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Abstract1

The European and US chemical agencies have listed approximately 800k chemicals2

where knowledge on potential risks to human health and the environment are lacking.3

Filling these data gaps experimentally is impossible so in-silico approaches and pre-4

diction are essential. Many existing models are however limited by assumptions (e.g.5

linearity and continuity) and small training sets. In this study we present a supervised6
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direct classification model that connects molecular descriptors to toxicity. Categories7

can be either data-driven (using k-means clustering) or regulatory-defined. This was8

tested via 907 experimentally defined 96h LC50 values for acute fish toxicity. Our9

classification model explained ≈ 90% of variance in our data for the training set and ≈10

80% for the test set. This strategy gave a 5-fold decrease in the incorrect categoriza-11

tion compared to a QSAR regression model. Our model was subsequently employed to12

predict the toxicity categories of ≈ 32k chemicals. A comparison between the model-13

based applicability domain (AD) and the training set AD was performed, suggesting14

that the training set based AD is a more adequate way to avoid extrapolation when15

using such models. The better performance of our direct classification model compared16

to QSAR methods, makes this approach a viable tool for hazard and risk assessment17

of chemicals.18

Synopsis19

In this study an alternative machine learning-based strategy to conventional QSAR models20

is used for the toxicity categorization of chemicals using molecular descriptors and direct21

classification.22

Introduction23

The chemical space of the human exposome is ever expanding with a wider diversity of chemi-24

cals from both fate and toxicity points of view.1–7 The latest estimates of the environmentally25

relevant chemicals based on the chemical registries and production volumes are estimated26

to be between 350k and 800k.2,8 For most of these chemicals there is little to no knowledge27

about their environmental fate nor toxicity.1–5,8,9 Since the experimental assessment of the28

fate and toxicity of such a large number of chemicals is not feasible, modeling approaches to29

predict hazard indicators play an increasingly important role in chemical prioritization and30
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risk assessment.10–1331

32

Prediction of the physicochemical properties and the biological activity (e.g. aquatic33

toxicity) has been one of the main approaches to deal with the structural diversity in the34

chemical space.10–13 Most existing modeling strategies employ quantitative structure activ-35

ity relationship (QSAR) models and rely on building linear and/or non-linear relationships36

between the structural descriptors and the modeled activity/property.10,14–17 These models37

are often built on very homogeneous training sets (i.e. similar chemical classes), hence the38

linearity assumption.17,18 In fact, recent efforts have been put into using more heterogeneous39

training sets as well as moving away from the linearity assumption.13,14,18,19 Independent40

from the level of heterogeneity of the training dataset, QSAR models are very limited in the41

number of measured activities as well as the number of chemicals evaluated (e.g. around42

1000 chemicals).13,14,18,19 The main consequence of this limitation is the fact that the models43

are used in extrapolation mode when used for prediction. This implies that the new data44

points are not represented adequately by the chemicals within the training set, thus outside45

of the model applicability domain. The use of these models for extrapolation may potentially46

result in very large prediction errors.13,19,2047

48

For these predicted and measured activities (i.e. toxicity and/or other properties) to49

be translated into chemical management actions, they are divided into different categories50

using thresholds based on expert knowledge.1,3,21–24 Examples for such categories are environ-51

mental hazard categories defined by the Globally Harmonized System of Classification and52

Labelling of Chemicals (GHS) or thresholds for persistence (P), bioaccumulation potential53

(B) and toxicity (T) defined under the European Registration, Evaluation, Authorization54

and Restriction of Chemicals (REACH).25 The chemicals that fall within specific categories55

are then furthered for more active monitoring and eventually for legislation.24,26? –28 This56

process triggers wider experimental evaluation of chemicals within high priority categories,57
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which may result in adjustment of the previously set thresholds, based on the new exper-58

imental evidence.24,26,29 However, for this chemical management strategy to be effective, a59

more accurate and reliable chemical prioritization (i.e. chemical categorization) approach is60

warranted.61

62

In this study we propose an alternative strategy for chemical prioritization on the exam-63

ple of acute aquatic toxicity, where the QSAR-based activity prediction step is skipped. Our64

direct classification model directly converts molecular descriptors into chemical categories,65

avoiding the errors inherent to the activity prediction step. As a proof of concept, this strat-66

egy was tested with experimentally determined 96h lethal concentration (LC50) values for67

fish, for 907 organic chemicals. We compared the results of our direct classification strategy68

with the conventional QSAR approach. Additionally, our modeling strategy was expanded69

to 32000 chemicals from Norman SusDat.27 Finally, we performed a critical evaluation of70

applicability domains for all the models in this study.71

Methods72

Overall Workflow73

The dataset used for our model development, validation, and testing consists of calculated74

descriptors, monoisotopic mass of each chemical, and experimentally determined LC50 val-75

ues (96 hours) for acute fish toxicity (see details in Section Dataset). The LC50 values were76

divided into four categories namely: very low toxicity, low toxicity, moderate toxicity, and77

high toxicity via k-means clustering. This categorization followed the typical evidence-based78

effect modeling categorization.30–32 Additionally, regulatory-defined toxicity categories were79

retrieved from the Globally Harmonized System of Classification and Labelling of Chemicals80

(GHS). We assessed the prediction accuracy of the two types of toxicity categories by em-81

ploying two different modeling strategies: a conventional QSAR regression model vs direct82
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classification (Figure 1. The QSAR regression model simulated the case where the acute fish83

toxicity (as LC50) is predicted based on molecular descriptors via a QSAR model and then84

the chemical is assigned a specific toxicity category in a separate step. On the other hand,85

the direct classification model skipped the LC50 prediction step and directly classified the86

chemical of interest into one of the initially defined toxicity categories. This comparison was87

performed for the full dataset (i.e. training set and test set) in order to assess the accuracy88

of each approach in acute fish toxicity categorization.89
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Figure 1: depicts the overall workflow of the study from the raw data to the finally generated
models.

Datasets90

We employed two different datasets for our model development18 and the model applica-91

tion.33 Our modeling dataset consisted of experimental acute fish toxicity values for 90792
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chemicals retrieved from three databases, namely OASIS, ECOTOX and EAT5 and pro-93

vided by Cassotti et al.18 The data consisted of the concentrations causing death in 50%94

of test fathead minnows (Pimephales promelas) over a test duration of 96 hours (LC50 9695

hours). More details regarding the data curation is provided elsewhere.18 We will refer to96

this dataset as ”acute fish toxicity dataset” here after. The chemicals in this dataset covered97

different chemical families, including pharmaceuticals, pesticides, conventional persistent or-98

ganic pollutants (POPs), and industrial chemicals. Throughout this article we refer to the99

907 chemicals with measured toxicity and curated descriptors as full ”acute fish toxicity100

dataset”, the portion used for the model development/validation as training set, and the101

portion of the data used for additional model testing of the final model as test set.102

103

The second dataset (hereafter referred to as ”Norman dataset”) was an extract of around104

32000 chemicals (31722 chemicals), including their predicted 96h LC50 values for acute fish105

toxicity (Pimephales promelas) from the Norman SusDat database.34 This dataset included106

only the chemicals that were reported as within the applicability domain of the QSAR model107

developed by Aalizadeh et al,34 which was used for testing our model applicability, Figure108

2. This is the model employed by Norman Network for their risk assessment and chemical109

management. When checking the overlap between the acute fish toxicity dataset and the110

Norman dataset, we observed around 100 common entries.111

112

We calculated 2757 1D (i.e. constitutional/count descriptors), 2D (i.e. structural frag-113

ments), and 3D (i.e. graph invariants) molecular descriptors, and PubChem fingerprints for114

both datasets using PaDEL software package,35 implemented via a python 3 wrapper called115

padelpy. Additionally, the name of the chemicals, their SMILES,36 and InChiKeys37 were116

retrieved from the PubChem database38 via pubchempy API. In order to identify the unsta-117

ble descriptors—caused by the lack of convergence during the structural optimization—we118

performed the descriptor calculations for the acute fish toxicity dataset in triplicates. The119
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descriptors were scaled by the maximum of each descriptor in the training set to minimize120

the impact of the descriptor magnitude on the final models.39 After scaling, the variance of121

each descriptor in the acute fish toxicity dataset was calculated and only the descriptors that122

had a variance below 0.1 were kept. We assumed that the stable descriptors for the acute123

fish toxicity dataset are also stable for the Norman dataset. Therefore, the descriptors for124

this dataset were calculated only once. Additionally, the maximum of each descriptor in the125

Norman dataset was compared to those from the training set (from the acute fish toxicity126

dataset). The descriptors that have this ratio larger than 100 were considered unstable and127

removed from both datasets, resulting in a total of 2036 final descriptors out of an initial 2780.128

129

We also evaluated the coverage of the chemical spaces of the datasets by the means of130

Principal Component Analysis (PCA), Figure 2. The PCA is an unsupervised dimension131

reduction approach, which enabled us to assess the underlying trends in our datasets by132

combining several variables into a single principal component.40 To perform PCA, we used133

the curated descriptors matrix and in total two principal components.134

Toxicity Categories135

To categorize the chemicals based on their acute fish toxicity, we employed two different136

strategies namely 1) applying k-means clustering to derive four categories from our acute137

fish toxicity dataset and 2) using predefined categories for acute aquatic hazard as defined138

in the GHS.41139

K-means Clustering for Toxicity Categorization140

The k-means strategy divided the chemicals into four categories consisting of high toxicity,141

moderate toxicity, low toxicity, and very low toxicity accounting for 96h LC50 values for142

fish toxicity and monoisotopic mass of the chemicals. The k-means clustering algorithm is143

an iterative clustering algorithm, where the distances between different measurements from144
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Figure 2: depicts a) the distribution of the experimental LC50 values used for the model devel-
opment and validation whereas b) shows the chemical space via PCA covered by the acute fish
toxicity data (i.e. training and test sets) and the Norman dataset, where the curated descriptors
were used for the cluster analysis
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a set of user defined centers (so called centroides) are used for clustering the data.40 This145

algorithm has the advantage of incorporating more than one parameter, compared to expert146

manual judgment in the clustering. Additionally, this algorithm, given that it has randomly147

selected centroides in the first iteration, it requires further validation. Here we employed148

bootstrapping to assure the selected acute fish toxicity categories (i.e. clusters) are robust149

enough for predictive purposes. To do that, the fish toxicity data was randomly divided into150

90% training set and 10% test set. The training set then was bootstrapped with replacement151

for 500 iterations, to guarantee that each model is built based on a unique dataset. The most152

commonly identified centroid over 500 iterations was selected as final model and for acute153

fish toxicity categorization. In the end, the final model was further tested using the test set.154

During the categorization, we provided the k-means algorithm with two variables namely155

96h LC50 values and the monoisotopic masses, and the number of clusters of 4, following156

the category structures adapted by previous studies.30157

GHS Categorization for Acute Aquatic Hazards158

In addition to the k-mean clustering we also used the three categories for acute aquatic159

hazards of the GHS, which were hard set thresholds.41The three GHS-based categories for160

short-term (acute) aquatic hazard are based on thresholds derived from 96h LC50 values for161

acute fish toxicity: high toxicity (Category Acute 1: 96h LC50 for fish ≤ 1 mg/L), moderate162

toxicity (Category Acute 2: 1 mg/L < LC50 ≤ 10 mg/L), and low toxicity (Category Acute163

3: LC50 > 10 mg/L LC50), Table 4.1.1 in Reference.42164

Modeling165

In this study, we developed two different models namely: a QSAR regression model and166

a direct classification model. The details of each model strategy is provided below. Both167

models, once optimized with the acute fish toxicity dataset, were used with the Norman168

dataset to further assess their applicability.169
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QSAR Regression Model170

We developed, optimized, validated, and tested a random forest regression model using the171

curated descriptors (independent variables) and the experimentally defined LC50 values (de-172

pendent variable). Random forest is a decision tree based algorithm where several bootstrap173

data (i.e. training set) are given to several decision trees. This assures that the dataset given174

to each tree is unique.40 Once the model is developed, the most common decision tree model175

outcome is considered as the random forest model prediction. The main advantage of the176

random forest modeling strategy is the ability to handle non-linearity and non-continuity177

in the data, which is highly relevant to toxicity prediction.43 Here, the acute fish toxicity178

dataset was divided into training set (90% of the full dataset) and test set (10%). The179

training set was used for the model development and optimization while the test set was180

for further evaluation of the dataset. For the regression model, the model hyper-parameter181

optimization was performed with a two dimensional grid with the number of trees ranging182

from 100 - 1000 whereas the minimum number of points in each leaf varying from 1 - 21.183

The combination of 3 fold cross-validation and out-of-bag strategy enabled us to generate184

an optimized regression model while defining the importance of each variable. The variables185

that had relative levels of importance larger than 1% were considered as essential variables186

for the model. This strategy enabled us to quickly identify the most relevant variables to187

our model’s accuracy.188

189

The finally optimized regression model consisted of 600 trees, minimum 4 points in each190

leaf, and 8 variables. This regression model was employed to predict the 96h LC50 for fish191

toxicity of the chemicals in the Norman dataset. In a second step, the predicted LC50 values192

were used to categorize the chemicals into the two types of toxicity categories described193

above.194
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Descriptor-Based Direct Classification Model195

We developed, validated, and tested a classification model to convert the curated descriptors196

to the acute fish toxicity categories. For this model, we employed random forest classifica-197

tion, implemented via ScikitLearn.jl julia package.44198

199

For the direct classification, we split the acute fish toxicity dataset (i.e. curated the de-200

scriptors and toxicity categories) into training set (90% of the full dataset) and test set (10%).201

To optimize the main model hyper-parameters, the number of trees, and minimum number202

of points in each leaf, we generated a grid with 20 steps for each parameter ranging from 200203

- 2000 and from 1 - 21 for the number of trees and minimum data points in leaf, respectively.204

For each model, we performed 3 folds of cross-validation to systematically assess the model205

accuracy. The model with the highest cross validation accuracy (i.e. 73%) was considered206

as the optimized classification model. This optimized classification model consisted of 1200207

tress and minimum number of points in each leaf of 4. To avoid overfitting during the train-208

ing process, when building the model, we set an out-of-bag cross-validation,45 where only209

a randomly selected fraction (i.e. square root of the number of variables) of the variables210

were fed to individual trees. The combination of out-of-bag cross-validation and leaf purity211

was utilized to calculate the importance of individual variables on the final model. To select212

the relevant variables, we divided variance explained by each variable by the largest one and213

selected those that contributed more than 1% to the model, thus 230 out of 2036 variables.214

215

To build the final model, the full acute fish toxicity dataset was used with the selected216

variables. In this case all the selected variables were used for the final model building.217

Additionally, this model was used to categorize the Norman dataset into the two types of218

acute fish toxicity categories directly based on the curated descriptors.219
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Applicability Domain220

To assess whether a chemical is well represented by the model training set, we performed221

the applicability domain (AD) assessment. The AD assessment was done by calculating222

the leverage of each chemical compared to the training set.34 The leverage was calculated223

using Eq.1, where X is the matrix of the training set (including the descriptors), xi is the224

vector of descriptors for an individual chemical, and the hii is the calculated leverage. The225

leverage calculations are typically done only using the model variables, in other words only226

the descriptors used for the optimized model. In this study we performed both the full227

descriptor space (i.e. assuming the model using all the descriptors) and the model specific228

descriptors (i.e. conventional approach). This strategy enabled us to systematically assess229

which chemicals are well represented by the training set.230

hii = xT
i (X

TX)−1xi (1)

Calculations231

All calculations were performed using a personal computer (PC) with Intel Core i7 CPU232

and 16 GB of RAM operating Ubuntu 20.04.2 LTS. All the data processing and statistical233

analysis were performed using julia language 1.6.234

Results and discussion235

In this study, we developed a random forest-based direct classification model to convert the236

molecular descriptors of chemicals to predefined acute fish toxicity categories. This model237

was developed, validated, and tested via an experimentally defined dataset of 96h LC50238

values for acute fix toxicity for 907 organic chemicals. The result of this strategy was directly239

compared to the conventional two-step approach—first QSAR-based property prediction and240

then toxicity categorization—both for the acute fish toxicity data and a dataset of ≈ 23000241
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chemicals from Norman SusDat.33242

Toxicity Categorization243

The final k-means model resulted in a clustering accuracy of 97.5%. This model, then, was244

fed the full acute fish toxicity dataset to define the toxicity category of each chemical in245

that dataset. The final model was saved as a binary file to be used for prediction (Figure246

3). The k-means and GHS categories were used as labels in two separate runs of the direct247

classification model while the 96h LC50 values for acute fish toxicity predicted by the QSAR248

regression model were converted into the two types of acute toxicity categories in a second249

step.250

251
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Figure 3: shows the distribution of the toxicity categories of the acute fish toxicity dataset via a)
the best k-means clustering model and b) based on GHS categories.
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When comparing the unsupervised k-means clustering-based categorization with the ex-252

pert knowledge based categorization from the GHS, we see a high level of similarity in the253

thresholds (Figure 3). In fact the main differences were observed for chemicals with a molec-254

ular weight of ≥ 400 Da and LC50 values ≥ 1 mg/L (0 log(mg/L)). These chemicals in the255

k-means categorization were considered part of the high toxicity category while based on the256

GHS categories they were considered moderate to low toxicity. When calculating the similar-257

ity scores between the descriptors of those chemicals and the two categories, we consistently258

observed higher values for high toxicity category. This indicates that those chemicals may259

be structurally more similar to the high toxicity category rather than the moderate and/or260

low one. These similarities are better captured by the k-means model, given that it uses261

two variables (96h LC50 and monoisotopic mass) and Euclidean distances for the cluster262

creation.263

Performance of QSAR Regression Model264

The residuals of the final and optimized QSAR regression model were between -1 and 1 in265

LC50 units for ≈ 95% of the data (Figure S2). This model consisted of 600 trees and 8 vari-266

ables, resulting in an R2 of 0.86 for the training set and≈ 0.7 for both median cross-validation267

and test set. The observed levels of accuracy was comparable to previously reported linear268

and non-linear QSAR models17,34 (Figure 4). We observed up to 2.1 log(mg/L) overesti-269

mation of the LC50 for values ≤ -1 while our model resulted in a slight underestimation of270

toxicity for LC50 values ≥ 5 (Figures 4 and S2). Finally, we used the optimized model to271

predict the 96h acute fish toxicity LC50 values for the Norman dataset. When comparing272

the results of our predictions to the predictions by Aalizadeh et al,34 a clear linear trend (i.e.273

Pearson correlation coefficient of 0.68) between the two predictions was observed, further274

indicating the validity of our model (Figure S3).275

276

The optimized regression model included 8 variables from which two were related to the277
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logP of the chemicals in the training set (Figure S1). The most relevant variable was the278

Crippen logP46 value explaining around 35% variance of the final model. This logP was279

calculated based on 68 atomic contributions. On the other hand, the second variable was280

XLogP,47 implemented within PubChem.38,48 This logP calculation also uses the atomic281

contribution of 87 groups and additionally incorporates two correction factors, improving282

its accuracy and expanding its applicability. Another relevant variable for our regression283

model was the ZMIC1 descriptor which is a 2D descriptor indicating the level of symmetry284

in the structure.35 Finally, the remaining relevant descriptors (i.e. excluding logP, XlogP285

and ZMIC1 descriptors) were related to molecular connectivity, polarizability, and hydrogen-286

bond donation, which all have shown to be relevant in explaining physico-chemical properties287

and toxicity of chemicals.15,17,34288

289

Performance of Descriptor-Based Direct Classification Model290

The optimized direct classification model resulted in a classification accuracy of 92% for291

the training set and around 80% for both the cross-validation and the test set, for the four292

k-means categories. The final model used 230 variables out of a total of 2036 curated descrip-293

tors. Similar to the regression model, most of the important variables were a combination294

of 2D descriptors and fingerprints (i.e. 3D ) (Figure S4). These descriptors included the295

four logP calculations (e.g. CrippenlogP) as well as parameters related to polarizability and296

charge distribution. These parameters are all highly relevant to the mobility of the chemicals297

and their binding potential with the active sites.15,18 Differently from the regression model,298

the most relevant variable only explained ≈ 1.5% of variance (vs 35% for the regression299

model) in the final model. Even though larger number of variables were included in the300

model, the total number of variables were less than 30% of the number of measurements re-301

sulting in a mathematically well-defined problem. Additionally, a larger number of variables302

enables a better assessment of the model applicability domain.303
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Figure 4: depicts the measured vs predicted 96h LC50 values (in log(mg/L)) for acute fish toxicity
for a) the training and test set during the model optimization and b) the optimized model with the
full acute fish toxicity dataset.
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304

The direct classification model based on the three GHS categories, resulted in an accuracy305

of 94% for the training set and around 85% for the cross-validation and test set. This model,306

similar to the previous one, had 236 high importance variables that were included in the307

final model. The high importance variables (e.g. top 20) for both models were exactly the308

same as for the direct classification into the k-means categories with similar levels of variance309

explained.310

The reported statistics and the selected variables in our classification models further311

indicated the applicability of our model for prediction of acute fish toxicity categories directly312

from the molecular descriptors.313

Classification vs Regression314

The fish toxicity data were used for predicting the toxicity categories via both the conven-315

tional QSAR regression model and the direct classification strategies. The QSAR regression316

model resulted in predicted LC50 values that were converted to the two types of acute fish317

toxicity categories in a subsequent step. On the other hand, the classification model directly318

predicted the toxicity categories. The predicted acute fish toxicity categories based on both319

methods were compared to the true categories coming from the measured 96h LC50 values320

for fish toxicity to evaluate the accuracy of each approach.321

322

The direct classification method, for both cases, resulted in around four times fewer323

misclassifications when compared to the QSAR regression model. We observed 47 cases of324

misclassification for the k-means based categories while for GHS categories the misclassified325

cases were 41. This was in agreement with our expectations, given that the total number326

of classes in GHS categories were smaller, thus a lower probablity of wrong classification.327

For the QSAR regression model, we observed 178 cases of wrong classifications for k-means328

based categories whereas 163 incorrectly classified cases were observed for the GHS cate-329
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gories (Figure 5). The direct classification strategy showed a homogeneous distribution of330

the miscategorized chemicals in the acute fish toxicity dataset, for both the k-means and331

the GHS categories. For the k-means categorization the QSAR regression model resulted in332

large and homogenous distribution of wrong categorization while for the GHS approach we333

observed a high density of miscategorization for high and moderate toxicity groups, (Figure334

5).335

336

Around 85% of the miscategorized chemicals via direct classification overlapped with337

those wrongly categorized via the QSAR regression model, independently of the type of cat-338

egories. For example a chemical that was consistently wrongly categorized by all the methods339

was 1-hydroxypyridine-2-thione (InChyKey:YBBJKCMMCRQZMA-UHFFFAOYSA-N) with measured340

LC50 of 0.95 µg/L (i.e. -3.02 log(mg/L)). This chemical was categorized as moderately toxic341

by both models while it is actually a high toxicity chemical. When looking at the struc-342

ture of this chemical, it is clear that this chemical is not very well covered by our training343

set. In other words, there are not enough (at least 4) chemicals with a similar structure344

to this one in our training set. This further indicates that the addition of more diverse345

chemical structures to our training set will result in even more accurate prediction of the346

toxicity categories. Additionally, the replacement of the molecular descriptors with the to-347

pographical fingerprints,49 given their stability, may further improve our prediction accuracy.348

349

When comparing the distribution of the wrongly categorized chemicals, we observed a350

higher levels of homogeneity in the k-means categories compared to the GHS ones. This was351

consistent for both QSAR regression model and direct classification model. We also observed352

that for the GHS categories, both the QSAR regression-based and the direct classification353

model showed a high density of wrong categorization for chemicals at the border between354

high toxicity and moderate toxicity region. We interpret that this is mainly caused by larger355

number of categories and lower levels of rigidity in the k-means approach compared to hard356
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set thresholds (i.e. GHS approach).357

358

The predicted LC50 values using our optimized QSAR regression model followed by the359

k-means clustering categorization resulted in 81% consistent classification between the acute360

fish toxicity categories generated by the direct classification method (Figure S5). On the361

other hand, the predicted LC50 values using the model developed by Aalizadeh et al34 re-362

sulted in only 37% consistent toxicity categories. This may be due to the fact that our QSAR363

regression and direct classification models both had the same training set as well as the fact364

that our QSAR regression model uses 8 descriptors while the model by Aalizadeh et al uses365

only 6 from which three are logP values.366

367

Overall, our direct classification strategy showed a better performance in identifying the368

acute fish toxicity categories of the chemicals directly from the molecular descriptors, rather369

than passing via a QSAR regression model. We also observed a higher level of consistency370

between the categories generated by our models compared to another prediction method (i.e.371

Aalizadeh model). We interpret that the main reason behind the overall better performance372

of the direct classification approaches is first and foremost the fact the uncertainties asso-373

ciated with the QSAR regression models do not impact the categorization. Additionally,374

the inclusion of a larger number of descriptors in such models implies that higher levels of375

structural features are incorporated. In fact, the low level of variance explained by individ-376

ual variables further confirms this hypothesis. Our direct classification model can be easily377

adapted to different types of pre-defined (acute fish toxicity) categories, as demonstrated378

here by classifying the chemicals following the categories for short-term (acute) aquatic haz-379

ard of the GHS. Overall, these results indicate the viability of the classification strategy as380

a means of chemical prioritization and management.381
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Figure 5: depicts the correctly vs wrongly predicted acute fish toxicity categories based on a) the
QSAR regression model and k-means based categories; b) the direct classification strategy based
on k-means categories; c) the QSAR regression model using the GHS categories categories; and d)
the direct classification strategy with GHS categories.

Applicability Domain382

We also evaluated the impact of the applicability domain AD selection for the assessment383

of the model coverage of the chemicals space. To perform such assessment, we calculated384

the leverage for full descriptor space, QSAR regression model descriptors, and the direct385

classification model descriptors. Figure 6 depicts the scores’ plots for the training set and386

the Norman dataset and the associated applicability domains.387

388

With the full descriptor space (i.e. the curated descriptors used for our model devel-389

opment), only 585 entries of Norman dataset were covered by the training set. Using the390

regression model descriptors (i.e. the 9 most relevant ones) resulted in around 31000 entries391

being covered by the training set. On the other hand, based on the descriptors of the direct392

classification model around 27000 entries were covered by the chemical space of the train-393

ing set. The observed trend is in agreement with our expectations, given that the larger394
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number of descriptors provides a better coverage of different structural characteristics of the395

chemicals. When looking at the covered chemical space by the training set (i.e. 96h LC50396

for acute fish toxicity) and the chemicals within the AD of the training set (i.e. the full de-397

scriptor space) a good level of overlap is observed. This is not the case when looking at the398

model specific ADs, implying an extrapolation with a much larger level of prediction error.399

An example of such cases is carbonothioylbis(iminomethylene) bis(diethyldithiocarbamate)400

(InChyKey: SPQBHESGHZSSMQ-UHFFFAOYSA-N), which was covered by the regression401

model AD and was not covered by both the classification and the training set AD. In fact,402

this chemical was one of the most different chemicals compared to the chemicals in the Nor-403

man dataset (i.e. PC1 -11 and PC2 28). Therefore, it may be advisable to use the training404

set AD (i.e. the full descriptor space) to assess the training set coverage of the chemical405

space, rather than the individual model ADs.406
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Figure 6: depicts the applicability domain (AD) assessment (i.e. the leverage calculation) of
Norman dataset, based on a) the training set (i.e. the full molecular descriptor space), b) the
QSAR regression model, and c) the direct classification model. The blue circles represent the
chemicals that are outside of the AD while the orange circles are within the model applicability
domain and the green circles are within the training set applicability domain.
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Implications for Chemical Assessment407

The results of our direct classification model showed its power in categorizing the chemicals408

in terms their acute fish toxicity based on their specific molecular descriptors. Our strategy409

can overcome the continuity assumption of QSAR models, which are conventionally used410

to fill experimental data gaps in chemical assessment of structurally similar compounds, di-411

rectly impacting the size of the training set. In other words, with our direct classification412

approach the experimental datasets from different sources and for different chemical families413

can be grouped to generate larger training sets resulting in higher accuracy predictions. As414

demonstrated here with the direct classification of the chemicals in the Norman dataset into415

hazard categories defined by the GHS (based on acute fish toxicity), our approach can be416

adapted to different predefined categories as prescribed by various international regulations417

and/or classification or labeling systems. The direct classification approach can be expanded418

to other hazard categories (e.g. chronic toxicity) as well as to fate (e.g. mobility or persis-419

tence) and shows great potential for improving in-silico tools for chemical hazard and risk420

assessment.421

Code Availability422

The open access/source julia package for performing these calculations is available with423

MIT license using the link here https://bitbucket.org/SSamanipour/toxcatpred-jl/424

src/main/. Additionally, all the scripts for the model building is available in the same Bit-425

bucket repository. Finally, the predictions of both models, and all three ADs are available for426

download and use via FigShare (Fish toxicity: https://doi.org/10.21942/uva.20089751,427

Norman SusDat: https://doi.org/10.21942/uva.20089787, and model output: https:428

//doi.org/10.21942/uva.20089805).429

padelpy: https://github.com/ecrl/padelpy430

pubchempy API: https://pubchempy.readthedocs.io/en/latest/431
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ScikitLearn.jl: https://scikitlearnjl.readthedocs.io/en/latest/432
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(28) Rüdel, H.; Körner, W.; Letzel, T.; Neumann, M.; Nödler, K.; Reemtsma, T. Persistent,539

mobile and toxic substances in the environment: a spotlight on current research and540

regulatory activities. Environmental Sciences Europe 2020, 32, 5.541

(29) Dulio, V.; van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.;542

Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging pollutants in543

the EU: 10 years of NORMAN in support of environmental policies and regulations.544

Environmental Sciences Europe 2018, 30, 5.545

(30) Moe, S. J.; Madsen, A. L.; Connors, K. A.; Rawlings, J. M.; Belanger, S. E.; Lan-546

dis, W. G.; Wolf, R.; Lillicrap, A. D. Development of a hybrid Bayesian network model547

27



for predicting acute fish toxicity using multiple lines of evidence. Environmental Mod-548

elling & Software 2020, 126, 104655.549

(31) Linkov, I.; Massey, O.; Keisler, J.; Rusyn, I.; Hartung, T. From” weight of evidence” to550

quantitative data integration using multicriteria decision analysis and Bayesian meth-551

ods. Altex 2015, 32, 3.552

(32) Kjaerulff, U. B.; Madsen, A. L. Bayesian networks and influence diagrams. Springer553

Science+ Business Media 2008, 200, 114.554

(33) Schymanski, E. Update on NORMAN-SusDat NORMAN-SLE (Suspect List Ex-555

change). 2021,556

(34) Aalizadeh, R.; Peter, C.; Thomaidis, N. S. Prediction of acute toxicity of emerging557

contaminants on the water flea Daphnia magna by Ant Colony Optimization–Support558

Vector Machine QSTR models. Environmental Science: Processes & Impacts 2017, 19,559

438–448.560

(35) Yap, C. W. PaDEL-descriptor: An open source software to calculate molecular descrip-561

tors and fingerprints. Journal of computational chemistry 2011, 32, 1466–1474.562

(36) Weininger, D. SMILES, a chemical language and information system. 1. Introduction563

to methodology and encoding rules. Journal of chemical information and computer564

sciences 1988, 28, 31–36.565

(37) Heller, S. R.; McNaught, A. D. The IUPAC international chemical identifier (InChI).566

Chemistry International 2009, 31, 7.567

(38) Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.;568

He, S.; Shoemaker, B. A., et al. PubChem substance and compound databases. Nucleic569

acids research 2016, 44, D1202–D1213.570

28



(39) van den Berg, R. A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A. K.; van der571

Werf, M. J. Centering, scaling, and transformations: improving the biological informa-572

tion content of metabolomics data. BMC genomics 2006, 7, 1–15.573

(40) Hastie, T.; Tibshirani, R.; Friedman, J. H.; Friedman, J. H. The elements of statistical574

learning: data mining, inference, and prediction; Springer, 2009; Vol. 2; p 587.575

(41) Miyagawa, M. Globally harmonized system of classification and labelling of chemicals576

(GHS) and its implementation in Japan. Nihon Eiseigaku zasshi. Japanese Journal of577

Hygiene 2010, 65, 5–13.578

(42) Globally Harmonized System of Classification and Labelling of Chemicals (GHS579

Rev. 9, 2021) | UNECE. https://unece.org/transport/standards/transport/580

dangerous-goods/ghs-rev9-2021.581

(43) Cassotti, M.; Ballabio, D.; Consonni, V.; Mauri, A.; Tetko, I. V.; Todeschini, R. Pre-582

diction of acute aquatic toxicity toward daphnia magna by using the ga-k nn method.583

Alternatives to Laboratory Animals 2014, 42, 31–41.584

(44) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blon-585

del, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., et al. Scikit-learn: Machine learning586

in Python. the Journal of machine Learning research 2011, 12, 2825–2830.587

(45) Cho, G.; Jung, K.; Hwang, H. Out-of-bag prediction error: A cross validation index588

for generalized structured component analysis. Multivariate Behavioral Research 2019,589

54, 505–513.590

(46) Wildman, S. A.; Crippen, G. M. Prediction of physicochemical parameters by atomic591

contributions. Journal of chemical information and computer sciences 1999, 39, 868–592

873.593

29

https://unece.org/transport/standards/transport/dangerous-goods/ghs-rev9-2021
https://unece.org/transport/standards/transport/dangerous-goods/ghs-rev9-2021
https://unece.org/transport/standards/transport/dangerous-goods/ghs-rev9-2021


(47) Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L.594

Computation of octanol- water partition coefficients by guiding an additive model with595

knowledge. Journal of chemical information and modeling 2007, 47, 2140–2148.596

(48) Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.;597

Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. PubChem 2019 update:598

improved access to chemical data. Nucleic Acids Research 2019, 47, D1102–D1109.599

(49) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010,600

50, 742–754.601

30



TOC Art602

Review only.

31


