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Abstract: A theoretical database comprising experimentally accessible and inaccessible chemical 

reactions could complement the existing experimental databases and contribute significantly to data-

driven chemical reaction discovery. Quantum chemistry-aided retrosynthetic analysis (QCaRA) can 

generate a network of elementary steps called a reaction-path network and predict hundreds or more 

of chemical reactions along with their theoretical yields. In contrast to ordinary simulations, QCaRA 

traces back the reaction paths from the target product to various reactant candidates while solving the 

kinetic equations. In this study, we propose theoretical reaction database construction based on 

QCaRA. Seven reaction-path networks containing 13,190 reactions, 108,754 reaction paths, and 



2,552,652 geometries have been identified and discussed as examples. In addition to well-known 

reactions (i.e., synthesis of fluoroglycine, Wöhler’s urea synthesis, base-catalysed aldol reaction, 

Lewis-acid-catalysed ene reaction, cobalt-catalysed hydroformylation, Strecker reaction, and 

Passerini reaction), numerous unexplored reactions with high, medium, low, near-zero, or zero yields 

have been identified. We anticipate that such a QCaRA-based theoretical reaction database will 

provide information on hitherto unexplored reactivities, especially those that are experimentally 

inaccessible. 

 

Introduction 

Data-driven reaction discovery is a prominent field in modern chemistry. Experimental 

reaction databases have been widely used to develop efficient synthetic routes.1–9 However, 

experimentally unexplored reactions and chemical transformations that have limitations such as 

reagent inaccessibility are not included in these databases. Supplying negative data also requires 

considerable experimental resources and effort. A theoretical reaction database is therefore required to 

complement these experimental databases and promote data-driven chemical reaction discovery. 

The exploration of quantum chemical potential energy surfaces10–15 can elucidate reaction 

mechanisms and thus enables the prediction of reactions. Quantum chemical calculations can reveal 

the molecular interactions between reagents and probable intermediates and elementary steps in a 

reaction.16–25 Various automatic elementary step searching tools such as the freezing string method 

coupled with the Berny algorithm,26 single/double-ended growing string methods,27 nanoreactor,28 

artificial force induced reaction (AFIR) method,29–31 reaction mechanism generator,32,33 and Kinbot34 

have been reported in the literature. Moreover, theoretical databases of elementary steps have been 

created using these or other reaction-path searching tools.35–39 

In general, a vast network of elementary steps is required to represent a reaction, and 



elucidating an entire network from the reactants to the probable major and minor products, along with 

numerous intermediates and elementary steps, is complex and time-consuming. Following the 

terminology for experimental databases, we have termed this entire network as a reaction in this article 

and an elementary step as a reaction path. Correspondingly, the network of reaction paths is called a 

reaction-path network. Generally, a reaction-path network is constructed first, and the corresponding 

reaction is then studied by kinetic simulations.40–44 However, examining each reaction individually 

through this two-step procedure requires enormous effort. Therefore, creating a theoretical database 

of reactions rather than elementary steps remains a major challenge in chemistry. 

In this study, we have used quantum chemistry-aided retrosynthetic analysis (QCaRA) 

which is a reaction discovery concept proposed nearly a decade ago to identify reactants for a reaction-

path network starting from the target product.17 However, until very recently, its application had been 

limited to elementary reactions17,45,46 consisting only of a single step owing to the combinatorial 

explosion of reactant candidates. Recently, its applicability has been considerably expanded by 

combining a reaction-path network exploration engine with a kinetics-based navigation algorithm.47 

Although one could adopt any automatic reaction-path searching tool in the exploration engine, we 

employed the AFIR method. We also used the rate constant matrix contraction (RCMC) method as the 

kinetics-based navigation algorithm, which narrows down the reactant candidates by identifying and 

excluding those kinetically inaccessible for the product. The use of RCMC suppresses combinatorial 

explosion and enables the application of QCaRA to various reactions. 

When we applied QCaRA to known chemical reactions, we observed that QCaRA in 

combination with AFIR and RCMC can identify not only known reactions but also hundreds of 

unexplored reactions that can afford the target product with finite theoretical yields.47 Based on these 

results, we propose theoretical reaction database construction using QCaRA. As initial examples, 

seven reaction-path networks containing 13,190 reactions, 108,754 reaction paths, and 2,552,652 



geometries have been prepared and discussed. The inputs for these QCaRA calculations are products 

of seven known reactions in Figure 1: synthesis of fluoroglycine,45,46 Wöhler’s urea synthesis,48 base-

catalysed aldol reaction,49–51 Lewis acid-catalysed ene reaction,52,53 cobalt-catalysed 

hydroformylation,54–56 Strecker reaction,57–59 and Passerini reaction.58–60 
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Figure 1. Input products of the seven reaction-path network calculations and the retrosynthesis arrows 

for transforming them into the respective known reactions: (a) synthesis of fluoroglycine, (b) Wöhler’s 

urea synthesis, (c) base-catalysed aldol reaction, (d) Lewis-acid-catalysed ene reaction, (e) cobalt-

catalysed hydroformylation, (f) Strecker reaction, and (g) Passerini reaction. 

 

Results and Discussion 

Reaction-path network data 

The QCaRA data consist of nodes (equilibrium structures, EQs) and edges (a reaction path 

corresponding to an elementary step), as shown in Figure 2. QCaRA produced a significant amount 

of raw data, which contained three-dimensional molecular geometries, energies, molecular properties 



of EQs and transition states (TSs) or path tops (PTs, structures with the maximum energy), all the 

discrete points along the reaction pathway, and meta-data of calculations such as creation dates. 

 

 

Figure 2. QCaRA data of a reaction-path network. (a) Graph network where nodes represent EQs and 

edges represent the corresponding TS/PT in the reaction. (b) Sequence of geometries and their energies 

along a reaction path. Each discrete point is a three-dimensional molecular geometry and its energy. 

(c) Example describing an LUP reaction path in the network for the Lewis-acid-catalysed ene reaction. 

Abbreviations: PT, path top; EQ, equilibrium structure; TS, transition state; LUP, locally updated 

planes. 

 

These networks were constructed using a two-step procedure: (a) network exploration by 

AFIR and RCMC based on density functional theory (DFT) calculations with a small basis set and (b) 

network refinement by energy and gradient evaluations at all the discrete points along all paths 

obtained in Step (a) based on DFT calculations with a medium-sized basis set. For network refinement, 

Hessian calculations were also done at the path terminals (EQs) and PTs. Additionally, the structure 

geometries along all paths and all the energy, gradient, and Hessian data computed in Step (b) have 

been added to our database. Table 1 lists the number of EQs and PTs, energy data, gradient data, 



Hessian data, and the geometries available for each network. These data would also be useful in the 

training of machine learning potentials,61–63 which could help accelerate molecular simulations and 

future QCaRA calculations. 

 

Table 1. Data included in the seven reaction-path networks presented in this article. 

 entry 1a entry 2b entry 3c entry 4d entry 5e entry 6f entry 7g 

Atom 10 14 17 17 18 19 20 

Reactionh 446 262 1087 2680 4629 1679 2407 

0 – 1%i 386 228 939 2281 3754 1512 1933 

1 – 50%i 6 5 33 43 20 28 57 

50 – 100%i 54 29 115 356 855 139 417 

EQ 1765 1776 6199 8394 10810 9203 12215 

PT 6526 11369 16669 17655 20177 18156 18202 

Gradientj 100751 225522 330307 368421 402234 396148 396221 

Hessiank 20136 36462 51594 53973 61311 54801 54771 

Geometry 120887 261984 381901 422394 463545 450949 450992 

aNetwork including synthesis of fluoroglycine. bNetwork including Wöhler’s urea synthesis. cNetwork including base-

catalysed aldol reaction. dNetwork including Lewis-acid-catalysed ene reaction. eNetwork including cobalt-catalysed 

hydroformylation, fNetwork including Strecker reaction, gNetwork including Passerini reaction, hNumber of groups 

consisting of geometries with the same bonding pattern. iNumber of groups that have the reaction yields of 0 – 1%, 1 

– 50%, and 50 – 100% during simulation at 300 K. jNumber of geometries on which a gradient vector was computed. 

kNumber of geometries on which both a gradient vector and a Hessian matrix were computed. 

 

Seven reaction-path networks 

Figures 3a−g list the EQs of input products (left) and output reactants (right) for seven 

known reactions; the EQ ID has no significant meaning since it changes during network refinement. 

The electronic energies relative to the EQs of the input products are also shown. The theoretical 

product yields for a reaction starting from each EQ at 200 K, 300 K, and 400 K are presented below 

each EQ. In some cases, the theoretical yields for a reaction starting even from the input products are 

less than 100% owing to further transformation into EQs that are more stable at the corresponding 



temperatures. QCaRA has been successful in predicting known reactions in all seven cases. The seven 

networks are described briefly below. 

 

 

Figure 3. EQs of reactants and products of the reactions shown in Figure 1. (a) synthesis of 

fluoroglycine, (b) Wöhler’s urea synthesis, (c) base-catalysed aldol reaction, (d) Lewis-acid-catalysed 



ene reaction, (e) cobalt-catalysed hydroformylation, (f) Strecker reaction, and (g) Passerini reaction. 

The three reaction yields for each reaction are obtained by kinetic simulations at 200 K, 300 K, and 

400 K. Electronic energies of EQs (kJ mol–1) relative to the product EQs are also shown. Colour code: 

white, H; grey, C; blue, N; red, O; green, F; purple, Na; pink, Co. 

 

Synthesis of fluoroglycine. The reaction-path network predicted the reactant EQ1089 

consisting of CO2, NH3, and CF2 molecules with a 100% reaction yield at 300 K (Figure 3a), which 

is consistent with a previous report.45 In this network, one of the product EQs and EQ1089 were 

directly connected via a single-edge, and three components (CO2, NH3, and CF2) were combined in a 

one-step reaction. As shown in Table 1, 446 species were identified in the reaction-path network, of 

which 54 species were predicted to afford the input products with theoretical yields greater than 50% 

at 300 K. 

Wöhler’s urea synthesis. An experimentally well-known reactant consisting of NH4
+ and 

OCN− was obtained as EQ190 with a 100% yield (Figure 3b). The reaction-path network also includes 

an important intermediate, a zwitterionic adduct between HNCO and NH3 (HN=C(NH3)
+‒O−), which 

has been reported in a previous study.64 As shown in Table 1, 262 species were identified in this 

reaction-path network, of which 29 species were predicted to afford the input products with theoretical 

yields greater than 50% at 300 K. 

Base-catalysed aldol reaction. A known reactant consisting of acetone and formaldehyde 

molecules was obtained as EQ4180 with a 52% yield (Figure 3c). This calculation uses Na+ and OH− 

as the base catalyst, which decreased the reaction barrier height. The Na+ ion increased the possibility 

of conformationally different geometries, with more than 100 geometries identified as product EQs. 

As shown in Table 1, 1,087 species were identified in this reaction-path network, of which 115 species 

were predicted to afford the input products with theoretical yields greater than 50% at 300 K. 



Lewis-acid-catalysed ene reaction. EQ1204 containing the known reactants (propylene 

and formaldehyde) was obtained with a 100% yield (Figure 3d). This calculation included the Lewis 

acid AlCl3 for activation of the carbonyl group. Following the activation, C–C bond formation and 

proton transfer occur, as seen in the path shown in Figure 2. The reaction yield of the target product 

at 400 K was low (55%), which was attributed to the presence of several structures that were more 

stable. Therefore, this strategy also predicted the kinetic stability of the product at a given temperature. 

As shown in Table 1, 2,680 species were identified in this reaction-path network, of which 356 species 

were predicted to afford the input products with theoretical yields greater than 50% at 300 K. 

Cobalt-catalysed hydroformylation. The node EQ2093 showed a 100% reaction yield 

(Figure 3e). EQ2093 consisted of CO, H2, and a complex of C2H4 and the active catalyst HCo(CO)3. 

This geometry is slightly different from that of the four component reactants shown in Figure 1e65 

owing to the coordination of ethylene to the Co centre, which occurred in a barrier-less manner on the 

potential energy surface during our calculations. Therefore, EQ2093 is equivalent to the four 

component reactants. As shown in Table 1, 4,629 species were identified in this reaction-path network, 

of which 855 species were predicted to afford the input products with theoretical yields greater than 

50% at 300 K. 

Strecker reaction. The network including the Strecker reaction (Figure 3f) has been 

discussed in our previous report.47 The calculation resulted in a reaction-path network consisting of 

9,203 EQs and 18,156 reaction paths. The 9,203 EQs were classified into 1,679 groups based on their 

bonding pattern. The well-known Strecker reaction63 has been predicted correctly. Notably, when we 

performed network refinement, the additional procedure changed the number of EQs and PTs.47 As 

shown in Table 1, 1,679 species were identified in this reaction-path network, of which 139 species 

were predicted to afford the input products with theoretical yields greater than 50% at 300 K. 

Passerini reaction. The network including the Passerini reaction (Figure 3g) has also been 



discussed in our previous report.47 The calculation resulted in a reaction-path network consisting of 

12,215 EQs and 18,202 reaction paths. The 12,215 EQs were classified into 2,407 groups based on 

their bonding pattern. The well-known Passerini reaction has been predicted via a known 

mechanism.66,67 When we performed network refinement, the number of EQs and PTs changed.47 As 

shown in Table 1, 2,407 species were identified in this reaction-path network, of which 417 species 

were predicted to afford the input products with theoretical yields greater than 50% at 300 K. 

 

Features of QCaRA-based networks 

To investigate more features of the QCaRA-based reaction-path networks, the network 

including base-catalysed aldol reaction was further investigated. The obtained network is shown in 

Figure 4, where nodes and edges represent EQs and reaction paths, respectively, and the nodes are 

coloured based on the theoretical yields of the target product of the reaction starting from each node. 

The reactions starting from various nodes afforded the target products in good yields. Figure 5 shows 

the reactant candidates that possessed four or more molecular fragments and afforded theoretical yields 

larger than 50% at 300 K. Each geometry corresponds to the lowest energy EQ with the same bonding 

patterns. EQ4180 and EQ975 have been identified as the reactant and intermediate, respectively, for 

the well-known aldol reaction. In addition, QCaRA enabled the visualisation of numerous unknown 

reactions, providing potential target products. Figure 5 also shows reactant candidates containing 

various molecules, namely, cyclopropene (EQ1132, EQ1084, and EQ1676), allene (EQ329 and EQ69), 

epoxide (EQ1932), and a four-membered ring (EQ1321). Highly reactive organosodium compounds, 

whose reactivities cannot be readily experimentally investigated, were also identified. Furthermore, 

many reactions with near-zero or zero yields were also predicted as blue nodes in the network, as 

shown in Figure 4. This database provides not only experimentally accessible reactions but also 

inaccessible reactions and near-zero- or zero-yield reactions, which would be valuable for future 



informatics studies. 

 

 

Figure 4. Network including base-catalysed aldol reaction. Nodes and edges represent EQs and 

reaction paths, respectively, and nodes are coloured based on theoretical yields of the target product 

of the reaction starting from each node at 300 K. The inset shows an EQ geometry corresponding to a 

well-known reactant of the base-catalysed aldol reaction. The network was visualized using the 

Searching Chemical Action and Network (SCAN) platform.68 

 



 

Figure 5. Reactant candidates for affording the product of base-catalysed aldol reaction. Sixteen 

reactant candidates with reaction yields larger than 50% at 300 K containing four or more molecular 

fragments are shown. Electronic energies of EQs (kJ mol–1) relative to the product EQ are shown. The 

reaction yields correspond to the contribution ratios to the product state and are obtained by kinetic 

simulations at 300 K in a one-day time-period. Colour code: white, H; grey, C; red, O; purple, Na. 

 

Conclusions 



In this article, we proposed theoretical chemical reaction database construction by 

presenting seven reaction-path networks obtained by combining QCaRA with AFIR and RCMC. 

Known reactions in these seven networks are: synthesis of fluoroglycine, Wöhler’s urea synthesis, 

base-catalysed aldol reaction, Lewis-acid-catalysed ene reaction, cobalt-catalysed hydroformylation, 

Strecker reaction, and Passerini reaction. AFIR explored the reaction-path networks starting from a 

target product, while RCMC solved the kinetic equations inversely during the reaction-path 

exploration. Consequently, a network accessible to the target products under the given reaction 

conditions was obtained. This network also provided the theoretical yields of the target products for 

all reactions starting from the species predicted on the network. Both experimentally accessible and 

inaccessible chemical reactions have been identified, which is valuable data from an informatics 

perspective. In addition to known reactions, numerous high-, medium-, low-, near-zero-, and zero-

yield reactions have been identified. Some of these data may have discrepancies with experimental 

data owing to the microscopic model and computational levels adopted. Nevertheless, we believe that 

this strategy provides information on experimentally unexplored or neglected reactivities. Furthermore, 

we will expand the database continuously by adding reaction-path networks for many other systems. 

For that, further high-throughput network data generation using the Fugaku supercomputer is currently 

underway.  

Notably, the seven reaction-path network data will be available through the Searching 

Chemical Action and Network (SCAN) platform, where Figures 3, 4, and 5 were created using SCAN. 

The implementation, architecture, usage, and link of SCAN are described in another report.68 

 

Computational Details 

The single-component AFIR (SC-AFIR) method was implemented in the major version of 

the GRRM20 program package.69 The SC-AFIR method was combined with Gaussian1670 to achieve 



an in-house-modified locally updated planes (LUP) method to relax and optimise the path.71 The PT 

(edge) denotes the maximum energy of a geometry along an LUP path (Figure 2b). The three-

dimensional structures and the corresponding energies of each EQ (node), PT (edge), and discrete 

geometry along the LUP paths were acquired. Inverse kinetic simulations47 were used to estimate the 

reaction yield for each EQ. These calculations provided the final (refined) network containing the 

gradient, < S2 > values, and dipole moments in addition to the geometry and energy information for 

all geometries on the network. These calculations also provided the reaction yields from each EQ at 

200 K, 300 K, and 400 K. 

The SC-AFIR search with the QCaRA mode is performed to construct the reaction-path 

networks.47 In the DFT calculations for reaction-path exploration, all gradient and Hessian calculations 

were performed using the ωB97X-D functional with the Grid=FineGrid option in the vacuum. The 

Def2-SVP basis set was used for Na, Al, Cl, and Co atoms, whereas the SV basis set was used for the 

remaining atoms. The SC-AFIR search was conducted setting the γ value to 500.0 kJ mol–1, where γ 

is the model collision energy parameter representing the strength of the artificial force. All atoms 

included in the system were set to the target of the SC algorithm.29 A weak artificial force of γ = 

100.0/[N (N − 1) / 2] kJ mol–1 was added between all atoms to prevent a substructure from being 

separated too far (N is the number of atoms in the system). The force-induced reaction pathways were 

relaxed using the LUP method (denoted by LUP paths). AFIR further expanded the network based on 

the reaction yields of the target products obtained by the inverse kinetic simulations47 via RCMC.72 

Gibbs energy values were evaluated assuming ideal gas, rigid-rotor, and harmonic vibrational models, 

where all harmonic frequencies smaller than 50 cm−1 were set to 50 cm−1.73 The target products (input 

of the network explorations) are shown in Figure 1. Three reaction temperatures (200 K, 300 K, and 

400 K) were considered, and the highest reaction yield at each temperature was adopted as the reaction 

yield of each EQ during the search. The reaction time was set to one day. The search was terminated 



when one of the following conditions was met: (i) when a list of EQs with the 30N largest Γi values 

was not updated in the last 30N path calculations, where N is the number of atoms in the system and 

Γi is the yield of the target product in a reaction starting from EQi multiplied by the Boltzmann 

distribution of EQi; (ii) when the EQ with Γi larger than 10−4 was not identified in the last 30N paths; 

or (iii) when the SC-AFIR search computed 10,000 paths. 

At all the discrete path points along all LUP paths within the reaction-path network, energy 

and gradient calculations were performed with the ωB97X-D functional and Def2-SVP basis set. The 

Hessian is also computed at path terminals (EQs) and PTs. The Grid=FineGrid option was also 

employed in the calculations, and solvent effects were considered using the solvation model based on 

density method.74 THF was adopted as the solvent in the synthesis of fluoroglycine, Passerini reaction, 

and Lewis-acid-catalysed ene reaction; water was adopted for the Strecker reaction, Wöhler’s urea 

synthesis, and base-catalysed aldol reaction; and cobalt-catalysed hydroformylation was computed in 

vacuum. The results are presented in Table 1. By specifying the SaveDataAtAllPoints = 2 option of 

GRRM20, the gradients, energies, and dipole moments were stored in the additional output files. After 

the network refinement, kinetic analysis using the RCMC method was performed again at 200 K, 300 

K, and 400 K based on the refined energetics, which provided the reaction yields of the target product 

starting from each EQ. 
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