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Abstract

In the simulation of molecular systems, the underlying force field (FF) model plays

an extremely important role, determining the reliability of the simulation. However,

the quality of the state-of-the-art molecular force fields is still unsatisfactory in many

cases, and the FF parameterization process largely relies on human experience, which

is not scalable. To address this issue, we introduce DMFF, an open-source molecular

# These authors contribute equally.
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FF development platform based on automatic differentiation technique. DMFF serves

as a powerful tool for both top-down and bottom-up FF development. Using DMFF,

both energies/forces and thermodynamic quantities such as ensemble averages and free

energies can be evaluated in a differentiable way, realizing an automatic, yet highly

flexible force field optimization workflow. DMFF also eases the evaluation of forces

and virial tensors for complicated advance force fields, helping the fast validation of

new models in molecular dynamics simulation. DMFF has been released as an open-

source package under the LGPL-3.0 license and is available at https://github.com/

deepmodeling/DMFF.

I. Introduction

Organic molecular system is an important subject of study in a variety of research fields

including materials science and biology. As one of the most important computer simulation

tools, molecular mechanics (MM) plays an essential role in the studies of organic materials

and biomolecules.1,2 All MM simulations rely on a potential energy surface (PES), which

describes the energies and the forces of the simulated atoms. For the sake of computational

efficiency, the PES is typically approximated using a classical model, namely molecular

force field, instead of being computed ab initioly on-the-fly. Therefore, the quality of the

underlying force field limits the accuracy and the predictive power of the MM simulation.

To date, conventional force fields such as GAFF,3 UFF,4 CHARMM,5 and OPLS-AA6

have been the main workhorses in materials science and biological simulations. All these force

fields partition the total energy into inter- and intra-molecular parts based on the bonding

topology of the molecule. Intermolecular interactions are described by the atomic point

charges and simple pairwise-additive van der Waals (VDW) potentials. The intramolecular

interactions are decomposed into a direct sum of contributions from all internal coordinates

(i.e., bond lengths, angles, dihedrals etc.). These force fields can be computed in fast speed,

making them primary models to use in industry to study large molecular systems. However,
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the mathematical form of the conventional force fields is heavily approximated, neglecting

many important physics including polarization, charge penetration, and many-body dis-

persion etc. Therefore, conventional force fields are hard to generalize, and are essentially

effective models that need to be tailored for specific systems or applications. The force field

parameters are often obtained through a top-down approach, fitted to reproduce the ex-

perimental macroscopic properties of interests. Such parameterization process relies heavily

on human intervention, thus cannot be done in high throughput. Consequently, force field

parameterization is often the bottleneck of research when studying new systems with a large

number of parameters. There are efforts trying to automate this process, such as ForceBal-

ance and OpenFF,7–9 but the differentiation of macroscopic properties with respect to force

field parameters is a nontrivial task. In these works, such differentiation is still conducted

using the finite difference method, resulting in limited efficiency and poor scalability. Con-

sidering how widely conventional force fields are used in modern industry, their automatic

optimization remains an important challenge to be solved.

Meanwhile, more advanced force fields are being developed using function forms beyond

conventional force fields. These force fields are typically developed using the bottom-up

strategy, in which ab initio energies and forces are the fitting targets. The new generation of

force fields can be categorized into two types: the data-driven models and the physics-driven

models. The data-driven models include a variety of machine learning (ML) models such as

BPNN,10 DeepPotential,11 PhysNet,12 and EANN13 etc. These ML models are becoming

increasingly popular recently and achieved great success in homogeneous and hard material

systems. However, the performances of such pure ML methods are less reliable in bulk

organic molecular systems. The current ML frameworks do not take the full advantage of the

bonding topology information, and a more accurate treatment to the long-range interactions

is also in need. Therefore, for molecular systems, ML methods need to be combined with

physics-driven models,14,15 leading to hybrid strategies. For physics-driven models, new

terms such as multipolar interactions, polarization effects, and charge transfer effects are
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introduced into the model analytically.16–18 Due to the complexity of these interactions, the

implementation of the corresponding forces and the virial tensors is an extremely tedious

task, which impedes the fast validation of the model in MD. The situation becomes even

worse for hybrid ML/physics-driven models, which are not well-supported in all the currently

available MD programs.

Here, we note that all the tasks mentioned above can be formulated as differentiating

the model with respect to either force field parameters or system geometry. Such task can

be easily performed using the automatic differentiation technique. Being the basis of all

modern ML platforms (e.g., tensorflow, torch, JAX, etc.), automatic differentiation allows

the developers to focus on the computing process itself, while leaving the differentiation to

computers. The differentiation of macroscopic properties with respect to force field param-

eters, combined with modern gradient descent algorithms, enables automatic optimization

workflows for force field development. Meanwhile, the automatic differentiation capability

naturally eases the implementation of forces and virial tensors, leading to fast MD valida-

tion. Based on different platforms, researchers have built several end-to-end differentiable

MD engine, including: TorchMD,19 JAX-MD,20 and SPONGE.21 However, as discussed

in a previous study,22 for almost all thermodynamic properties, end-to-end differentiation

through the entire MD trajectory is not necessary. On the contrary, the deep computation

graph of MD leads to extra issues such as gradient vanishing and exploding, as well as huge

memory cost in backward propagation. On the other hand, a comprehensive support to more

force field function forms and more types of object functions is a more urgent need. For most

molecular force field developers, functions such as topological scaling (e.g., the 1-3 scaling),

flexible atom typification, long-range Ewald, and polarization, etc. are critical, but are still

missing in the aforementioned platforms. Currently, the only differentiable framework dedi-

cated to force field development is JAX-ReaxFF,23 which is however specific to ReaxFF. So

far, there is still no differentiable platform designed for molecular force field development,

which is the object of this work.
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In this work, we build an automatic differentiable molecular force field platform, namely

DMFF (Deep Modelling Force Field, or Differentiable Molecular Force Field). DMFF is

a comprehensive implementation of both conventional molecular force fields and advanced

multipolar polarizable models. It features a user-friendly OpenMM-like interface for con-

venient molecular force field definition and parameter file generation. It also possesses an

extensible backend structure, such that new potential forms (e.g., various ML potentials and

customized pairwise potentials) can be easily added. Based on the comprehensive implemen-

tation of the force field models, DMFF also provides convenient differentiable estimators for

not only energies and forces, but also thermal dynamic quantities including free energies and

ensemble averaged properties. Based on these estimators, the corresponding object functions

can be defined, enabling automatic bottom-up and top-down optimization workflows. DMFF

is built on the basis of the JAX framework.24 As a function-oriented framework, JAX allows

the users to recombine and decorate the DMFF functions, allowing easy customization of

new potentials and object functions. Such features are extremely important in force field de-

velopment, saving the developers from re-implementing the same computation kernels (such

as Ewald sum) repeatedly. The XLA backed Just-In-Time (JIT) function in JAX provides

GPU support, and also makes DMFF run much more efficiently compare to typical Python

programs. Relying on these features, DMFF is designed to be a both flexible and efficient

tool for the development of molecular force fields.

2. Program Structure and Theoretical Background

The entire DMFF package is available in Github.25 Here we will introduce the overall struc-

ture of DMFF from four aspects: model preparation, model implementation, model opti-

mization, and model deployment.
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A. Model Preparation with DMFF Frontend

The core function of DMFF is a differentiable molecular force field calculator, the structure

of which is represented in Figure 1. DMFF force field implementations can be divided into

two parts: the frontend interfaces and the backend kernels. The DMFF frontend is in charge

of model preparation, and is currently designed to resemble the behavior of the OpenMM

API.26 By doing so, we can share the well-established open-source OpenMM ecosystem for

the convenient definition of molecular force field. All parameters can be defined in the

format of OpenMM force field XML files and a core class named “Hamiltonian” is devised

to overload the “ForceField” class in OpenMM. Within the Hamiltonian object, the force

field parameters are read and stored in a highly organized and hierarchical data structure.

A demo for the preparation of a DMFF force field function and parameters can be found in

Listing 1.

Listing 1: A code demo for DMFF force field frontend interface.

import openmm as mm

import openmm.app as app

import openmm.unit as unit

from dmff.api import Hamiltonian

app.Topology.loadBondDefinitions("lig-top.xml")

pdb = app.PDBFile("lig.pdb")

H = Hamiltonian("gaff-2.11.xml", "lig-prm.xml")

# Generate the potential function

pots = H.createPotential(pdb.topology,

nonbondedMethod=app.PME)

potential_func = pots.getPotentialFunc()

# Access force field parameters

params = H.getParameters()

# Render new parameter file
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H.render(’forcefield.xml’)

Within the DMFF frontend, for each potential term (i.e., each node in the xml file),

a “generator” class is defined. The generator class is in charge of dispatching force field

parameters based on the molecular topology, then invokes the backend kernels to return

a differentiable potential function to users. The atom typification process is done in the

frontend, so we can keep the maximal flexibility of the backend computational kernels, which

can be further wrapped to obtain more advanced potentials if necessary.

Figure 1: The overall code structure of the DMFF force field frontend and backend.

B. Model Implementation with DMFF Backend

In the backend, we define different forces, each of which corresponds to a potential term

(i.e., harmonic bond, harmonic angles, electrostatics etc.). Each force object encloses an

environment for a potential calculation, which is defined by all the parameters that do

not need to be differentiable (e.g., distance cutoff and the energy threshold in an Ewald

calculation). The force object then returns a potential in the form of a python function, which

exposes differentiable variables (system geometries and force field parameters) as inputs.

The function then can be further modified by the JIT or the automatic gradient decorators
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provided in JAX. The current version of DMFF backend provides a complete implementation

of conventional molecular force fields, and a multipolar polarizable potential module (named

Auto Differentiable Multipolar Polarizable module, or ADMP) that replicates the MPID17

behavior up to quadrupole moments. For long-range interactions, Particle Meshed Ewald

(PME)27 is supported for both multipolar electrostatics and dispersion interactions. As

stated above, all backend functions do not recognize atom types, and only accept parameters

per atom as inputs. The DMFF backend forces are organized in a modular style, so they

can be added, assembled, and extended at will to generate more complex potentials such as

fluctuating charge models.

C. Model Optimization

The biggest advantage of the differentiable implementation of molecular force field is that

now we can employ gradient descent algorithms to optimize force fields automatically in

high throughput. Due to the flexibility of JAX, we can define the object function as a

combination of various properties, thus optimizing them simultaneously. DMFF aims to

build a variety of differentiable property estimators, so they can be combined by the users

to define highly customizable object functions. Then the object functions can be optimized

using the state-of-the-art optimizers implemented in external packages such as optax28 or

jaxopt.29

The most trivial estimators that come naturally with the DMFF force field calculators

are energies and forces estimators. Both energies and forces are the most important fitting

targets in the bottom-up force field development. DMFF offers a systematic tool to conduct

energy and force fittings, which is advantageous in two ways: 1. It offers a clean API inter-

facing with the external optimization programs, so the most advanced optimizers developed

in the ML community can be directly employed with minimal coding efforts; and 2. It is

now convenient to combine energies and forces with other targets, even realizing a mixed

bottom-up and top-down strategy. Overall speaking, as we will show later, DMFF really
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makes it simple to optimize a large number of nonlinear parameters with respect to ab initio

energy and force targets.

Meanwhile, in top-down force field development, developers aim to reproduce macroscopic

properties including density, radial distribution function (RDF), evaporation enthalpy, free

energy difference etc. To compute these properties, one needs to perform long MD simu-

lations, the differentiation of which is nontrivial to do. Previous studies often differentiate

through the entire MD trajectory, which is extremely expensive in both computational time

and memory cost. Meanwhile, Thaler and Zavadlav22 showed that for ensemble averages,

such end-to-end differentiation can be avoided by a trajectory reweighting scheme. In DMFF,

we put the reweighting algorithm into a more general context of the MBAR30 method, and

introduce differentiable estimators for both averaged properties and free energies. While the

differentiable evaluation of dynamic quantities remains a challenge, the reweighting MBAR

estimator makes the fittings of thermodynamic properties relatively easy. We now briefly

introduce the basic formulation of the reweighting MBAR estimator in DMFF.

In the MBAR theory, it is assumed that there are K ensembles defined by effective

energies ui(x), (i = 1, 2, . . . , K). The Boltzmann weight, the partition function, and the

probability in each ensemble are defined as:


wi(x) = exp (−β · ui(x))

ci =
∫
dx · wi(x)

pi(x) =
wi(x)
ci

(1)

From each ensemble i, we draw Ni samples, labeled as {xin}, (n = 1, 2, . . . , Ni), and the

whole sample set can be labeled as {xn}, n = (1, 2, . . . , N), with N being the total sample

size: N =
∑K

i=1Ni. MBAR theory states that the statistically optimal estimators (ĉi) for
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the partition functions ci of these K ensembles satisfy the following equation:30

ĉi =
N∑

n=1

wi(xn)∑K
k=1Nkĉ

−1
k wk(xn)

(2)

Note that Eqn.2 regulates the ratio between ĉi and ĉj, so the free energy difference

∆fij = − ln(cj/ci) can be solved.

Meanwhile, to compute a property A(x) averaged in ensemble i, we can define a fictitious

ensemble j with a fictitious Boltzmann weight and partition function:


wj(x) = A(x)wi(x)

cj =

∫
dx · A(x)wi(x)

(3)

Then Eqn.2 can be used to solve the ratio between cj and ci, which is the esnemble average

of A:

ĉj
ĉi

=

∫
dx · A(x)wi(x)∫

dx · wi(x)
= ⟨A⟩i (4)

Only this time no samples are drawn from the fictitious ensemble j, so Nj is always 0.

Therefore, MBAR gives a unified theory for the evaluation of free energies and ensemble

averaged properties from multiple samplings.

In the original MBAR theory, Eqn.2 needs to be solved iteratively as it is a set of coupled

nonlinear equations for all ĉi. However, in the spirit of reweighting, the computation of the

estimator can be largely simplified. Noticing that in a gradient descent training process, the

parameters are only slightly perturbed in each training cycle, thus the samplings from the

previous cycles can be reused. A resample is not necessary until the current ensemble (i.e.,

the ensemble being optimized) deviates from the sampling ensembles significantly. Therefore,

in our implementation of reweighting MBAR, we define two types of ensembles: the sampling

ensembles, from which all samples are drawn (assuming there areM of them, labeled by index

m = 1, 2, . . . ,M), and the target ensembles (labeled by indices p, q), which are the ensembles

subject to optimization. The sampling ensembles are only updated when necessary and they
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do not need to be differentiable, so their data can be generated using external packages such

as OpenMM. Since all samples are drawn from the sampling ensembles, the Np for the target

ensembles are always zero. Consequently, in Eqn.2, the ĉp is well decoupled from ĉm and

each other, and can be computed from ĉm in one shot:

ĉp =
N∑

n=1

wp(xn)∑M
m=1Nmĉ−1

m wm(xn)
(5)

In practice, each time when resample happens, ĉm are updated by solving Eqn.2 itera-

tively, and are stored as constants within the estimator until next resampling. Then during

the parameter optimization, ĉp, or their ratio ĉp/ĉq, is computed using Eqn.5, and returned

as a differentiable estimator.

If we set the sampling ensembles to be a single ensemble w0(x), and the target ensembles

to be wp(x) and wq(x) = A(x)wp(x), then it is straightforward to show that:

⟨A⟩p =
ĉq
ĉp

=

∑N
n=1 A(xn) exp(−β∆up0(xn))∑N

n=1 exp(−β∆up0(xn))
(6)

With ∆up0(x) = up(x)−u0(x). This result recovers the Eqn.3 and 4 in reference 22, showing

that the trajectory reweighting method is indeed a special case of the reweighting MBAR

estimator.

In practice, for convenience, DMFF provides two APIs for free energy and averaged

property evaluations, respectively. For free energies, ∆f̂pq = − ln
(

ĉp
ĉq

)
is directly computed

and returned using Eq. (5). While for averaged properties, we reformulate Eq. (5) as:

⟨A⟩p =
N∑

n=1

[∑M
m=1 Nm exp

(
f̂m − β∆Ump(xn)

)]−1

∑N
n=1

[∑M
m=1Nm exp

(
f̂m − β∆Ump(xn)

)]−1A(xn)

=
N∑

n=1

WnA(xn)

(7)
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with: 
∆Ump(xn) = Um(xn)− Up(xn)

Wn =
[
∑M

m=1 Nm exp(f̂m−β∆Ump(xn))]
−1∑N

n=1[
∑M

m=1 Nm exp(f̂m−β∆Ump(xn))]
−1

(8)

The estimator gives the MBAR weights of each sample (Wn), using which the user can

construct their own property estimator easily. The estimator also evaluates the Kish’s effec-

tive sample size, which could be used to determine when a dataset is redundant thus can be

removed, and when new samples are needed:

neff =

(∑N
n=1Wn

)2
∑N

n=1W
2
n

(9)

The gradient can be obtained by differentiating the estimator, and be fed to an external

optimizer (e.g., optax28 or jaxopt29) to update the force field parameters. A typical auto-

matic workflow for a thermodynamic fitting using the reweighting MBAR estimator is given

in Figure 2.

Figure 2: The workflow of thermodynamic properties optimization using reweighting MBAR
estimator.

In summary, for model optimization, DMFF currently supports a variety of object func-
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tions including energies, forces, ensemble averaged properties, and free energy differences.

Other estimators such as electrostatic potentials or dynamic properties (e.g., diffusion coef-

ficients, electrical conductivities, and spectroscopy etc.) are also under development. Nev-

ertheless, the current capability of DMFF already makes it a powerful tool for force field

parameterization, as we will demonstrate in the results section.

D. Model Deployment

Once the force field has been optimized using DMFF, it can be deployed in MD simulations.

On one hand, for conventional force field, DMFF is not as efficient as the highly optimized

C++ code in the mainstream MD programs like LAMMPS31 or OpenMM. In the current

stage, DMFF does not pursue extreme performance in large-scale simulations, but rather

focuses on fast force field optimization. Therefore, for conventional force fields, it is rec-

ommended to deploy the model directly in OpenMM. For this purpose, DMFF provides a

”render” function that can export the parameter object into an xml file, which is readily to

be used in OpenMM. On the other hand, for developers who are exploring complex function

forms that are not well-supported by the mainstream MD codes, DMFF can be also used

as the force computation engine. In these scenarios, as we discussed in the introduction

section, we often need to perform small scale validation runs, so the bottleneck is often the

coding process, rather than the production run. For this purpose, we implemented an i-PI32

interface for DMFF, such that MD simulations can be run directly using the DMFF force

engine. In future, interfaces with other more efficient MD programs (such as LAMMPS) is

also to be developed.

3. Results and Discussions

As discussed in the introduction section, the automatic differentiation technique can be ben-

eficial to both fast implementation of force/virial tensors, as well as force field optimization.

13



In the next few sections, we will give a few application examples of DMFF, demonstrating

its capability. The computational details for all examples can be found in the appendix.

A. Application in Advanced MD Simulation

In modern force field development, one often has to design complex model to predict atomic

parameters, and use it in conjunction with conventional algorithms such as PME. A couple

of examples include:

1. Considering the geometry dependence of charges and polarizabilities, it is natural to

use ML models to predict these parameters, and feed them into polarizable force field to

compute the electrostatic energies.15

2. Similarly, one can use ML models to predict electronegativities and hardness, then

use them in charge equilibration models.33 Similar methods can also be utilized to perform

constant potential simulations for electrodes.

Currently, each research group that develops a new atomic parameter model typically has

to implement it in MD from scratch. Such process is extremely tedious and requires highly

skillful developers, thus can only be done by a few specialized research groups. Therefore,

there is an essential barrier between building the model and validating it in real MD simu-

lation, which limits the throughput of force field development. Meanwhile, it is noticed that

some of the computational kernels (such as PME, pairwise interactions, minimization with

respect to charges and dipoles, etc.) are quite common, but still need to be implemented

repeatedly in different scenarios. It would be ideal if we can design the most commonly

used modules in advance, and assemble or extend them at will when exploring new potential

forms. Previously such modular force field development is not feasible due to the needs of

force and virial tensor calculations: differentiating through different modules can be cuber-

some. The automatic differentiable DMFF package is designed to solve this problem. All

commonly used molecular force field kernels are implemented with a user-friendly interface,

which can be recombined easily to form new potentials.
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To show the convenience brought by DMFF, we give a proof-of-concept example, in which

a new water model34 is implemented. This water model is based on a multipolar polarizable

potential, which is quite similar to AMOEBA and MPID.34 But the atomic charges and

leading dispersion coefficients are not constants, but can fluctuate linearly depending on

the bond lengths and bond angles. While this combined fluctuating charge and polarizable

model can significantly improve the description of the intermolecular electrostatic energy, its

implementation requires an essential modification to the existing MD program. However,

by wrapping the DMFF PME backend with the charge/dispersion coefficients computation

kernel, the force and virial tensor of this model can be computed in a few tens of lines of

python code. A sample of this code is included in the examples folder of the DMFF package.

We can then interface it with MD packages such as i-PI35 to perform MD simulations, the

results of which are shown in Figure 3. In the NVE simulation, the energy is well conserved

within 0.02% of precision, verifying the smoothness of the potential and the correctness of the

force evaluation. And the RDFs from the NVT path-integral MD simulation are also shown,

demonstrating the capability of DMFF in bulk simulations. DMFF allows the developers

to really focus on the part they are developing (i.e., the charge model), not concerning

themselves with reinventing the wheel (i.e., the multipolar PME kernel) every time.

Besides being used to compute forces for new potentials, DMFF is also a powerful tool

for force field parameterization. It can be used in both bottom-up and top-down force field

development with different types of object functions, as we will show in the next few sections.

B. Bottom-Up Fitting

In the bottom-up force field development, we need to fit the energies or the forces to ab

initio results. The object functions are typically the root mean square error (RMSE) or

weighted RMSE of energies and forces, which can be directly computed using the DMFF

force field calculator. The JAX implementation of the molecular force fields enables us to

utilize the state-of-the-art optimizers developed in the ML community, designed to perform
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Figure 3: Simulation results of polarizable water force field with fluctuating charges and
dispersion coefficients: (a) the energy conservation in NVE simulation, the range of the y-
axis of the figure is set to be the thermal fluctuation of total energy (±

√
kT 2CV ); (b) the

radial distribution functions from NVT path-integral MD simulation.

robustly when fitting a large number of nonlinear parameters. Here, we show a complicated

energy fitting example, the goal of which is to fit the short-range and damping parts of an ab

initio potential.36 The total energy is decomposed into several physically meaningful terms,

including exchange (ex), electrostatic (es), dispersion (disp), polarization (pol), and dHF

(dhf) interactions. All these terms can be computed using the ab initio Symmetry Adapted

Perturbation Theory (SAPT)37 method, and the short-range parts of them are then fitted
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using the following functions:

Vex =
∑
i<j

Aex
ij P (Bij, rij) exp(−Bijrij)

V sr
es =

∑
i<j

−Aes
ijP (Bij, rij) exp(−Bijrij) + (f1(Bijrij)− 1)

qiqj
rij

V sr
disp =

∑
i<j

−Adisp
ij P (Bij, rij) exp(−Bijrij) +

∑
n=6,8,10

(1− fn(x))
Cn

ij

rnij

V sr
pol =

∑
i<j

−Apol
ij P (Bij, rij) exp(−Bijrij)

Vdhf =
∑
i<j

−Adhf
ij P (Bij, rij) exp(−Bijrij)

Aij = AiAj

Bij =
√
BiBj

Cn
ij =

√
Cn

i C
n
j

fn(x) = 1− e−x

n∑
k=1

xk

k!

P (Bij, rij) =
1

3
(Bijrij)

2 +Bijrij + 1

x = Bijrij −
2B2

ijrij + 3Bij

B2
ijr

2
ij + 3Bijrij + 3

rij

(10)

Each short range term depends on its own prefactor Ai, and all terms share the same damping

exponent Bi, which is in principle the reciprocal of the atom size. The prefactors and the

exponents are strongly coupled, and both parameters are difficult to optimize due to their

nonlinearity. The final target function is a weighted average of the RMSEs of all components

and the total energy:

L = λtot

∑(
Vtot − V ref

tot

)2
+ λex

∑(
Vex − V ref

ex

)2
+ λes

∑(
V sr
es − V ref

sr,es

)2
+ λind

∑(
V sr
ind − V ref

sr,ind

)2
+ λdhf

∑(
Vdhf − V ref

dhf

)2
+ λdisp

∑(
Vdisp − V ref

sr,disp

)2 (11)
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Using DMFF and the ADAM optimizer in optax, we conduct such a fitting on the COCCOC

dimer system, the results of which are shown in Figure 4. The major terms such as elec-

Figure 4: Bottom-up fitting result of COCCOC dimer: (a) the dimer structure and atom
type definition; (b) the fitting results of each component and the total energy.

trostatic, exchange, and dispersion interactions are well fitted, and the fitting quality of the

total energy is also reasonable. The polarization and dHF terms are less accurate but they

are much less important in this system anyway. More importantly, the obtained parameters

show quite reasonable physical trend: for example, the Bi of H1/H2 (41.9 and 45.1 nm−1) is

larger than that of O (36.6 nm−1), which is then larger than that of C1/C2 (34.4 and 33.1

nm−1). This is exactly the reverse order of the atom sizes of the three elements (i.e., C > O

> H).

In this example, we show how ML optimizers can be conveniently utilized in developing

complicated physics-driven force fields, using DMFF. This is a relatively straightforward way

to take the advantage of an automatic differentiable force field calculator. Meanwhile, the

reweighting MBAR estimator implemented in DMFF makes it an even more powerful tool

in top-down parameter optimization, as we will show in the next two sections.
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C. Ensemble Averages

In classical force field parameterization, we always need to make the force field model able

to reproduce the experimentally measured thermodynamic properties, such as density, va-

porization enthalpy, or RDF. To verify the validity of the reweighting MBAR estimator for

physical property estimation, we attempted to optimize the Lennard-Jones interaction of the

liquid tetrachloromethane and benzene systems using the DMFF optimization framework.

The intramolecular terms were initialized using GAFF3 with AM1-BCC charge. The op-

timization targets are the experimental density and the center-of-mass (COM) RDF from

neutron diffraction at 30 ◦C (303 K), respectively. During the optimization, we keep mon-

itoring the effective sample size of the estimator, and resampling will be run if the sample

size is smaller than a predetermined threshold.

As an example of estimating scalar property, we tried to parameterize Lennard-Jones

parameters of liquid tetrachloromethane to reproduce the density at 300K. The optimization

target function is the squared error of density:

Ldensity =

(
N∑

n=1

Wnρn − ρref

)2

(12)

On the other hand, vector properties can also be estimated using the reweighting MBAR

estimator. As an example, We built a coarse-grained benzene model with three beads per

molecule, and then parameterized the Lennard-Jones interaction between particles to repro-

duce the experimental RDF of liquid benzene. The loss function is the natural log of the

L2-norm of the vector difference

LRDF = log ∥
N∑

n=1

Wnvn − vref∥ (13)

in which vn is the vector of RDF curve in each sample frame, vref is the reference RDF curve.

The changes of density and RDF along the optimization process are shown in Figure (5a)
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Figure 5: The change of (a) density of liquid tetrachloromethane and (b) radial distribution
function of liquid benzene along optimization iteration.

and (5b), in which both density and RDF are closer to the target after about 20 iterations.

In classical force field optimizations, the Lennard-Jones parameters were always manually

tuned to reproduce densities, which is not only low-efficient but also unreliable. With the

help of DMFF, such process can be largely automated. Moreover, it can be done in a larger

scale, with more parameters and more training data from multiple systems, thus improving

the generality of the resulting force field.

D. Free Energies

Comparing to ensemble averaged properties such as density and RDF, fitting free energy

difference is an important, yet even more challenging task. For example, the MD free energy

calculation is one of the most common techniques used to predict protein-ligand binding

affinities, which is the key goal in computer-aided drug design (CADD). Comparing to other

methods that rely on empirical scoring functions (e.g., molecular docking), free-energy based

techniques such as free energy perturbation (FEP) is physically rigorous and can potentially

reach the chemical accuracy (i.e., within 1 kcal/mol of error).38,39 However, it posts a great

challenge to develop a general, yet accurate force field for FEP that can cover the diversified
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chemical space of drug-like molecules. An accurate description to the electrostatic interac-

tions is particularly difficult. Due to the heavy computational cost of FEP, such calculations

are still primarily conducted using conventional fixed charge models, including OPLS,40–42

GAFF,3 CGenFF,43 and OpenFF.44 In these models polarization effects are not explicitly

included, so atomic charges need to be carefully tuned to give a balanced description to the

electrostatics.

Currently, AM1/CM1A-BCCmodels are widely employed to assign atomic partial charges

and were reported to reach fair results on FEP benchmark sets.45,46 In this model, atomic

charges are firstly determined using the Mulliken charges computed at semi-empirical level of

theory (e.g., AM1 or CM1A). Then, they are further adjusted using bond charge correction

(BCC), which is a correction only depends on the molecular topology. The BCC parameters

are initially fitted to electrostatic potentials (ESP), and then refined to reproduce the experi-

mental solvation free energies of some model molecules. Protein-ligand binding free energies,

however, to the best of our knowledge, have not been used as a direct fitting target. The

protein-ligand interaction involves many protein residues and ligand functional groups, thus

are affected by a large number of parameters. Manually fine-tunning all these parameters si-

multaneously could be a difficult task, even for experienced experts with excellent intuitions.

But with DMFF, this process now can be conducted automatically using gradient-based

optimization algorithms.

To fit the FEP results, we note the Helmholtz free energy A can be calculated as:

A = −β−1 lnQ = −β−1 ln

∫
dx e−βU(x;θ) (14)

where β = 1/kBT , kB is the Boltzmann factor, x is particles’ coordinates and momenta,

U is the energy function defined by the force field, and θ refers to force field parameters.

The parametric gradient of the free energy can be evaluated as the ensemble average of the
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parametric gradient of the potential energy, which is given by DMFF.

∂A

∂θ
= −β−1

(
1

Q

∂Q

∂θ

)
(15)

= −β−1

(
1

Q

∫
dq · ∂U

∂θ
· e−βU(q;θ)

)
(16)

=

〈
∂U

∂θ

〉
(17)

To demonstrate the capability of DMFF, six relative free energies (∆∆G) are selected

from TNKS2, which is one of the most popular protein-ligand binding affinity benchmark

sets.39 As a proof of concept, we try to optimize the GAFF2 BCC parameters against the

selected data points. The loss function is defined in Eqn. 18 and the steepest gradient

descent algorithm is utilized for the optimization.

L =
1

2M

M∑
i=1

(∆∆Gexp −∆∆Gpred)
2 (18)

After only 5 iterations, the overall R2 has increased from 0.53 to 0.87 and the root of mean

squared error (RMSE) dropped from 1.26 kcal/mol to 0.73 kcal/mol (as shown in Figure 6

and Table 1). This performance boost can be attributed to the significant improvement of

outliers, such as 5a→5c. This result clearly demonstrates the advantage brought by DMFF,

essentially allowing us to further improve the state-of-the-art model without any chemical

intuition.

5. Conclusions

To summarize, in this work we present DMFF, a JAX-based differentiable molecular force

field development tool. DMFF features a user-friendly frontend API that replicates the

OpenMM behavior, allowing a convenient definition of molecular force fields. It also includes

a variety of efficient backend kernels that support both conventional point charge models and
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Figure 6: Correlation between the experimental and the FEP-predicted relative binding free
energies with initial BCC parameters (blue) and optimized BCC parameters (red). The
light and the dark gray areas mark the regions with an error smaller than 2 kcal/mol and 1
kcal/mol, respectively.

advanced multipolar polarizable potentials. The potential functions defined in DMFF are

easy to be extended and recombined to form new advanced force fields. The implementation

of forces and virial tensors can be largely simplified, so the MD validation of complex force

fields can be performed with much less efforts. Based on the differentiable force field engine, a

variety of object functions can be used for force field optimization, including energies, forces,

and macroscopic properties such as free energies and ensemble averaged quantities. It is

demonstrated that using DMFF, both bottom-up and top-down force field optimizations can

be performed in an automatic fashion. Parameters can be obtained with better performances

in both bulk organic liquid simulations and FEP calculations. Therefore, DMFF serves as

an excellent tool for the development of next-generation molecular force fields.

We note that, DMFF is currently still under active development. Being open-source, we

expect it to become an ever-improving useful tool with a community effort. In the near future,

more flexible support for the function forms of the FF model, optimization schemes using

dynamical properties, interface with more MD engines, are to be developed. All activities
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Table 1: Experimental and FEP-predicted relative binding free energies with initial BCC
parameters and optimized BCC parameters for studied TYK2 cases. All units are in kcal/-
mol.

Ligand ∆∆Gexp ∆∆Gpred (Initial BCC) ∆∆Gpred (Optimized BCC) Improved

5a→5c 0.80 -1.26 -0.36 Yes
5e→5a -0.65 0.58 0.00 Yes
3a→7 2.60 1.00 2.09 Yes
5e→5p -0.40 -1.48 -1.18 Yes
5e→5n -0.61 -0.71 -1.32 No
7→5j -2.69 -2.67 -2.95 No

RMSE 1.26 0.73 Yes
R2 0.53 0.87 Yes

will be conducted in the DeepModeling community (https://github.com/deepmodeling/).

In addition, any issues, pull requests, suggestions, and potential collaborations are welcome.
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Appendix

A. Details in Water MD Simulation

All water simulations were carried out using a cubic box consisting of 1018 H2O molecules,

with the density set to be 0.03338 molecule per Å3. Each atom was represented by a single

bead in classical MD and by 32 beads in path-integral molecular dynamics (PIMD) simu-

lations. The equations of motion were propagated using a multiple time step integration

scheme with a time step of 0.5 fs. All PIMD simulations were carried out in NVT ensemble

and the temperature was controlled by path-integral langevin thermostat. The classical MD

simulation were carried out in NVE ensemble. All MD simulations were performed using the

i-PI 2.0 program,47 with forces evaluated using DMFF.

B. Details in COCCOC Energy Fitting

In the COCCOC fitting example, dimer structures were first generated using a NVT MD

simulation at 300K. The MD sampling was conducted using the OpenMM program,26 with

OPLS-AA force field.6 A constrain potential was applied to bind the centers of mass of the

two molecules within a distance of 6 Å. For each dimer, one of the monomers are then shifted

along the direction that connects the centers of mass of the two monomers, generating a dimer

scan. DFT-SAPT37 calculations were then performed using AVTZ basis set to obtain the

interaction energy between the two monomers, as well as all the energy components. An even

tempered basis set (5s5p3d2f) was placed at the center of the two monomers, to improve

the accuracy of the dispersion energy. All SAPT calculations were performed using the

MOLPRO program.48 The dimer interaction energies were then partitioned into the short

and the long range parts, with the long-range part computed using the exactly same method

as in our previous work.14 The short range part is then fitted using DMFF. In total, 50

dimer scans were generated for fitting, with each scan containing 12 different geometries.
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C. Details in Ensemble Average Fitting

In the physical properties fitting example, the force field parameters were initialized using

intra-molecular parameters from GAFF force field. The MD sampling was conducted using

the OpenMM program with 1.1 nm as the real space cutoff. In the sampling process, a

400 ps trajectory was sampled with the first 200 ps as equilibration and the last 200 ps as

production. The MBAR free energies in DMFF MBAR estimator was solved using PyMBAR

program.49 The optimization of physical properties were implemented using optax package.28

D. AM1-BCC model

In practice of GAFF and OPLS force fields, methods that based on bond charge corrections

have been employed to assign high-quality atomic charges quickly and efficiently. In this

scheme, the partial charges vector q ∈ RN (N is the number of atoms consisting a molecule)

is constructed from two terms:

q = qpre + qcorr (19)

The first term, qpre, is Mulliken charges under semi-empirical level. In GAFF2, Austin

Model 1 (AM1) is used, and CM1A model in OPLS. It is expected that primary properties

of electron distribution including delocalization and conformer-dependency can be captured

by these non-expensive calculations. However, the resulting charges are not suitable for

applications in condensed-phase environment, so a bond charge correction (BCC) term qcorr,

defined based on molecular topology (equation 20), is applied:

qcorr = Tp (20)

where T ∈ RN×Nbcc is named topology matrix (or bond connectivity template matrix), and

p ∈ RNbcc is a vector of pre-tabulated BCC parameters, Nbcc is the number of bond-type

based parameters. Based on equation 20, we can extend the back propagation from atomic
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charges to BCC parameters:

∂∆G

∂p
= TT · ∂∆G

∂q
(21)

E. Details in free energy optimization

FEP calculations with both initial and optimized BCC parameters were set up and carried

out using the FEP module of Hermite® Platform (https://hermite.dp.tech, DP Technology).

The initial structures of the protein and ligands were obtained from the original paper.39

AMBER99SB force field was used to paramterize the protein. 16 lambdas windows were set

and the value of lambdas were adapted on-the-fly. After energy minimization, a standard

5-stage equilibrium protocol was carried out to relax the system with all parameters set

to default. Then, 5 ns production simulation was performed and Langevin thermostat and

Parrinello-Rahman barostat were adopted to keep the system at 300 K and 1 bar and other

parameters were set to default. In the optimization process, steep gradient descent algorithm

was used and the learning rate was set to 0.0005.
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