 

 

Introduction 

Our world is about to undergo a great reallocation of resources.1 Deployment of current 

technologies hold promise to lead to massive reductions in greenhouse gas emissions but to 

reach the climate targets established in the Paris agreement, we need to decarbonize all 

industrial processes including those in hard-to-abate sectors such as chemicals or aviation (Figure 

1). A range of innovative technologies such as carbon upcycling was proposed to achieve the 

transformation to a circular carbon economy. However, many processes remain far from 

deployment due to prohibitive operating costs. 
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Figure 1. The transition from a fossil fuel-based economy to a circular economy requires a large 

reallocation of resources and deployment of new clean processes and technologies. Left: Today’s 

world relies on fossil fuels for energy, transportation, and industries that provide downstream 

consumer goods such as textiles or food. Right: In tomorrow’s world, emissions are avoided, 

reduced or negated through biomass, carbon capture, and direct air capture technologies. Carbon-

neutral fuels such as hydrogen are used to power large parts of the industry, and consumer goods 

are supplied via carbon-neutral or negative pathways. 

 

Status Quo in Catalysis 

In our current economy, catalysts drive 90% of chemical processes and therewith impact 30-40% 

of the world’s GDP.2,3 They are key to lowering materials consumption and energy requirements 

but often take decades of research and successful candidates are often discovered 

serendipitously. Following this line of thinking, the development of the next generation of 

catalytically active materials appears to be a priority for clean technology research and 

development (Figure 2).  
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Figure 2. Catalysis is an enabling technology for the provision of carbon-neutral fuels. Black line: 

The renewable energy required to produce competitive carbon-neutral fuels is too high leading to 

too high process costs. Blue line: Efficient catalysts capable of converting inert molecules such as 

water and carbon dioxide into fuels and bulk chemicals could lower the operating cost of such 

processes significantly. 

 

Automation is crucial in catalysis due to advantages such as increased safety, scalability and 

decreased long-term cost.4 However, most automation tools available commercially are at most 

suitable for homogeneous catalysis, which only accounts for 15% of catalytic processes.5 This is 

because homogeneous catalysts are typically either dissolved in liquid or come as a suspension, 

which simplifies the automated workflow. Heterogeneous catalysis, on the other hand, has more 

challenges when it comes to automation. Whilst today’s catalytic processes are based on thermal 

catalysts, the future of catalysts will evolve around electrocatalysts as the world moves towards 

electrification of the industry through electricity/energy generated from renewable sources.6 To 

date, there is no automated commercial apparatus that is designed to deal with synthesis and 

testing of electrocatalysts in the market, as it is an emerging field compared to the traditional 

and more established thermal catalysts. While thermocatalyst discovery could and should be 

accelerated as well, the focus of the remainder of this paper is placed on electrocatalysis. As a 
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rather nascent field it would greatly benefit from accelerated materials discovery and that plays 

an increasingly important role in the energy transition which will be fueled by renewable 

electricity instead of fossil fuel combustion. 

Computational atomistic models have been utilized by scientists to rationalize the experimental 

phenomena of the catalysts. Traditional ab initio simulation methods, such as Density Functional 

Theory (DFT), remain the main tools to obtain atomistic insight into intriguing experimental 

results.7 One of the platforms available is Catalysis-Hub, a database of surface reactions 

generated with DFT.8 Researchers around the world have spent a considerable amount of time 

and resources to simulate optimal electrocatalysts for various processes (e.g., hydrogen 

evolution reaction, oxygen evolution reaction, hydrogen oxidation reaction, oxygen reduction 

reaction, and carbon dioxide conversion to various products).9,10  However, despite their 

importance in understanding catalytic processes on the atomic scale, these methods are limited 

by their computational complexity, which often renders them more useful for post-

rationalization rather than for generating novel materials hypotheses.11 All computationally 

derived datasets have the same bias as the computational methods in terms of classes of 

materials that can be correctly characterized or in terms of sampling information, often limited 

to structural analysis with few insights in the catalyzed reactions in which the catalytic species 

might be involved.12 More importantly, the catalysts designed purely in-silico do not provide 

synthetic routes and often a team of experts are required to find potential pathway to synthesize. 

Meanwhile, experimental datasets are available through literature, but pre-processing 

procedures may be unclear and hard to replicate. Often, these datasets are incomplete in the 

information they provide and representative only of a restricted subset of molecules or reactions. 

Recent advances in computation allow the exploitation of artificial intelligence to accelerate the 

development of new catalysts.13 For example, machine learning has the potential to provide 

quantum chemical accuracy at force field computational cost.14 Furthermore, AI can make 

substantial contributions to catalysis in terms of direct generation of novel catalyst hypotheses, 

provided appropriate data, including storing and representation strategies are available.15,16 In 

contrast to protein structure prediction, large high-quality datasets are available in the public 

domain17,18 and AI approaches such as AlphaFold19 disrupted the state-of-the-art, emerging fields 
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such as electrocatalysis lack high-quality experimental databases, which severely hinders the 

benefits of data-driven discovery approaches.20 A notable example of leveraging AI in conjunction 

with more easily accessible simulation data is the Open Catalysts Project 2020 (OC20), which 

provides 1,281,040 structural relaxation trajectories calculated with DFT across a wide range of 

materials which was extended further.21-23 Solid state material databases exist but mainly relate 

the catalyst performance only to its bulk properties.24,25 Overall, the application of machine 

learning holds great promises to accelerate the discovery in underexplored fields such as bio-26 

and electrocatalysis16. At the same time, lack of standardized testing and poor reproducibility 

leads to poor data quality that cannot be leveraged in algorithmic searches.27-29 

 

Catalysis Acceleration Platform (CAP) 

To discover breakthrough catalytic materials, we believe that we need to debias the search away 

from well-established foundations and boldly explore the depth of chemical space (Figure 3).30 

While both expert-guided experimentation and early MAP implementations typically focus on 

rather narrow areas of chemical space, it is our expectation that finding answers to societal 

solutions will require a materials acceleration concept that enables global exploration combined 

with local exploitation of the acquired information. Many pioneering works highlight the 

potential of automated and data-driven workflows in catalysis. At the same time, a high-

performing but unstable catalyst is not scalable and the urgent need to discover novel, scalable 

catalysts to realize the energy transition remains unchanged. Therefore, we must scale up our 

efforts to unlock radical innovation. 
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Figure 3. An illustration of bias in both traditional R&D and early MAP implementations compared 

to a bold materials acceleration concept for societal solutions in an example two-dimensional 

search space. Left: Green, purple and grey points represent experiments suggested by researchers 

based on experience, intuition and literature precedent. This often leads to narrow constraints in 

which local optima are identified. Right: An unbiased materials acceleration platform for catalysis 

that generates large quantities of data and combines global exploration (light blue) with local 

optimization (dark blue). 

 

As such, our concept relies on identifying catalyst candidates in a highly combinatorial search 

space using advanced sample-efficient algorithms (Figure 4). This requires combining expertise 

from automation, computation and cutting-edge catalysis science into a state-of-the-art robotic 

platform flexible enough to handle the vast variety of chemical inputs, synthesis, and processing 

conditions for surface-engineered catalytic materials.31 Rather than employing massive 

parallelism and miniaturization, our solution stays as close as possible to industrially relevant 

synthesis and testing conditions to ensure ready scalability from laboratory to pilot. A scalable 

platform should further adopt standards in laboratory automation hardware32 and capture all 

relevant data and metadata generated throughout a given sample history, including quality 

control data for anomaly detection and crucial data from failed experiments33 in a findable, 

accessible, interoperable and reusable manner.34,35 This alongside standardized catalytic testing 

and characterization will enable a higher degree of reproducibility than traditional research 

approaches.36 Knowledge-informed machine learning pipelines that allow the incorporation of 

the results of quantum chemical simulations into the active learning loop will be of high 
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importance to enable sample-efficient searches.37-39 Using such materials-aware 

representations, these initial ‘hits’ can be further optimized into promising catalyst candidates 

within a constrained search space focusing on a narrow area. In this process we generate high 

quality and diverse training data to train both global and local models to predict catalytic 

performance. 

 

Figure 4. Workflow of the Catalyst Acceleration Platform (CAP). An algorithm selects the 

experiments to carry out based on chemicophysical properties of the catalyst to achieve a user-

defined objective. Experiments are carried out by the robotic platform to ensure production of 

reproducible high-quality data. The surrogate model updates based on the results and this closed-

loop iterative approach is carried out until an interesting result is achieved and requires further 

validation by a human. The potential catalyst is then scaled up towards the industrially relevant 
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scale for the given chemical process. Results and metadata of each process are recorded and fed 

back into the loop. 

 

The challenge is to link the many existing approaches and enable feedback loops to quickly iterate 

computational design, synthesis, testing and scale-up without data losses. Uniquely, our 

approach links the full synthetic process conditions to the catalysis performance, focusing not 

only on activity and selectivity but emphasizing stability, cost and manufacturability which are 

paramount to translating discoveries into scalable processes. While leveraging the data-driven 

decision-making paradigm of self-driving labs, we believe that full autonomy at the expense of 

human creativity can hinder scientific progress. Therefore, an efficient platform must be 

designed to maximize the productivity of domain experts and provide interfaces for researchers 

to refine the search space, study unexpected phenomena and immediately translate discoveries 

into practice. In order to capitalize on the promised benefits of current approaches, novel 

solutions in materials-aware machine learning algorithms, consistent data ontologies, and 

flexible automated workflows are required. Comparably to efforts in the AI-driven COVID-19 drug 

discovery space, generated datasets could be released to the public to stimulate innovation, 

inviting the community to contribute to the next generation of machine learning models.40,41 In 

turn, proprietary models could be released in a similar fashion as IBM RXN to benefit the wider 

community without compromising commercial interests.42 Such efforts alongside breakthrough 

discoveries would further aid in building trust into the AI-driven science paradigm. 

 

Environmental and Economic Impact of Breakthrough Catalysts 

Many sectors can be decarbonized through expanding renewables, electrification, energy 

efficiency and emission reduction measures. Among the hardest-to-abate sectors Chemicals, 

Aviation and Shipping account for around 9.4% of global greenhouse gas emissions and their 

relative share is bound to increase significantly as we decarbonize the easier-to-abate sectors.43 

In this section, we examine how discovery, scale-up and commercialization of CO2-to-X catalysts 

with >60% CO2 conversion efficiency could aid in achieving a net zero carbon economy. 43 Of 
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course, many new sustainable processes are required to fully realize the energy transition 

including hydrogen generation, electrochemical ammonia synthesis and splitting are among 

them, with catalysis being a key enabling technology in each case. 44From an environmental point 

of view, capturing CO2 from air or from biomass and converting it to one of the base chemicals 

such as methanol would reduce CO2 emissions by up to 95% and nitrogen oxide by up to 80%.45 

The reduction of these two greenhouse gases amounts to a reduction of 0.3% of the global 

greenhouse gas emissions that are normally emitted from methanol production from fossil-based 

feedstock.46 Similarly, enabling the catalytic conversion of CO2 to green ethylene with a CO2 

conversion efficiency that is higher than 60% would remove 260 million tons of CO2 emissions 

per year, which is around 0.8% of the global annual CO2 emissions.47 These examples 

demonstrate the tremendous environmental benefits of introducing sustainable catalysts that 

effectively convert an inert molecule such as CO2 to green fuels and chemicals.  

 

Figure 5. The economics of CO2-based chemicals. The effect of the electrochemical CO2 conversion 

efficiency on the cost reduction of CO2-based products relative to fossil-based chemicals. The 

analysis is based on the data produced by the authors and data compiled from the literature.44,48,49  
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From an economic perspective, discovering a highly active and stable CO2 conversion catalyst 

could unlock significant economic benefits as there are at least 50 different CO2-to-chemical 

approaches that could be realized by 2030 based on the authors’ own analysis. For example, the 

global methanol market is expected to grow from USD 24.10 billion in 2020 to USD 66.06 billion 

by 2030 at a compound annual growth rate (CAGR) of 5.53%, and the increase in demand is being 

driven predominantly by adopting green methanol as a marine fuel to reduce the carbon 

footprint in marine shipping. Similarly, the highly demanded base chemical ethylene has an 

overall market size of USD 113 billion in 2021 and is expected to grow to USD 125.02 billion in 

2022 at a compound annual growth rate (CAGR) of 10.6%. Introducing novel catalysts that can 

enable highly selective electrochemical conversion of CO2 to base chemicals and fuels could 

reduce the operational expenses by up to 32% or by around USD 331 million per electrochemical 

CO2 conversion process within a 5-year period (Figure 5).44,48 This demonstrates the importance 

of catalysts in driving a transition to more sustainable chemical processes.  

Furthermore, the MAP-based catalyst discovery approach offers several advantages in terms of 

experimentation cost and time. Based on our analysis, building such a platform and carrying out 

a catalysts discovery campaign for 2-3 years will cost 70% less than carrying a similar campaign 

following the traditional model where several labs with complementary expertise collaborate on 

a catalysis discovery project. This cost-effective method will not only facilitate the discovery of 

novel catalysts, but it can also enable global equitable access to novel technologies for materials 

discovery. This is in addition to the better data reproducibility since the main catalyst synthesis 

data and the experimental metadata will be stored in a central database for future repetitions of 

the experiments if needed. Finally, it is estimated that implementing this accelerated materials 

discovery approach could shorten the time-to-discovery by up to 90%, which will open several 

new materials discovery avenues and will create new opportunities for future generations to 

work on solutions that will enable the sustainable energy transition to proceed in a faster pace 

towards global deployment.50  

Ultimately, the catalyst acceleration platform could lead to novel catalytic materials with the 

potential to enable sustainable chemistry processes that are more efficient, selective, and cost-

effective. Success would indeed solve societal problems by enabling CO2 emission reduction on 
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a gigaton scale and providing new economic opportunities around the globe. To achieve this 

vision, significant R&D funding will be needed to develop and run the catalyst acceleration 

platform to explore chemical space on an unprecedented scale. More importantly, commercial 

partners who are willing to engage in green processes to enhance the robustness of catalysts and 

explore their potential for expansion are required. If humanity decided to engineer coffee 

machines and weaponry to such a sophisticated level, we should allocate appropriate resources 

to accelerate for the development of green processes that would otherwise come too late to 

achieve our climate targets. 
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