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Abstract 

 

In this study, the specific surface area of various perovskites was modeled using a novel 

quantitative read-across structure-property relationship (q-RASPR) approach, which clubs both 

Read-Across (RA) and quantitative structure-property relationship (QSPR) together. After 

optimization of the hyper-parameters, certain similarity-based error measures for each query 

compound were obtained. Clubbing some of these error-based measures with the previously 

selected features along with the Read-Across prediction function, a number of machine learning 

models were developed using Partial Least Squares (PLS), ridge regression (RR), linear support 

vector regression (LSVR), and random forest (RF) regression. Based on the external prediction 

quality and interpretability, the PLS model was selected as the best predictor which underscored 

the previously reported results.  The finally selected model should efficiently predict specific 

surface areas of other perovskites for their use in photocatalysis. The new q-RASPR method also 

appears promising for the prediction of several other property endpoints of interest in materials 

science. 
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Introduction 

Perovskites are inorganic chemical substances that are structurally similar to CaTiO3, or in other 

terms; they have a general structural formula of ABO3, where the B-ions are surrounded by 

octahedrally arranged O ions1-6. In such compounds, the A-site represents a rare-earth element like 

La3+, whereas the B-site represents transition elements like Fe3+, etc.7. Broadly, perovskites can be 

classified into three main categories: alkaline metal halide perovskites, inorganic oxide 

perovskites, and organic metal halide perovskites with oxide or halide anions8. Although there are 

various types of perovskites found on the Earth’s crust, FeSiO3 and MgSiO3 are known to be the 

most abundant5. The concept of doping is the mixing of other ions to the composite structure of 

perovskites to achieve certain properties for their applicability as biosensors, catalysts, and 

conductors5, 9. In general, there is a wide array of applications of perovskite materials in biological, 

chemical, and electronic sciences. An important application of perovskites in chemical industries 

is their use as catalysts. They provide a solid-state surface and show increased catalytic activity in 

reactions like reduction and hydrogen/oxygen evolution5. Perovskites are also used as sensors like 

gas sensors, where they are extensively used due to their high thermal stability5. They are also used 

as glucose sensors in clinical and pharmaceutical analysis and have effectively replaced enzymatic 

substances due to their inherent increased stability. Also, perovskites are used as modified surfaces 

in neurotransmitter sensors to selectively detect neurotransmitters like Dopamine, even in the 

presence of interfering substances like Ascorbic acid and Uric acid5. Apart from these biological 

applications, they are also used in fuel cells due to their high electrical and ionic conductivity.  

Perovskites are also used in solar cells which convert solar energy into electrical energy. The 

disadvantage of the use of silicon in solar cells is the high price of the electricity generated, and 

thus with a view of reducing the cost, various organic and inorganic perovskites have been used in 

solar cells5.  

Researchers are now inclined towards using various machine learning (ML) algorithms for the 

prediction of activity/property/toxicity of various materials and chemicals. ML algorithms produce 

fast, reliable, and accurate results and involve limited manpower. One of the most widely used 

machine learning applications is Quantitative Structure-Property Relationship (QSPR) which 

predicts certain properties of a set of compounds under a given experimental condition. QSPR 

results are accepted by regulatory bodies like EU-REACH10 
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(https://echa.europa.eu/regulations/reach/understanding-reach) for data gap filling. The basic 

algorithm involved in a QSPR methodology is the development of models consisting of one or 

more dependent variables (properties) and one or more independent variables 

(features/descriptors) which contribute to the dependent variable(s) and are expressed in numerical 

terms11. These models are derived after training a known set of compounds and are then used to 

predict an external set of query chemicals and thus, follow a supervised machine learning 

algorithm. The QSPR models may involve simple regression models like multiple linear regression 

(MLR) and Partial Least Squares (PLS) regression models or classification models like linear 

discriminant analysis (LDA). However, more sophisticated machine learning approaches like 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Random Forest (RF) 

have gained popularity in recent times for predicting the response values of query chemicals12. 

Another recent trend is to adhere to “similarity-based” approaches like Chemical Read-Across13. 

It is performed by interpolation or extrapolation of the properties of a set of source compounds to 

one or more target compounds based on the similarity values between the source and the target 

compounds13, 14 that demonstrates an unsupervised machine learning algorithm. Read-Across-

based predictions are based on (chemical or biological) similarity to close congeners, and these are 

not model-derived predictions. Both the QSPR and Read-Across approaches are extensively used 

for data gap filling (predicting activity/property/toxicity values of compounds devoid of 

experimentally derived endpoint values). Although sufficiently predictive, many of the machine 

learning approaches lack interpretability and act like a black box. Recently, Luechtefeld et al.15 

introduced the concept of classification-based Read-Across Structure-Activity Relationship 

(RASAR) by combining the concepts of Read-Across and QSAR using machine learning 

algorithms. More recently, Banerjee and Roy16 combined Chemical Read-Across and regression-

based 2D-QSAR and named it Quantitative Read-Across Structure-Activity Relationship (q-

RASAR). In this technique, a wide array of similarity and error-based measures are calculated for 

each query compound, and these measures are used as descriptors to develop simple and 

interpretable q-RASAR models.   

In the recent past, perovskites have been one of the centers of attraction for researchers working 

in diverse scientific fields. Shi et al.7 worked on the prediction of the specific surface area of 

perovskites to demonstrate their catalytic activity. They have adopted three different machine 

learning algorithms namely Partial Least Squares (PLS), Artificial Neural Network (ANN) and 

https://echa.europa.eu/regulations/reach/understanding-reach
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Support Vector Regression (SVR) to identify the features associated with the increase or decrease 

of the specific surface area of perovskites and used them to predict an external set of compounds. 

Zhang and Xu17 worked on predicting the oxygen ionic conductivities of perovskites of type ABO3 

using a Gaussian process regression model. Wang et al.18 utilized Random Forest (RF) to predict 

the photon energies associated with quasi-2D perovskite materials and their precursors. Kim et 

al.19 combined density functional perturbation theory and machine learning to estimate the 

dielectric constant of perovskites. Lyu et al.20 adopted ML approaches on lead iodide-based 

perovskites to predict their dimensionality. Yan et al.21 also used ML approaches to predict five 

unexplored perovskites with low bandgap, short circuit current density, and open circuit voltage 

for the design of highly efficient perovskite solar cells.  

The catalytic activity of perovskites is directly proportional to the specific surface area presented 

by it. In this work, we have predicted the specific surface area of perovskites using a novel 

Quantitative Read-Across Structure-Property Relationship (q-RASPR) algorithm, which combines 

the advantages of QSPR and Read-Across approaches. This novel method has been derived from 

the works of Banerjee and Roy16 on the development of regression-based q-RASAR models for 

the first time. After dataset division, feature selection, and hyperparameter optimization, the 

training and test sets were subjected to Chemical Read-Across-based predictions. The optimized 

setting of the Read-Across-based predictions was used to calculate the RASPR descriptors. Using 

the similarity and error-based RASPR descriptors obtained in an ML-based approach, further 

feature selection was employed, and a final Partial Least Squares (PLS) model was generated 

which is robust, predictive, transferable, and reproducible.  The performance of the developed PLS 

model was also compared with several other machine learning regression approaches (vide infra). 

 

Materials and Methods 

Collection of the specific surface area data for perovskites 

The dataset containing specific surface areas of 50 data points was obtained from Shi et al.7 and is 

provided in an excel sheet of Supplementary Material SI-1. This dataset contains a list of 

compounds, their specific surface area data, and a set of 24 features (descriptors). Out of the 24 

descriptors, 21 depict structural information while 3 are experimental process variables. 
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Dataset Division and feature selection 

In the absence of a true external set, the general practice in any predictive modeling is to divide 

the available dataset into training and test sets to explore the predictive ability of the algorithm. 

The current dataset was rationally divided into training and test sets of 38 and 12 data points, 

respectively, based on the sorted response-based division.  

For the feature selection, the mean values of all the descriptors for the 10 compounds with the 

highest property values and 10 compounds with the least property values were calculated from the 

scaled (between 0 and 1) training set descriptor matrix. Additionally, the absolute differences 

between their mean values were computed. The descriptors with an absolute mean difference value 

> 0.15 were considered as the selected features.  

 

Machine Learning-based Read-Across predictions 

Read-Across is a similarity-based prediction approach that does not require, in its original form, 

the involvement of a statistically reliable model. The main limitation of a conventional QSPR 

model is that the model becomes unreliable when there is a limited number of data points with 

limited degrees of freedom for statistical fitting13. Since Read-Across, in its original form, is not a 

statistical approach, rather it is a similarity-based approach, it tends to yield better prediction 

results even for small datasets, and thus, can be a very useful tool for data gap filling. Read-Across-

v4.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home is a 

java-based software tool that takes the training and test set files and a few hyperparameters as 

inputs and quickly computes the Read-Across-based predictions based on similarity considerations 

with the Euclidean Distance-based approach, the Gaussian Kernel Similarity-based approach and 

the Laplacian Kernel Similarity-based approach. The tool also computes the corresponding 

validation metrics for predictions along with the compound-specific similarity and error-based 

measures for the confidence of predictions13, 22. The pre-requisite to perform the Read-Across-

based predictions is to identify the optimized setting of the hyperparameters. The training set 

consisting of the selected features is further divided into sub-training and sub-test sets and these 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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are used to obtain the optimized number of close source compounds. The number of close source 

compounds yielding the maximum 𝑄𝐹1
2 , 𝑄𝐹2

2  values for the sub-test (or validation) sets for the 

Euclidean Distance-based predictions can be considered as the optimized number of close source 

compounds as shown in Figure 1. Using this information, the original training and test set files 

with the selected features are used as inputs in the Read-Across-v4.1 tool and a set of Read-Across-

based predictions are obtained. 

 

Figure 1. Demonstration of the validation metric values (validation sets) for different numbers of 

close source compounds  

 

 

Development of novel q-RASPR models using Machine Learning algorithms 

Read-Across Structure-Activity Relationship (RASAR) is an integrated approach that combines 

the concepts of Read-Across and QSAR and generates simple and transferable models. This 

approach was initially introduced by Luechtefeld et al.15 who performed classification-based 

RASAR while Banerjee and Roy16 performed it for quantitative predictions and named it q-

RASAR. Since the present study deals with the properties of compounds, the approach has been 
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renamed q-RASPR, as it now combines Read-Across and QSPR. Utilizing the optimized settings 

for the hyperparameters and the similarity-based approach used for the final Read-Across-based 

predictions, we have computed the RASPR descriptors using the tool RASAR-Desc-Calc-v2.016 

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. This tool 

asks for the training set file and the query set file. The RASPR descriptors for the test set were 

calculated when the test set file was taken as input for the query set file, and the RASPR descriptors 

for the training set were calculated when the query set file corresponds to the training set itself. It 

is essential to note that while computing the training set RASPR descriptors, a Leave-Same-Out 

(LSO) strategy was adopted. The program automatically identifies the identical compounds in the 

close “n” source compounds using an in-built supervised machine learning algorithm and does not 

take the information of that compound while computing the RASPR descriptors in order to avoid 

bias. Once the RASPR descriptors were calculated for both the training and test sets, they were 

then clubbed with the previously selected structural descriptors and process variables to obtain a 

complete descriptor pool. This descriptor pool was further subjected to feature selection using the 

java-based tool BestSubsetSelection_v2.1 available from https://dtclab.webs.com/software-tools. 

This tool generates MLR models from all possible combinations of descriptors. The model with 

the best internal and external validation metrics, along with simple and interpretable descriptors 

was chosen. Finally, a PLS model which aims to nullify the inter-correlation among descriptors 

was generated using 3 latent variables and evaluated based on the computation of various 

internationally accepted internal and external validation metrics23, 24.  

In order to compare the performance of the developed PLS model with other regression-based 

machine learning algorithms, we also developed ridge regression (RR), linear support vector 

regression (LSVR) and random forest (RF) regression models using the same descriptor 

combinations as appeared in the final PLS RASPR model. Ridge regression (RR) estimates the 

coefficients of multiple-regression models by the application of L2 regularization25. Support vector 

regression (SVR) maps training examples to points in space in order to maximize the distance 

between the two classes26. Random forest (RF) is an ensemble of decision tree predictors used for 

classification or quantitative prediction purpose27. The optimization of hyperparameters (number 

of components in case of PLS regression, alpha in case of ridge regression, ‘C’ in case of linear 

LSVR, and the number of estimators with minimum number of samples for splitting in case of 

random forest regression) was done using the grid search option by the five-fold cross-validation 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://dtclab.webs.com/software-tools
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technique as shown in Figure 2. In the present study, machine learning modeling was carried out 

in Jupyter Notebook web application28 in the Anaconda3 navigator version 2022.05 with Python 

version 3.10.4. 

  

Figure 2. Optimization of hyperparameters by the grid search option for (a) PLS regression (b) 

Ridge Regression (c) SVR (d) Random Forest regression 

PLS Plots and Y-Randomization test 

The PLS plots were generated using Simca-P v10.0 available from https://www.sartorius.com/ and 

is made available in Supplementary Material SI-2. The Score Plot, whose axes represent the 

first two LVs, shows the allocation of the compounds in the LV space. Compounds lying inside 

the ellipse and are located closer to each other can be considered “similar”, whereas compounds 

https://www.sartorius.com/
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lying outside the ellipse represent outliers. We have also checked the AD using the DModX 

approach (Figure S1) represented in the form of bar graphs. The Regression Coefficient Plot 

(Figure S2) depicts the contribution of different descriptors to the response value in terms of 

magnitude and direction (positive or negative). The Loading Plot establishes the relation between 

the dependent variable (Y) and the independent variables (X) of a PLS model. A longer distance 

of the independent variable from the origin is directly proportional to the importance of the 

descriptor29. The Variable Importance Plot (Figure S3) reflects the importance of the descriptors 

in the form of a bar graph, where the X-axis represents the descriptors and the Y-axis represents 

the importance29. The Y-Randomization Plot (Figure S4) tests the fact whether the generated 

PLS model is obtained by chance or not. Although both the X and Y variables can be permuted, 

we have performed here a permutation of the Y-column entries for 100 combinations. A Scatter 

Plot (Figure 9) of the observed v/s the predicted specific surface area (SSA) values was drawn to 

study the deviation of the predicted SSA values from the observed SSA values. 

 

Prediction for a designed data set 

We have generated a dataset of 450 data points to check the predictions of our developed q-RASPR 

model. We initially took 5 perovskite compounds with altered atomic fractions at the B-site as a 

result of doping and then calculated the atomic descriptors from the dataset already provided. The 

descriptors denoting the experimental conditions were kept constant for these 5 perovskite 

materials. The subsequent data points have been generated by altering the combination of these 

experimental descriptors to yield a designed set of 450 data points. The required RASPR 

descriptors for this query set of 450 data points have been generated by the java-based tool 

RASAR-Desc-Calc-v2.0 (https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home). 

The generated q-RASPR model was used to predict the SSA values of these data points using the 

Prediction Reliability Indicator tool (PLS Version)30. The predicted values and their AD analysis 

have been provided in an excel sheet of Supplementary Materials SI-1. 

The entire workflow of nano q-RASPR has been demonstrated pictorially in Figure 3.  

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Figure 3. Workflow using the nano q-RASPR algorithm 

Results and Discussion 

Optimization of the number of close source compounds and identification of the best 

similarity-based approach for read-across predictions 

It is very essential to identify the optimized setting of the hyperparameters in the well-defined 

machine-learning expressions for Read-Across and RASPR-based predictions. In cases where 

there is a structural diversity in the data set, a higher number of close source compounds generally 

improves the quality of predictions and vice versa. According to the principles of QSPR 

predictions, the optimization of the number of close source compounds should be done based on 

the training set only (supervised learning) without the involvement of a test/query set. Thus, the 

sub-training and sub-test sets were used to optimize the number of close source compounds based 

on the external validation metrics for the Euclidean Distance-based predictions. The predictions 
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were best when the number of close source compounds was 3. Using this optimized information, 

Read-Across-based predictions were obtained at σ=1 and 𝛾=1 (default values) and it was found 

that the best prediction results (𝑄𝐹1
2 = 0.74  and 𝑄𝐹2

2 = 0.73) were generated using the Gaussian 

Kernel similarity-based approach, derived from the concepts of Support Vector Machines (SVM). 

The RASPR descriptors were also calculated using the Gaussian Kernel Similarity-based approach 

at σ = 1 and number of close source compounds = 3. 

q-RASPR Analysis 

We have used a training set containing 38 data points for the development of the q-RASPR model 

while 12 data points were used for the prediction purpose. The generated PLS q-RASPR model 

has been represented graphically in Figure 4 (standardized coefficients in the bubble plot with the 

size of the bubble proportional to VIP values) and the corresponding equation is shown in 

Supplementary Material SI-2. The descriptors that we have considered after feature selection for 

deriving the RA function (vide infra) in the q-RASPR model development have been reported in 

Table 1. 

  

Figure 4. Graphical representation of the nano q-RASPR model (PLS) (size of the bubble 

proportional to VIP values) 
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Table 1: List of structural descriptors and process variables selected for q-RASPR model 

development 

Descriptors Significance 

Rb The radius of the atom at the B position 

Ea Electronegativity of the atom at the A position 

𝛼O3 Unit cell lattice edge 

Mass Molecular mass 

A-Tm Melting point of the atom at the A position 

D-A Density of the A position 

CT Calcination Temperature 

AH Calcination Time 

DT Drying Temperature 

 

The developed q-RASPR model possesses an acceptable quality in terms of the internal validation 

metrics considering the heterogeneity of the dataset; however, the predictive ability of the model 

is very good as reflected in the values of the external validation metrics. 

RA function – the Read-Across derived RASPR descriptor 

The Read-Across function (RA function) is a descriptor derived using a machine learning algorithm 

by the tool RASAR-Desc-Calc-v2.0. Information from each of the structural descriptors and 

process variables is condensed in this single descriptor, and it acts similarly to a composite 

variable. This descriptor relates how close the query data point is to the mean response value of 

the close source data points. Since it uses all the selected structural features and process variables, 

it is expected that this descriptor should possess the highest importance as evident from the 

Variable Importance Plot (Figure S3). However, although it can have the same value for two 

different query data points, the individual distance/similarity of the close source data points might 

be different which explains why two or more query data points can have the same RA function 

value but possess different response values. This is the reason why other descriptors are also used 

while developing a q-RASPR model. Figure 5 represents the algorithm involved in the RA function 

descriptor.  
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Figure 5. Pictorial representation of the RA function/RA Score 

 

Interpretation of the descriptors 

The descriptor RA function, as already discussed above, is a Read-Across derived descriptor which 

encodes information from all the individual structural descriptors and process variables (Figure 

6). This descriptor contributes positively to the developed PLS model as it expresses the composite 

contribution of all selected descriptors. This can be observed in data points like LaFe0.1Co0.9O3 

(27) which has a high RA function and the corresponding specific surface area, while data points 

like LaNiO3 (40) have a comparatively lower RA function value and consequently have a lower 

value of the specific surface area. The process variable CT represents the calcination temperature, 

and this descriptor contributes negatively to the developed model. An increase in the calcination 

temperature decreases the volume of reactants adsorbed thus leading to the reduced specific 

surface area31. This can be observed in La0.5Bi0.2Ba0.2Mn0.1FeO3 (38) which has a high CT value 

but a very low specific surface area value while in data points like LaMg0.4Cr0.6O3 (22), the CT 

value is lower but the value of the specific surface area is much higher. Another RASPR descriptor 

Abs diff (|MaxPos-MaxNeg|) signifies the absolute difference in the MaxPos and MaxNeg values16, 
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22. Since a greater number of compounds in our training set has a higher MaxPos value than the 

MaxNeg value, the descriptor Abs diff expresses a positive contribution to the response. This can 

be exemplified using compounds like La0.01Sr0.99TiO3 (32) where the Abs diff value as well as the 

specific surface area value is higher as compared to LaNiO3 (42) which has a much lower Abs diff 

and specific surface area value. The descriptor Rb represents the atomic radius of the atom at the 

B position, and this contributes negatively to the developed model. As the specific surface area is 

defined as the total surface area of a substance per unit mass, an increase in the radius of the atom 

at the B-position increases the atomic mass, thereby reducing the specific surface area value. The 

compound LaMg0.6Cr0.4O3 (23) has a higher Rb value and a lower specific surface area value than 

La0.5Bi0.2Ba0.2Mn0.1FeO3 (35) which has a lower Rb value and a higher specific surface area value.  

 

Figure 6. RA function as a composite of the atomic/structural descriptors and process variables 

Interpretation of the PLS Plots 

The information from the PLS plots reflects the quality, applicability domain, contribution of the 

descriptors towards the response and the chance factors involved in the developed PLS model. The 

Score Plot (Figure 7) depicts that only one data point (27) is outside the applicability domain and 

lies outside the ellipse while most of the other compounds have average properties and lies inside 
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the domain. Clusters are observed in the range of (-1, 1) and (1, 1) depicting the close similarity 

among the compounds. The DModX Applicability Domain plots (Figure S1) shows that all the 

DModX values are within the critical limit which signifies that all the compounds lie inside the 

applicability domain at LV=3. The Regression Coefficient Plot (Figure S2) signifies that the 

descriptors RA function(GK) and Abs diff (|MaxPos-MaxNeg|) contribute positively to the specific 

surface area values while the other descriptors Rb and CT contribute negatively to the specific 

surface area values. The Loading Plot (Figure 8) signifies that the descriptor RA function(GK) 

has the highest importance as it is located farthest from the origin. The Variable Importance Plot 

(Figure S3) depicts that the descriptor RA function(GK) has the highest importance and 

contributes the most to the prediction of specific surface area, while the descriptor Rb is the least 

important among the four descriptors and is depicted by the smallest bar. The Y-Randomization 

Plot (Figure S4) shows that our model is not obtained by chance. This is because the values of 

R2
Y and Q2

Y are well within the limits of 0.3 and 0.05 respectively32. The Scatter Plot (Figure 

S5) shows us that there is not much difference in the observed and predicted SSA values of the 

data points reflecting good-quality predictions for the test set.  

 

Figure 7. Score Plot representing the Applicability Domain 
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Figure 8. Loading Plot representing the contribution of the descriptors 

Comparison of the prediction quality of the PLS model with other machine learning 

regression models  

The prediction quality of all ML regression models for the test set compounds was almost 

comparable confirming the importance of the selected features including RASPR descriptors 

(Table 2). However, the 𝑄𝐹1
2  metric values of the RF regression and Linear SVR models were a 

little lower while those of the PLS and RR models were almost the same (0.901). We also 

considered a non-linear SVR model (with radial basis function) for this data set; however, the 

external prediction quality was poor and hence not reported here. Considering the interpretability 

of the final model in terms of different diagnostic plots like loading plot, score plot, etc., and also 

considering the results of five-fold cross-validation, we have considered the PLS model as the best 

predictor for the current data set.  
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Table 2.  Comparison of the prediction quality of PLS model with other ML regression models 

Model 

Type 

𝐑𝐓𝐫𝐚𝐢𝐧
𝟐  𝐑𝐓𝐞𝐬𝐭

𝟐  𝐌𝐀𝐄(𝐋𝐎𝐎) 𝐌𝐒𝐄(𝐋𝐎𝐎) 𝐌𝐀𝐄 

(5-

fold 

CV) 

𝐌𝐒𝐄 

(5-

fold 

CV) 

𝐐𝐅𝟏
𝟐  Optimum 

hyperparameters 

PLS* 0.737 0.898 5.1 40.7 6 54 0.901 n_Components=3 

RR 0.737 0.898 5.1 41 6.1 56.4 0.901 α=0.5 

LSVR 0.719 0.894 5.1 38.8 7.1 69.2 0.897 C=15, 

n_iterations=10000 

RF 0.782 0.878 5.3 48.6 8.9 115.1 0.881 n_estimators=500, 

min_samples_split=14 

*Best model based on five-fold CV error and Q2
F1 

Prediction of the designed set data 

The prediction of the designed data set was done using the Prediction Reliability Indicator Tool 

(PLS Version) available from https://dtclab.webs.com/software-tools30. The training, test, and 

designed set data were taken as inputs and the result of the predictions have been provided in an 

excel sheet of Supplementary Material SI-1. The SSA values of the designed data set are mainly 

dependent on the RA function and CT values (positive and negative contributions, respectively). A 

close analysis of the designed set shows the data points with higher SSA values are associated with 

a higher calcination time (AH) and a lower drying temperature (DT). 

Comparison with the previous work    

Shi et al.7 in 2018 worked on the prediction of the specific surface area of perovskites using various 

machine learning algorithms. The results obtained from their PLS model and the artificial neural 

network (ANN) approach have very low values of correlation coefficients (R) while the correlation 

coefficient obtained in their SVR approach was good. However, they did not report the quality of 

the external validation metrics. The PLS q-RASPR model reported in the current paper is simple, 

interpretable, transferable, and does not require exhaustive system resources yet follows a well-

defined machine learning algorithm and includes non-linear RA function. We have reported both 

https://dtclab.webs.com/software-tools
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the 𝑅(𝑇𝑟𝑎𝑖𝑛)
2 = 0.74 and 𝑄(𝐿𝑂𝑂)

2 = 0.64 which suggests that the model is highly robust and has 

sufficient internal validation quality. Moreover, our q-RASPR model delivers a very high 

predictivity as evident from the values of 𝑄𝐹1
2 = 0.90 and 𝑄𝐹2

2 = 0.90. The quality of external 

predictions of the PLS q-RASPR model is also evident from the scatter plot (Fig. 9). We have 

designed a set that consists of 450 data points, predicted their specific surface area, checked the 

prediction quality, and finally the status of AD. Shi et al. also reported that the descriptor CT exerts 

a negative contribution towards the model, but contrastingly, they have used higher values of CT 

for their external (designed) data points and claimed their higher values of predicted SSA. In our 

designed set, we have used both lower and higher values of CT for the data points. While most of 

the data points were inside AD, there were 38 data points outside the AD. It was observed that the 

CT values of these 38 data points were all very high, which supports the findings from our 

developed model. Thus, our PLS q-RASPR model appears much superior to the PLS, ANN, and 

SVR models reported by Shi et al.7  

 

Figure 9. Scatter Plot representing the prediction quality of the PLS q-RASPR model. 
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Conclusion 

This study aims at estimating the catalytic activity of perovskites by modeling their specific surface 

area. As a general notion, an increase in the surface area of catalysts provides a greater surface for 

the adsorption of the reactant molecules thus enhancing their reactivity and lowering of the 

activation energy. We have used the novel q-RASPR approach to predict the specific surface area 

of perovskite molecules. In the absence of a true external set, the dataset was divided into training 

and test sets, and the most discriminating descriptors were identified. Using this set of features, 

the training set was subdivided into sub-training and sub-test sets, and Read-Across-based 

predictions were generated by changing the number of close source compounds. The close source 

compound which yields the maximum values of 𝑄𝐹1
2   and  𝑄𝐹2

2   for the sub-test set was identified 

as the optimized number of close source compounds, and the original test set Read-Across-based 

predictions were performed using the same setting. This setting was also used to calculate the 

RASPR descriptors for both the training and test sets. After the computation of the RASPR 

descriptors, they were then clubbed with the originally selected atomic information descriptors and 

process variables, and a further feature selection algorithm was employed. As a result, four 

descriptors were identified to be important, and a Partial Least Squares (PLS) model was 

generated. This model explains that the composite feature RA function is essential as it incorporates 

information on all the most discriminating descriptors selected initially. It also explains that the 

calcination temperature (CT) is also another important process variable that is responsible for the 

change in the specific surface area. The descriptor Abs diff shows its importance in terms of the 

similarity aspects as there are more training compounds having a higher MaxPos value as 

compared to the MaxNeg value. Also, the radius of the atom at B position (Rb) is also an important 

feature as it is directly related to the mass of the molecule which in turn is related to the specific 

surface area. This generated PLS model was also used to predict the specific surface area of a 

designed external dataset of 450 compounds. To compare the predictive ability of the generated 

PLS model, we have also applied various other Machine Learning approaches like Ridge 

Regression, Linear Support Vector Regression, and Random Forest. It was found that these ML 

models do not supersede the predictive ability of the generated PLS model. Thus, we may infer 

that the PLS q-RASPR model is best suited for the prediction of specific surface area of 

perovskites, and also it provides simplicity, reproducibility, and transferability.      
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 Data and Software availability 

The DTC Laboratory tools used in this study are available free of charge from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and 

http://teqip.jdvu.ac.in/QSAR_Tools/ . 
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Supplementary Materials SI-1 contains raw data files in Excel format. 

Supplementary Material SI-2 contains the model equation, applicability domain plots, 

Regression coefficient plot, Variable importance plot and Randomization plots of the PLS 

model.  
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