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ABSTRACT 9 

Lung cancer is the cancer of the lung's epithelial cells typically characterized by difficult breathing, 10 

chest pain, blood-stained coughs, headache, and weight loss. If left unmanaged, lung cancer can 11 

spread to other body parts. While several treatment methods exist for managing lung cancer, 12 

exploring natural plant sources for developing therapeutics offers great potential in complementing 13 

different treatment approaches. Several efforts have focused on inhibiting specific mutated genes, 14 

including Epidermal Growth Factor Receptors and Anaplastic Lymphoma Kinase implicated in 15 

lung cancer. In this study, we concentrated on inhibiting the mutated Kirsten rat sarcoma viral 16 

oncogene homolog (KRAS) by targeting an associated protein (Phosphodiesterase 6δ) to which 17 

KRAS form complexes. We evaluated bioactive compounds from Lingonberry (Vaccinium vitis-18 

idaea L), adopting computational approaches such as molecular docking, molecular dynamics 19 

simulation, molecular mechanics/generalized Born surface area (MM/GBSA) calculations, and 20 

pharmacokinetics analysis. A total of 26 out of 39 bioactive compounds of Vaccinium vitis-idaea L 21 
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had a higher binding affinity to the target receptor than the approved drug, Sotorasib. Further, the 22 

pharmacokinetics properties of the lead compounds were examined, and the best four compounds, 23 

namely, (+) – Catechin (Cianidanol), Arbutin, Resveratrol, and Sinapic acid, were further 24 

subjected to molecular dynamic simulation. In conclusion, Arbutin (+) – Catechin and Sinapic acid 25 

are predicted to be the best compound of Vaccinium vitis-idaea L. because of their 26 

pharmacokinetic properties and drug-likeness attributes. Also, their stability to the target receptor 27 

makes them a potential drug candidate that could be explored for treating KRAS-mutation-28 

associated lung cancer.  29 

 30 
 31 
  32 

INTRODUCTION 33 

Among all cancer types, lung cancer is prevalent and account for at least 18% of all cancer-34 

linked mortalities (Babar et al.). Cigarette smoking constitutes the major risk factor for the 35 

development of lung cancer – with approximately 90% of lung cancer cases linked to cigarette 36 

Ssmoking alone (Khuder). Consequently, smokers are prone to developing cancer cells and 37 

resisting cancer treatment than non-smokers (Warren et al.). Essentially, lung cancer can be 38 

classified into two main types namely, small cell lung cancer (SCLC) and non‐small cell lung 39 

cancer (NSCLC), with the latter accounting for approximately 85% of all lung cancer cases (Van 40 

Meerbeeck et al.). There have been advances in studying oncogenes and mutation of tumor 41 

suppressor genes toward the development of drug candidate for treating lung cancer (Herbst et al.; 42 

Robichaux et al.; VanderLaan et al.; Yoda et al.). Among the targeted genes, a rat sarcoma viral 43 

oncogene homolog, KRAS is implicated in many lung cancer cases (Shea et al.). 44 

https://www.sciencedirect.com/topics/medicine-and-dentistry/sarcoma
https://www.sciencedirect.com/topics/medicine-and-dentistry/virus-oncogene
https://www.sciencedirect.com/topics/medicine-and-dentistry/virus-oncogene
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Rat sarcoma viral oncogene (RAS) has three isoforms namely, Human homologue of RAS, 45 

Kirsten rat sarcoma viral oncogene, KRAS and the Neuroblastoma rat sarcoma viral oncogene, 46 

NRAS (Barbacid; McBride et al.; Kirsten et al.; Chang et al.). Of the RAS isoforms, the KRAS 47 

gene encodes two protein isoforms, KRAS-4B and KRAS-4A, with each consisting of 188 and 48 

189 amino acids, respectively, due to different clipping of the fourth exon (Karnoub and 49 

Weinberg). A wild-type KRAS has a glutamine amino acid at position 61 but, when the amino 50 

acid at position 61 is substituted by histidine, it becomes a mutated KRAS. This mutation typically 51 

occurs at codons 12 and 13. Significant efforts have concentrated on investigating KRAS 52 

mutations especially for the discovery of specific inhibitors that could aid the treatment of KRAS 53 

mutation lung cancer (McCarthy et al.; Kwan et al.). Until recently, KRAS had been widely dubbed 54 

“undruggable” due to its lack of deep hydrophobic pockets, making it difficult to bind to small 55 

molecules (Whaby et al.). However, the Food and Drug Administration (FDA) recently approved 56 

a small molecule drug, Sotorasib, which specifically targets the RAS G12C mutation (Skoulidis et 57 

al.). While the advances could help design more broad-spectrum therapeutics, the mutation 58 

considered in the development of the drug is only found in low cases of lung cancer (∼13% of 59 

lung adenocarcinoma) (AACR). Also, there have been reports of treatment resistance (Awad et 60 

al.; Koga et al.). Hence, there is a need for continuous discovery of drug candidates for treating 61 

KRAS mutation lung cancer. 62 

Before the discovery of Sotorasib, efforts on directly targeting KRAS mutation have 63 

historically achieved little success due to the complexity associated with KRAS mutations (Whaby 64 

et al.). Since KRAS interacts with several proteins and are involved in many regulatory processes, 65 

including cell growth and differentiation (Korzeniecki et al.), the inhibition of specific upstream 66 

or downstream signaling pathways, membrane localization and protein interactions, can provide 67 
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an alternative pathway for discovering effective inhibitors for treating KRAS mutation lung 68 

cancer. An important protein that KRAS interact with is phosphodiesterase 6δ (PDE6D) – termed 69 

the trafficking chaperone of prenylated proteins (Yadav et al.). Phosphodiesterase 6δ (PDE6D) has 70 

a beta-sandwich immunoglobulin fold which contains a hydrophobic pocket capable of binding to 71 

the farnesyl group (Ismail et al.). Schmick et al. showed that PDE6D binds to and sequesters the 72 

lipid of cytoplasmic RAS. Also, Zimmermann et al. showed that the manipulation of PDE6D 73 

directly affects the localization and spatial organization of KRAS, which had implication on RAS 74 

signaling. Since targeting KRAS directly might appear elusive, a focus on the KRAS: PDE6D 75 

complex by targeting PDE6D can be an effective approach towards developing drug candidates 76 

that could treat KRAS-mutation-associated lung cancer. Moreover, there have been reports on 77 

indirect inhibitor discovery against PDE6D (Papke et al.; Zimmermann et al.). 78 

   Several plant or medicinal herbs have been identified and harnessed for treating diseases 79 

due to their potent phytochemical constituents (Li et al.). In this study, we aimed at identifying 80 

small molecule inhibitors present in Lingonberry (Vaccinium vitis-idaea L) against PDE6D which 81 

is in complex with KRAS. Lingonberry (Vaccinium vitis-idaea L), found mostly across Central 82 

Europe, Russia, and Canada, is a shrub identified as a good source of phenolic compounds with 83 

promising therapeutic potentials (Gustavsson et al.; Kowalska et al.; Ștefănescu et al.). McDougall 84 

et al. showed that extracts from berries including Lingonberry have antiproliferative effect on 85 

cervical and colon cancer cells. Recently, Zhu et al. showed that Lingonberry extracts could inhibit 86 

the proliferation of hepatoma cells (HepG2). Thus, we combined structural bioinformatics and 87 

molecular modelling approaches in ligand-protein interaction analysis for developing potential 88 

drug candidates for KRAS-mutation lung cancer. 89 

 90 
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MATERIALS AND METHOD  91 

Ligand and protein preparation 92 

The bioactive compounds assessed in this study were obtained from a study (Vilkickyte et al.) 93 

which had evaluated phenolic compounds of Lingonberry (Vaccinium vitis-idaea L). The bioactive 94 

compounds from the study, together with an FDA-approved drug (Sotorasib), were screened 95 

virtually using the PyRx software (Python Prescription 0.8). The bioactive compounds and 96 

Sotorasib 3D conformers in special data format (SDF) were retrieved from PubChem database, 97 

while that of the protein (4JV8) was retrieved from Protein Data Bank (PDB). Polar hydrogen 98 

atoms were added to refine the target protein using the Biovia Discovery Studio software 99 

(v.21.1.0.20298) prior to docking. 100 

 101 

Molecular docking and molecular mechanics/generalized born surface area calculation 102 

First, the binding pocket scoring coordinates of PDE6D were determined by adopting the grid 103 

generation module of Schrödinger Maestro 11.5. Next, the prepared ligands were docked into the 104 

generated active site in the PyRx software (Python Prescription 0.8). The centers of the x, y, and z 105 

generated grid were 26.1752, -12.4132, and -6.5578, respectively, while the dimensions 106 

(Angstrom) of the x, y, z grid were 27.7133, 29.2607, and 12.6735, respectively. The advanced 107 

quantum mechanics calculation was adopted via molecular mechanics generalized Born surface 108 

area (MM/GBSA) to remove the false-positive values obtained from molecular docking. The 109 

relative free energy for each PDE6D - ligand complex and the reference complex was computed 110 

using the Maestro- Schrödinger suite under default parameters (Prime). The mathematical equation 111 

adopted herein was as shown: 112 
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                                    ΔG bind = ΔG complex – (ΔG protein + ΔG ligand) 113 

Pharmacokinetics Properties 114 

Following the virtual screening, the pharmacokinetic characteristics of the lead compounds with 115 

the highest binding affinity were predicted for drugability, conformation to the Lipinski rule of 116 

five conventions, and toxicity using the SwissADME web server (http://www.swissadme.ch/) 117 

(Cheng et al.).  118 

 119 

Molecular dynamics and post-molecular dynamics simulation calculation 120 

To investigate the stability of the lead compounds to the target receptor, four compounds with the 121 

highest binding affinity and promising pharmacokinetic properties were subjected to molecular 122 

dynamics simulation for 100 nanoseconds (ns). The Schrödinger suite’s Desmond program was 123 

used to adopt energy-minimized receptor-ligand complexes, and the explicit solvent system was 124 

employed to set up the molecular dynamics model (Shaw Research). The selected model was 125 

created in a periodic box called a transferable intermolecular potential-4 point (TIP4P), which 126 

permits a 10Å buffer region equidistance between protein atoms and box sides (Jorgensen et al.). 127 

It was then upgraded with 0.15 M to reflect physiological conditions. At a temperature and pressure 128 

of 300 K and 1.01325 bar, respectively, an appropriate quantity of counter sodium (Na+) and 129 

chloride (Cl-) ions were utilized to neutralize the complete simulation model system. The entire 130 

system was reduced by the minimization tool in the Desmond Maestro interface using the default 131 

values of 1.0 kcal/mol, a 2000-iteration maximum, and a convergence threshold. Lastly, the 132 

selected docked complexes were subjected to molecular simulation at 100 ns with default settings 133 

using the OPLS-2005 force field (Schrodinger).  134 



Targeting PDE6D for inhibiting KRAS: A computational approach 

Furthermore, the simulation interaction diagram module of the Desmond program was used to 135 

conduct more research on the root means square deviation (RMSD), root means square fluctuation 136 

(RMSF), ligand torsion, and protein-ligand interactions profiling (Maestro). Thus, the trajectory's 137 

root means square deviation (RMSD) was determined for each frame. The equation for RMSD for 138 

frame x was as represented below: 139 

                                       RMSDx =√ 1 𝑁 ∑ 𝑁 (𝑖=1 𝑟𝑖 𝑖 (𝑡𝑥)) −𝑟𝑖 (tref)
2  140 

Where N denotes the number of atoms included in the atom selection; tref denotes the reference 141 

time, and r' denotes the site of the atoms selected in frame x after superimposing on the reference 142 

frame, where frame x is recorded at time tx. For every frame in the simulation trajectory, the 143 

process is repeated. The equation for root means square fluctuation for atom I is represented below:  144 

                                    RMSFi = √ 1 𝑇 ∑ < 𝑇 𝑡=1 (ri i (t)) −ri(tref))
2> 145 

Where T denotes the trajectory time over which the RMSF is calculated, tref denotes the reference 146 

time; r denotes the site of atom i in the reference at time tref, and r' is the position of atom i at time 147 

t after superposition on the reference frame.  148 

 149 

RESULT AND DISCUSSION 150 

Molecular docking and molecular mechanics/generalized born surface (GBSA) 151 

Following the virtual screening of the thirty-nine bioactive compounds established from the 152 

phenolic constituent of Vaccinium vitis-idaea L, twenty-five compounds showed higher binding 153 

affinity in the active site of PDE6D when compared with the control, Sotorasib (Table 1). Further, 154 

four compounds with high binding affinity and which conformed to the Lipinski rule of five 155 
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standard were identified (Table 2). From this study, Rutin had the highest binding affinity of -9.2 156 

Kcal/mol; however, it was not considered for further analysis due to a violation of Lipinski rule of 157 

five convention. Among the compounds which conformed to the Lipinski convention, (+) – 158 

Catechin (Cianidanol), Arbutin, Resveratrol, and Sinapic acid were identified as potential drug 159 

candidate because they can be considered druggable. Therefore, it can be inferred that they are the 160 

best bioactive compounds of Vaccinium vitis-idaea L in the active site of PDE6D when compared 161 

to the control Sotorasib (Table 1). Also, it can be inferred that the selected compounds can bind 162 

better to PDE6D and interact with the amino residues, including, Ile129, Iles109, Arg61, Trp90, 163 

Gln78 of the target receptor (Fig 4). To better ascertain the structural stability of the selected 164 

compounds due to lack of accuracy in molecular docking, MMGBSA calculation was adopted to 165 

determine the net receptor-ligand interaction. From this study, (+) – Catechin (Cianidanol) had the 166 

highest value (-55.8 Kcal/mol) following MMGBSA calculation, which highlight its stronger 167 

binding energy to 4JV8 compared to other compounds of Vaccinium vitis-idaea L (Table 2). 168 

 169 

Table 1: Molecular docking result of the bioactive compounds in Vaccinium vitis-idaea L. and 170 

control.  171 

COMPOUND CIDa 
BINDING AFFINITY 

(Kcal/mol) 

Afzelin 5316673 -7.8 

Arbutin 440936 -6.6 

Vanillic acid 8468 -5.5 

Syringic acid 10742 -5.1 

Cryptochlorogenic acid 9798666 -8.4 

Caffeic acid 689043 -6.3 
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Astragalin 5282102 -7.3 

Avicularin 5490064 -7.7 

Benzoic acid 243 -5.2 

(+) – Catechin (Cianidanol) 9064 -8.1 

Chlorogenic acid 1794427 -8.5 

Cyanidin-3-arabinoside 12137509 -9 

Cyanidin-3-O-galactoside 441699 -8.1 

Cyanidin-3-O-glucoside 441667 -8 

Ferulic acid 445858 -6.6 

Hyperoside 5281643 -7.8 

Isoquercitrin 5280804 -7.4 

Kaempferol 5280863 -8.3 

Nicotiflorin 5318767 -9 

Neochlorogenic acid 5280633 -8.1 

p-Coumaric acid 637542 -6.4 

Procyanidin A1  9872976 -3.5 

Procyanidin A2  124025 -2.9 

Procyanidin B1 11250133 -1.1 

Procyanidin B2 122738 -2.3 

Procyanidin B3 146798 -2.4 

Procyanidin C1 169853  

Protocatechuic acid 72 -5.5 

Quercetin 5280343 -8.2 
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6”-O-acetylisoquercitrin 133554338 -8 

Quercitrin 5280459 -8 

Guaiaverin (Avicularin) 5490064 -7.7 

Resveratrol 445154 -7.9 

Reynoutrin 5320861 -9.5 

Rutin 5280805 -9.2 

Sinapic acid 637775 -6.5 

trans-Cinnamic acid 444539 -6.1 

Sotorasib 137278711 -5.6 

aCOMPOUND IDENTIFICATION NUMBER 172 

 173 

 174 

 175 

 176 

 177 

Table 2: Molecular docking result of the compounds conforming to Lipinski rule of five with 178 

binding affinity and MM/GBSA values 179 

Compound CIDa Binding Affinity (Kcal/mol) MMGBSA (Kcal/mol) 

(+) – Catechin (Cianidanol) 9064 -8.1 -55.8 

Arbutin 440936 -6.6 -51.6 

Resveratrol 445154 -7.9 -52.5 

Sinapic acid 637775 -6.5 -42.4 

Sotorasib 137278711 -5.6 -46.2 

aCOMPOUND IDENTIFICATION NUMBER 180 

 181 
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Figure 1. Post-molecular docking 3D profile of all simulated ligands with 4JV8 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

Druggability Assessment 192 

The SwissADME web server (http://www.swissadme.ch/) was used to predict the drugability of 193 

the selected compounds following the Lipinski rule of five. The rule states that a compound must 194 

not violate > 2 rules to be considered druggable (Benet et al.). The rules include Molecular Weight 195 

(MW) ≤ 500, Hydrogen Bond Donor (HBD) ≤ 5, Hydrogen Bond Acceptor (HBA) ≤ 10, 196 

Lipophilicity (iLOGP) ≤ 5, and Molar Refractivity (MR) between 40 to 130 (Lipinski et al.). From 197 

this study (Table 3), (+) – Catechin, Arbutin, Resveratrol, and Sinapic can be pursued as potential 198 

drug candidates (Table 2).  199 

 200 

 201 
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Table 3: Drug-likeness prediction of plant Compounds 202 

 203 

 204 

 205 

Molecular Dynamics and Post-Molecular Dynamics Calculation 206 

The selected bioactive compounds, which conformed to the Lipinski rule of five (Table 3), were 207 

subjected to molecular dynamics (MD) simulation for 100 ns in the Desmond package (Figure 2).  208 

 209 

Figure 2. The 2D structures of the selected bioactive compounds from Vaccinium vitis-idaea L. 210 

and control: (A) (+) – Catechin (Cianidanol, (B) Arbutin, (c) Resveratrol, (D) Sinapic acid, (E) 211 

Sotorasib. 212 

A                                                                                                                       B  213 

 214 

  215 

 216 

 217 

Compound MW(g/mol) HBD HBA iLOGP MR  Lipinski Violation 

(+) – Catechin (Cianidanol) 290.27 5 6 1.33 74.33  0 

Arbutin 272.25 5 7 1.64 62.61  0 

Resveratrol 228.24 3 3 1.71 67.88  0 

Sinapic acid 224.21 2 5 1.63 58.12  0 
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                                                                                                                           C                                                                                   218 

D                                                         219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

E 229 

 230 

 231 

 232 

 233 

 234 

 235 
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This analyzes the conformational stability, intermolecular interaction profiling, and binding site 236 

occupancy of the compounds, which is critical in understanding the protein inhibition mechanism 237 

based on docking data. During the simulation, the root means square deviation (RMSD), root mean 238 

square fluctuation (RMSF), protein-ligand contacts, and protein/ ligand torsion were computed to 239 

understand the conformational stability of the PDE6D ligand complex better. At the atomistic 240 

level, this study showed an intermolecular contact formation between (+) – Catechin (Cianidanol), 241 

Arbutin, Resveratrol, Sinapic acid, and the amino acid residues of PDE6D. The result suggests a 242 

hydrogen bond interaction with TYR 149, ILE 109, CYS 56, GLN 78, ARG 61, ALA 112, GLU 243 

110, SER 115, and GLN 116 during the simulation (Figure 3). 244 

 245 

Figure 3. Structural view of ligand atom interactions with the protein residues: (A) (+) – Catechin 246 

(Cianidanol, (B) Arbutin, (c) Resveratrol, (D) Sinapic acid                                        247 

A                                                                                                                    B 248 

 249 

   250 
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C                                                                                                                          251 

D   252 

 253 
 254 

 255 

 256 

 257 

 258 

 259 

The Root Mean Square Deviation (RMSD) analysis helps to estimate how stable a compound is in 260 

the binding pocket of a protein. In addition, it calculates the average change of displacement of the 261 

protein-ligand complex during the simulation. In this study (Figure 4), the RMSD values for all 262 

four ligands are stable and < 4 Å during the 100 ns simulation trajectories. (+) – Catechin 263 

(Cianidanol) displayed a stable value of 0.4 Å to 1.6 Å at 0 ns to 75 ns, followed by a slight 264 

elevation which became stable at 85 ns to 100 ns. Arbutin revealed stability from 0.45 Å to 2.8 Å 265 

from 0 ns to 100 ns with a short-lived fluctuation to 3.3 Å. Resveratrol displays from 0.45 Å to 1.8 266 

Å from 0 ns to 25 ns, fluctuated and became stable at 1Å to 1.65 Å from 25 ns to 100 ns. Sinapic 267 

acid shows stability from 1.2 Å to 2.4 Å from 20 ns to 100 ns. Essentially, the four ligands showed 268 

better RMSD values than Sotorasib, as they were more stable and had lesser fluctuations. The Cα 269 

atoms in the PDE6D docked with the ligands in this study showed mean deviation <4 Å which is 270 

acceptable for small globular proteins. 271 

 272 
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Figure 4.  Protein-Ligand RMSD of the compounds selected for molecular dynamics simulation. 273 

(A) (+) – Catechin (Cianidanol, (B) Arbutin, (C) Sinapic acid, (D) Sotorasib, (E) Resveratrol, 274 

 275 

A                                                                                                  B 276 

                                                                                                                                   277 

 278 

                                                                                                                             279 

  280 

                                                                                          281 

 282 

 283 

C                                                                                                 D               284 

                                        285 

 286 

 287 
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                                  E 288 

 289 

 290 

 291 

 292 

 293 

 294 

The structural changes that occurred per complex because of ligand binding were further 295 

investigated. Thus, the root means square fluctuation (RMSF) was adopted to calculate the 296 

residues' dynamic mobility structures following docking. According to the RMSF trajectory plot 297 

(Figure 4), the protein amino acid residues of the docked complexes are moderately similar in their 298 

fluctuation pattern during the simulation. However, Sotorasib (control) showed the highest 299 

fluctuation with an RMSF value > 5.6 nm, suggesting that all the selected docked ligands are more 300 

stable than the control in the active site of the target receptor. On this plot, peaks indicate areas of 301 

the protein that fluctuate the most during the simulation.  Particularly, the tails of protein chains 302 

(i.e., N- and C-terminal) tend to fluctuate more while observing overall protein parts. In contrast, 303 

the secondary structure elements, which includes alpha helices and beta strands, fluctuate less than 304 

the loop regions because they are more rigid than the unstructured parts of the protein. 305 

 306 

  307 
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Figure 5.  Protein-Ligand RMSF of the compounds selected for molecular dynamics simulation. 308 

(A) (+) – Catechin (Cianidanol, (B) Arbutin, (C) Resveratrol, (D) Sinapic acid, (E) Sotorasib 309 

  310 

                               A                                                                                           B 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

                                   C                                                                                          D 319 

 320 

  321 

 322 

       323 

                           324 

 325 
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                                          326 E  

 327 

 328 

 329 

 330 

 331 

 332 

Protein-ligand interaction mapping 333 

The stability of docked PDE6D-ligand complexes was investigated to determine intermolecular 334 

protein-ligand contacts, which are hydrogen bonds, ionic interactions, hydrophobic contacts, and 335 

water bridges (Figure 6). Interestingly, during the simulation, selected docked ligands exhibited 336 

good interactions with amino acid residues in the selective pocket of the PDE6D crystal structure. 337 

Furthermore, the selected docked compounds showed a higher hydrogen bond 0.8 than the control, 338 

which showed a hydrogen bond of 0.2.  of arbutin has a value of 1.35. Hydrogen Bonds: (H-bonds) 339 

play a significant role in developing novel drug candidates because of their strong influence on 340 

drug specificity, metabolization and adsorption. Overall, it can be inferred from this study that 341 

compounds from Vaccinium vitis-idaea L.  are relatively stable in the selective pocket of PDE6D 342 

compared to Sotorasib (control ligand).  343 

Figure 6. Stability of docked 4JV8-ligand complexes for hydrogen bonds, ionic interactions, 344 

hydrophobic contacts, and water bridges 345 
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A (+) – Catechin (Cianidanol)                                      (B) Arbutin  346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

(C)Resveratrol                                                                      (D) Sinapic acid  354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 
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(E) Sotorasib  364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 Pharmacokinetics analysis and evaluation of ADMET properties 372 

In this study, the ADME properties of the selected compounds were examined to predict the 373 

pharmacokinetic potentials of the bioactive molecules. The pharmacokinetic analysis (Table 4) 374 

revealed that all the lead compounds of Vaccinium vitis-idaea L are easily absorbable. Also, 375 

Arbutin, Resveratrol, and Sinapic acid are predicted to affect only the target receptor. Furthermore, 376 

the ADME properties (Figure 5) showed that (+) – Catechin (Cianidanol), Arbutin, and Sinapic 377 

could be recommended for further study because they do not cause a blood-brain barrier. Also, 378 

they do not inhibit all the CYP 450 iso-enzymes, which is critical in drug metabolism. 379 

 380 

 381 

 382 

 383 
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Table 4: Pharmacokinetic Analysis of Vaccinium vitis-idaea L. Compound 384 

 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 

BA Score: Bioavailability Score.  396 
TPSA: Topological polar surface area 397 
 398 

Table 5: ADME predictions of Vaccinium vitis-idaea L. Compound 399 

Property (+) – Catechin  Arbutin Resveratrol Sinapic acid 

Water Solubility Soluble Soluble Soluble Soluble 

GI absorption High High 

 

High High 

\Blood Brain Barrier permeant 

 

- - + - 

P-glycoprotein substrate + - - - 

CYP1A2 inhibitor - - + - 

CYP2C19 inhibitor - - - - 

CYP2C9 inhibitor - - + - 

CYP2D6 inhibitor - - - - 

CYP3A4 inhibitor - - + - 

 400 

S/N Compound TPSA (Å2) BA SCORE PAINS 

1 (+) – Catechin (Cianidanol) 110.38 0.55 1  

2 Arbutin 119.61 0.55 0 

3 Resveratrol 60.69 0.55 0 

4 Sinapic acid 75.99 0.56 0 
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To inhibit KRAS, significant efforts have explored the KRAS-PDE6D complex. For example, 401 

Zimmermann et al. showed that the reduction of plasma membrane localization of Ras through 402 

PDE6D inhibition provides alternative opportunities for altering oncogenic Ras signaling. 403 

Importantly, their result showed that a tested small molecule (Deltarasin) can alter the localization 404 

of KRAS within the plasma membrane by transferring KRAS to the endomembrane. Their findings 405 

revealed that the reported reduction in the proliferation of human pancreatic ductal 406 

adenocarcinoma cell lines can be attributed to the Deltarasin-initiated relocation of oncogenic 407 

KRAS. Consequently, the delocalization of RAS ultimately disrupts pathways activations and 408 

provides a platform for inhibiting the activities of RAS (Canovas et al.). Using structure-based 409 

ligand development, Papke et al. recently identified a novel inhibitor (Deltazinone 1) which was 410 

shown to have anti-proliferative activity and exhibit lesser unspecific cytotoxicity than Deltarasin. 411 

Thus, the discovery of these two inhibitors (Deltarasin and Deltazinone) has since opened new 412 

frontiers on the exploration of complexes or interactions involving KRAS. In this study, we 413 

successfully docked bioactive compounds against PDE6D which closely interacts with KRAS. 414 

Among the selected best compounds, we identified Arbutin, (+)-catechin and Sinapic acid as 415 

potential drug candidates. Arbutin has been considered as a candidate for treating many cancer 416 

types. For example, Yang et al. showed that Arbutin can induce apoptosis in glioma cells which 417 

confirmed its anticancer potency. Also, they established that Arbutin can significantly reduce the 418 

associated-signaling proteins. Similarly, Safari et al. demonstrated the anti-cancer efficacies of 419 

Arbutin for treating prostate cancer. Catechin or its derivative has been shown to have anti-cancer 420 

potency. Di Leo et al. demonstrated that the application of a nanoformulation of (+)-catechin can 421 

enhance the therapeutic efficacy of free (+)-catechin, which underscore the anti-cancer potential 422 
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of catechin. Similarly, findings from Sun et al. showed that catechin has inhibitory effect on lung 423 

cancer cell proliferation. 424 

 425 

CONCLUSION 426 

Based on the findings from this study, it can be inferred that the best bioactive compounds 427 

of Vaccinium vitis-idaea L. can be drugged against PDE6D of the KRAS: PDE6D complex in 428 

human epithelial lung cancer cells. The binding affinity, MM/GBSA, protein-ligand interaction, 429 

pharmacokinetics properties, and drug-likeness of the Vaccinium vitis-idaea L. compounds were 430 

assessed compared to the FDA-approved drug (Sotorasib). After docking, 26 out of 39 bioactive 431 

compounds had a higher binding affinity to the target receptor than Sotorasib. Following docking, 432 

the 26 compounds were examined for drug-likeness, and the best four compounds, including {(+) 433 

– Catechin (Cianidanol), Arbutin, Resveratrol, and Sinapic acid, were further processed to undergo 434 

molecular simulation. The protein-ligand interaction after simulation showed that all four ligands 435 

have good stability based on RMSD value < 4 Å which is within the acceptable threshold. Arbutin, 436 

(+) – Catechin, and Sinapic acid is predicted to be the best compound of Vaccinium vitis-idaea L. 437 

for treating lung cancer because of their pharmacokinetic properties and drug-likeness attributes. 438 

Further in vivo and in-vitro analysis is required to establish the potency of the selected ligands in 439 

this study for treating lung cancer associated with KRAS mutations. 440 
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