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Abstract: New tools for cancer diagnosis are being studied day by day, since early diagnosis can be crucial for a successful treatment. In this 

context, the use of NMR probes constitutes an efficient way of diagnosis. In this work, we investigated the use of ciprofloxacin to indirectly label 

the overexpression of topoisomerase-II enzymes by changes in 19F NMR chemical shifts of ciprofloxacin. Increased topoisomerase-II expression 

has been associated with cancer occurrence, mainly with aggressive forms of breast cancer, thus constituting a promising molecular target for new 

tumor cell identifiers. Using DFT calculations, a spectroscopy analysis of ciprofloxacin in different chemical environments, evaluating the solvent 

and enzymatic effects was performed. Our results point that the ciprofloxacin forms a stable complex with the enzyme, and the main intermolecular 

interactions between ciprofloxacin and human topoisomerase-IIβ are hydrogen bonds, following by - stacking and electrostatic interactions. 

Also, a shift of 6.04 ppm occurs in the 19F NMR signal when ciprofloxacin is interacting with the human topoisomerase-IIβ enzyme, and that this 

parameter may be a possible indirect marker to indicate the overexpression of these enzymes in the body. 

Keywords: Spectroscopic probe; computational methods; drug repositioning; cancer diagnosis 

1. Introduction 

Fluoroquinolones (FQ) were introduced more than 20 years ago and are a quinolone derivative class 

of molecules, known for their antibacterial activity [1]. The broad commercialized antibacterial agent 

ciprofloxacin (CPX) is one representative of the FQs[2–4]. These compounds exert antibacterial activity 

because of inhibition of two bacterial enzymes, DNA gyrase and topoisomerase II enzymes [5,6]. The 

later are considered to be the primary target of several anticancer agents, such as doxorubicin and etopo-

side [7–9], being under continuous investigation aiming new anticancer drugs development, once some 

evidences indicate increased levels of topoisomerase II in several types of proliferating cancer cells, 

including Gallbladder cancer [10] , aggressive breast cancer [10–12], epithelial ovarian cancer [10,13–

15], lymphomas and sarcomas [16–18], colon cancer [10] and some others. Speaking more specifically 

about breast cancer, increased levels of this enzyme are associated with more aggressive breast cancer, 

being related to increased expression of the oncogene HER2 neu, being also related to predicted disease-

related death, lymph node metastasis, and advanced tumor stage[19]. 

Currently, cancer is one of the deadliest diseases in the world [20–23], and one factor that contributes 

for numerous deaths is the difficulty in diagnosing[24,25]. In general, it can be considered three main 

aspects that influence the cancer early diagnosis, which are awareness and search for health care, clinical 

and diagnostic evaluation and, finally, access to treatment [26]. Regarding the latter, it is important to 

stress that access barriers are a problem mainly in underdeveloped countries. In developed countries, 

prognosis occurs in more than 70% of the cases, while in underdeveloped countries only 20-50% of the 

patients have an early diagnosis, which compromises the chances of cure [27]. In this sense, the research, 

development and implementation of fast, simple and low-cost tools can help change this reality. [28–

30]. Besides all these factors, new research into diagnostic tools is aimed at developing systems that are 

increasingly capable of locating  species in different environments, with high specificity and resolution 

[28,31–34]. In this sense, many spectroscopic techniques have been explored, as is the case of Nuclear 

Magnetic Resonance (NMR) [29,35–42].  Molecules that interact with key enzymes can act as 
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spectroscopic probes [43], and these molecules are of great interest, once they are highly sensitive and 

easy to operate, enabling its location in live systems in a fast way[44].  

In CPX molecule, the presence of fluorine atom allows the application of 19F NMR spectroscopy 

techniques.  The large chemical shift range together with the high sensitivity of 19F NMR nuclei makes 
19F NMR an extremely attractive proposition [45]. Additionally, naturally occurring fluorine compounds 

are scarce, and because of this, 19F NMR offers an attractive option for investigating the interactions 

between proteins and other biomolecules, as well as structure and mechanisms of action of fluorinated 

inhibitors [46]. In addition to the already mentioned advantages of 19F NMR, it is also worth noting that 

this technique is particularly useful for studying large proteins that cannot be easily probed by conven-

tional NMR experiments [47]. 

Computational methods have been widely employed to predict spectroscopic properties of various 

compounds for various purposes [48–50]. In fact, theoretical methods offer a fast, efficient and practical 

way to investigate changes in the NMR properties of different compounds, which can be caused by 

several factors, such as changes in the chemical environment or structure of the molecule, caused by 

interactions with biological macromolecules [29,51]. In this context, the aim of this study is to investi-

gate theoretically, the behavior of CPX in the human topoisomerase-II β (hTOPO-II) active site, evalu-

ating how this interaction affects the 19F NMR chemical shift of CPX to propose the use of CPX as a 

spectroscopic NMR probe for cancer diagnosis.   

2. Methodology 

2.1. Molecular dynamics simulations 

The theoretical analysis performed in this work was done with the DNA topoisomerase II β enzyme. 

FQs is known to be DNA gyrase and topoisomerase inhibitors. However, considering that in this work 

the proposal is to use this drug as a NMR probe to be used in humans, and that the enzyme DNA gyrase 

is apparently present in bacteria, but absent in large eukaryotes [8,52,53], the authors understand that 

there is no need for a study also considering the interaction of ciprofloxacin with the DNA gyrase en-

zyme. The first MD simulation was performed with CPX in active site of hTOPO-II enzyme. Therefore, 

the crystallographic structure of hTOPO-II in complex with DNA (PDB-ID 5ZAD) was obtained from 

Protein Data Bank [54] while CPX topology and charge data were taken from the Automated Topology 

Builder (ATB) Repository [55]. The simulation was performed employing GROMACS® Package [56] 

using Gromos 54a7 force field [57]. The system CPX:hTOPO-IIβ was solvated inside a cubic box with 

SPC water model. The algorithm steepest descent was employed for minimization step, stopping mini-

mization when the maximum force was under 10.0 kJ/mol. A heading step of 1 ps was performed in 

NVT ensemble and for equilibrium simulation in NPT ensemble, the temperature and pressure were 

respectively controlled by the v-rescale thermostat (300 K) and Berendsen barostat (1 bar). The last 

simulation step was the performance of 10 ns of MD simulation, using barostat and thermostat Parri-

nello-Rahman and v-rescale, respectively. Coordinates, velocities and energies were saved at 10.0 ps of 

simulation, obtaining 1000 frames at the end of simulation. For both steps, the leap-frog integrator was 

adopted.  

Finally, to select the best conformations, the optimal wavelet signal compression algorithm 

(OWSCA) [58] was used. This algorithm is based on a wavelet compression strategy, in which an opti-

mization algorithm is applied to compress the maximum number of wavelet coefficients, instead of using 

heuristically chosen parameters. A second MD simulation of free CPX in a water box (CPX:explicit 
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water system) was also performed under the same conditions as mentioned above for comparison of 
19FNMR chemical shifts. 

 

2.2 19F NMR chemical shift (δ) calculations 

All 19F NMR shielding constants calculations of this step were performed using GAUSSIAN 09 soft-

ware package [59] at DFT level with the B3LYP functional and Dunning basis set [60] with diffuse 

function [61,62] aug-cc-pVDZ, by applying gauge-including atomic orbital (GIAO) method [63]. These 

levels of theory selected were based on previous parametrization studies performed on NMR calcula-

tions [64] for the CPX molecule [49]. Calculations were made for CPX in the selected frames of two 

MD systems using the ONIOM model [65]. In CPX:explicit water system, the first solvation shell was 

maintained, and the obtained values were compared with the results obtained for the CPX:hTOPO-II 

system. Additionally, 19F NMR shielding constants were calculated also for CPX in vacuum (CPX:vac-

uum), and using the IEF-PCM  solvation model [66], employing water as solvent (CPX: implicit water). 

For both systems, the initial structures were generated from a conformational analysis in Spartan 14® 

software using molecular mechanics. After this step, the ten lowest energy conformations obtained were 

subjected to geometry optimization calculations in Gaussian software at B3LYP/aug-cc-pVDZ level of 

theory. After that, NMR calculations were performed in the same way as in the previous systems. 

The theoretical 19F NMR chemical shifts were calculated in ppm according to Equation (1) [64]. The 

chemical shifts were expressed relative to the external chemical shit reference CF3COOH. Theoretical 

results obtained were compared with experimental data, where measurements were carried out using the 

same reference compound [67,68]. 

𝛿𝑡𝑒𝑜𝑟 =  𝜎𝑟𝑒𝑓
𝑐𝑎𝑙 −  𝜎𝐶𝑃𝑋

𝑐𝑎𝑙                                       (1) 

 

Where 𝜎𝑟𝑒𝑓
𝑐𝑎𝑙  and 𝜎𝐶𝑃𝑋

𝑐𝑎𝑙  are the isotropic NMR shieldings of the reference compound (CF3COOH) 

and the CPX frame, respectively. To analyze the agreement between theoretical values for chemical 

shifts and the experimental  19F NMR chemical shifts data, the Δδ calculation was performed using 

equation 2 that follows [64]: 

 

Δ𝛿 =  𝛿𝑒𝑥𝑝 −   𝛿𝑐𝑎𝑙                                      (2) 

1. Results and Discussion 

It is well known that the CPX, as all FQs, are a bacterial topoisomerase inhibitor [6,69]. However, due 

to the presence of these enzymes in the human body, in the last years many experimental researches 

have been pointed the potential of this drug and its derivatives to also inhibit human topoisomerases 

[12,70–76]. Recently, in order to better understand the action mechanisms and the main differences 

between the interactions in TOPO-II of the two organisms, some theoretical investigations have already 

been done [77,78]. A previous study that investigates the interaction of thirteen FQs with human topoi-

somerases by molecular docking studies pointed that CPX is able to perform a hydrogen bond with the 

hTOPO-IIβ active site aminoacid Asp 479 [79]. The found binding affinity was -9.62 kcal.mol-1. Other 

recent theoretical investigation explored how CPX binds to different sites of the hTOPO-IIβ enzyme 

[77]. Also, through molecular docking calculations, the authors showed that CPX has similar interaction 

energy in both human and bacterial enzyme and that CPX preferentially interacts in the same local of 
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chemotherapeutic agent etoposide acts. The found interaction energy for CPX in aforementioned study 

was -71.62 kcal.mol-1 and CPX was able to perform hydrogen bonds with Glu477, Tyr 821, Gln778, 

and Asp 479 amino acid residues.  

All the mentioned researches above use the molecular docking technique in their investigations. Molec-

ular docking is an important computational technique in structural biology and computer-aided drug 

design[80]. The main goal of this type of computational simulation is to evaluate the most feasible bind-

ing geometries of a ligand to a target protein whose three-dimensional structure is known [81,82]. De-

spite their fundamental importance in this research field, docking studies only provide a static view of 

the interactions between the ligand and the protein. MD simulations, on the other hand, are used to 

analyse the dynamic behaviour of these interactions as well as of the entire system, helping to reproduce 

the biological events in a computer simulation [83,84]. Here, the main proposal is to investigate the 

possibility of using the well-known antibiotic ciprofloxacin as a 19F NMR chemical shift probe to local-

ize the overexpression of hTPO-IIβ, which is associated with cancer incidence [10,85]. For this, a dy-

namic analysis of the system is of crucial importance. 

 

1.1. MD simulations   

In order to analyze the influence of the chemical environment on the conformational change of CPX, 

two MD simulations were performed. One simulation was done with CPX in the hTOPO-II active site 

(CPX:hTOPO-II system) as the other was performed with CPX only in a water box (CPX:explicit water). 

By the analysis of Root Mean Square Deviation (RMSD) of CPX in both systems (Figure 1), it is pos-

sible to observe that the systems reached equilibrium around 2000 ps of simulation, and this time was 

used as a starting time for the selection of representative frames using OWSCA algorithm. As can also 

be seen in Figure 1, there is a slightly higher flexibility of CPX in the aqueous system, when compared 

to molecule in the enzyme active site. This makes sense, once that in the active site, the molecule has 

greater conformational restriction because of the presence of surrounding amino acids, with which it 

carries out intermolecular interactions. Additionally, the RMSD levels, mainly for CPX in hTOPO-II 

active site, are around 0.1 nm (1Å), indicating high stability of the structures [86,87].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. RMSF left and RMSD at right for ciprofloxacin molecule inside the active site (CPX:hTOPO-II) and out of the active site of 
Topoisomerase-II enzyme (CPX: explicit water). 
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 Figure 1 also shows the Root Mean Square Fluctuation (RMSF). Together with RMSD, the relative 

RMSF provides information about the fluctuation of each residue in the simulation, with is important to 

understand the relationship between the flexibility of the residues and the interaction with the ligand, 

identifying the regions with great flexibility. Generally, the flexibility of the terminal residue and surface 

loop regions is higher and the protein core is more limited [88]. As can be seen, the fluctuation of resi-

dues around 400-600 is more restricted, which can indicate that the CPX forms a stable connection in 

this region. The total energy variation for CPX in both systems CPX:hTOPO-II and CPX:explicit water 

were obtained and can be seen in Figure 2 (A and B). As observed, the values remain balanced over the 

course of the simulation, showing a stabilization of both systems. Regarding the ligand-protein interac-

tion energy, also shown in Figure 2, in the CPX:hTOPO-II system, the total interaction energy average 

value obtained was equal to -94.27 ± 1.02 kJ.mol-1, which corresponds to the sum of the short-range 

electrostatic (coulombic) interactions, -36.27 ± 0.77 kJ.mol-1, and the short-range Lennard-Jones inter-

actions, whose average value obtained was equal to -58 ± 0.67 kJ.mol-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Energy graphs extracted in MD simulations. A and B correspond to the total energy variation for CPX:hTOPO-II and CPX:ex-
plicit water system, respectively. C is the interaction energy graph for CPX:hTOPO-II complex. In C, the black line corresponds to Cou-
lombic-type interactions while the red line corresponds to Lennard Jones-type interaction energy. 
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The hydrogen bonds performed between CPX and hTOPO-II β were the main interactions responsi-

ble for the stability of the molecule in the enzyme active site, as showed in Table 1, which contains the 

main residues that participated in the intermolecular interactions, for the representative conformations 

selected by OWSCA algorithm. Additionally, the number of hydrogen bonds performed during the MD 

simulation for all frames can be seen in Figure 3. By analyzing the figure, it can be observed that the 

CPX shows three hydrogen bonds with hTOPO-IIβ, two of which are quite frequent during most of the 

simulation time.  
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Figure 3. Hydrogen bonds performed between CPX and hTOPO-II βduring the molecular dynamics simulation. 

Table 1. Intermolecular interactions performed between human Topoisomerase-II β enzyme and ciprofloxacin molecule during molecular 

dynamics simulation. 

Frame Time (ps) Residue Interaction type 

1 2000 Asn 520 HBond 

2 2200 Asn 520 HBond 

3 2300 Leu 507 HBond 

4 2400 Asn 520 HBond 

5 2600 Asn 520; Gln 516 HBond 

6 3000 Asn 520 HBond 

7 3100 Asn 520 HBond 

8 3200 Glu 519; Asn 520; Ala 521 HBond 

9 3700 Asn 520; Ala 521 HBond 

10 3900 Asn 520; Ala 521 HBond 

11 4200 Asn 520 HBond 

12 4400 Asn 520; Ala 521 HBond 

13 4700 Asn 520; Ala 521 HBond 

14 5100 Asn 520; Ala 521 HBond 
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15 5500 Ala 521 HBond 

16 7000 - - 

17 7300 Lys 505 -; HBond. Electrostatic 

18 7500 - - 

19 7700 Arg 503 HBond 

20 7900 Arg 503; Lis 505; Gly 504 - 

21 8000 - - 

22 8250 Lys 505 HBond; - 

23 8800 - - 

24 9000 Ile 506 HBond 

25 9200 Ile 506 HBond 

26 9400 Ile 506 HBond 

27 9500 -  

28 9800 Ile 506 HBond 

29 10000 Ile 506 HBond 

 

Figure 4-A shows the hydrogen bonds performed for frame 8, at 3200 ps of simulation, which is the 

time when the greatest number of hydrogen interactions can occur. The residues that participate in the 

interaction are the Glu 519, Asn 520 and Ala 521. It can also be seen in Figure (4-B), the - stacking 

interactions performed between CPX and amino acids residues Arg 503; Lis 505and Gly 504. 

 

Figure 4. Intermolecular interactions performed during molecular dynamics simulation. A: Hydrogen bonds performed between CPX and 

the amino acids Glu 519, Asn 520 and Ala 521 at 3200 ps of simulation. B: - stacking interactions between CPX and amino acids Arg 
503; Lis 505and Glu 504 at 7900 ps of simulation. 
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In the next step, the chemical shift calculation was performed for the representative configurations in 

both systems. For the CPX:explicit water system, the first solvation shell was maintained in order to 

represent the presence of explicit solvent molecules in the NMR calculation. For the CPX:hTOPO-II 

system, amino acid residues participating in hydrogen interactions with CPX were maintained in order 

to represent the change in the chemical environment of the molecule inside the active site. 

1.1. Spectroscopic parameters: 19F- chemical shifts (δ) 

Fluorinated compounds have a wide range of applications, which include anti-inflammatory drugs, 

anesthesiology, cancer therapy and others. Di- and trifluoromethyl groups can considerably improve the 

profile of bioactive compounds by increasing their uptake and permeability, as they exhibit unique prop-

erties such as high electronegativity, lipophilicity and high steric demand [89]. 19F NMR spectroscopy 

is a rapidly emerging tool and an attractive alternative for studies of new spectroscopic probes for bio-

logical use [90–93]. The main advantages include its high sensitivity, very low background signal, the 

scarce natural occurrence of fluorinated compounds and the high magnetic moment, the last results in a 
19F NMR sensitivity similar to that of 1H [94]. The fluorinated compound chosen for this work is a 

widely marketed and prescribed antibiotic drug in the world [49,95], which means that CPX is safe for 

in vivo use and that much information related to its pharmacodynamics and pharmacokinetics are already 

well known [96–98]. The repositioning drug strategy, which consists in proposing new uses for existing 

drugs [99], is a growing field of research, because the implementation of already known compounds for 

new applications considerably saves a lot of time and resources related to the studies of bioavailability, 

toxicity and implementation of these compounds [100–102].  

Aiming to investigate if the specific interaction of CPX with hTOPO-IIβ enzyme can be used as a 

biologic human topoisomerase identifier, theoretical calculations about 19F NMR chemical shifts were 

performed. Table 2 contains the average of the calculated values for the theoretical 19F NMR shifts in 

all tested systems. The first point to highlight is the high similarity between the experimental value and 

the theoretical value obtained for CPX in the CPX:explicit water system. The low Δδ value indicates 

that the method and the level of theory selected are very accurate for this type of calculation [49]. Sec-

ondly, it is observed that the value obtained in the calculation using the implicit solvation model, 

CPX:implicit water, is very far from the experimental value. It is worth mentioning that results for the 

system CPX:implicit is similar to values obtained for CPX in vacuum. Such results indicate that explicit 

solvation is more adequate for representing the solvent effect on CPX. It can also be inferred that the 

explicit presence of the water molecules in the calculation is important since it creates the proper hydro-

gen bonding network of water molecules for calculating  19F NMR spectroscopic parameters [103]. As 

mentioned, the fluorine nucleus has a high sensitivity when compared to the 13C and 15N nuclei, being 

almost as sensitive as 1H [104]. In this context, although solvent exposure effects can be difficult to 

observe in nuclei such as 13C and 15N NMR, for the 19F nucleus, solvent-induced isotopic shifts can be 

as high as 0.25 ppm, offering a very efficient way to probe solvent exposure [105] . 

Table 2. Experimental vs. theoretically computed 19F NMR chemical shifts at DFT/B3LYP/aug-cc-pVDZ level for CPX molecule. 

System 19F δppm Δδppm 

CPX:Aqueous solution (experimental) -43.70 0.00 

CPX:Explicit water  -43.54 -0.16 

CPX:hTOPO-II -49.73 6.03 
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CPX:vacuum -55.11 11.41 

CPX:Implicit water -56.20 12.50 

 

Now, analyzing the effect on the 19F NMR chemical shifts caused by the interaction of CPX with 

hTOPO-II β (Table 2 and Figures 5 and 6), it is observed that there is a variation of 6.03 ppm in relation 

to experimental value for CPX in aqueous solution. NMR spectroscopy is a technique extremely sensi-

tive to conformational effects as well as molecular structure effects, both of which can be directly af-

fected by modifications in the chemical environment [106]. Interactions that are able to alter the elec-

tronic distribution or even the HOMO-LUMO boundary orbitals can be factors that modify the chemical 

shift of molecules [107]. By analysis of the figures, it is shown that the interactions of CPX with hTOPO-

II caused a modification in the electronic density (figure 6) and the frontier orbitals of CPX (figure 7), 

which could explain the change in the fluorine chemical shift. This variation in the 19F NMR chemical 

shift of CPX when it is interacting with the enzyme, represented in Figure 7, can provide important 

information regarding the occurrence of the ligand in the free form, and in the complexed form with the 

human topoisomerase-IIβ enzyme. The characteristic signal of CPX when complexed with the enzyme 

thus constitutes an interesting form of indirect labeling of these proteins, helping to identify their over-

production in the body and consequently in the cancer cell mapping[8,18,85].  

 

Figure 5. HOMO-LUMO frontier orbital representations for ciprofloxacin molecule in two different environments, in the enzyme active 
site (binding CPX) and in water (free CPX).  
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Figure 6. Electronic density variation of ciprofloxacin molecule when it binding to the topoisomerase-II enzyme and in a free form in water 
solvent. 

 

Figure 7. Representation of the variation of the 19F chemical shift for CPX molecule in the hTOPO-II active site. 

The results find here point out CPX as a possible candidate for 19F NMR probe, which can be an ally 

in the cancer diagnosis [29,45]. The application of fluorine probes is advantageous, considering that the 

natural occurrence of fluorine in biological systems is scarce and the signals from 19F NMR spectroscopy 

will not find any overlapping background signals to compete with the fluorine probes, making the spec-

tra simpler and easier to analyze [46,47]. Whereas the enzyme concentration in tumor cells is higher 

[10] and several previous researches have already proven the efficacy of CPX in inhibiting hTOPO-II 

leading to anti-proliferative and cytotoxic activities of this molecule against several malignant cells 

[74,108], we can expect that the CPX probe will be efficient and able to reach the desired location. 

Finally, it is also important to mention that our study is the first attempt to investigate the use of 19F 

NMR of CPX as a probe for cancer diagnosis, being a starting point for the exploration of this new 

possibility. From it, new experimental studies must be carried out in order to obtain further informations 

for the effective implementation of a probe with this proposal. 

1. Conclusion 

The results found in this work show that the interaction of ciprofloxacin with the human topoisomer-

ase-II β can alter the 19F NMR chemical shift signal of ciprofloxacin, when compared to the same 
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parameter for the free molecule in water. Thus, this well-known antimicrobial agent constitutes a possi-

ble 19F NMR chemical shift probe for cancer diagnosis, capable of indirectly labeling the overexpression 

of human topoisomerase-IIβ enzyme in the body, and consequently helps in the detection of cancer cells.  

Considering the obtained results, and taking in account the low toxicity of this molecule and also that 

it is an already commercialized drug, ciprofloxacin can be a promising molecule to be used as an ally in 

cancer diagnosis. We hope our results will stimulate new experimental and full-dimensional theoretical 

investigations that could assess the validity of this assumption. In fact, our theoretical findings will 

increase our understanding of the ciprofloxacin and human topoisomerase-II β enzyme and may provide 

new insights into how it exerts its anti-carcinogenic effect. This would further help in developing new 

tools for cancer diagnosis.  
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