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Which molecular properties determine the impact sensitivity of an explosive? 

A machine learning quantitative investigation of nitroaromatic explosives† 

 
Julio Cesar Duarte,a,b Romulo Dias da Rocha,b Itamar Borges Jr., a,c,* 

 
 
We decomposed density functional theory charge densities of 53 nitroaromatic molecules into 
atom-centered electric multipoles using the distributed multipole analysis that provides a detailed 
picture of the molecular electronic structure. Three electric multipoles, ∑𝑄#(𝑁𝑂') (the charge of 
the nitro groups), 	∑ 𝑄*(𝑁𝑂')	 (the total dipole, i.e., polarization, of the nitro groups), ∑𝑄'(𝐶) 
(the total electron delocalization of the 𝐶 ring atoms), and the number of explosophore groups 
(#𝑁𝑂') were selected as features for a comprehensive machine learning (ML) investigation. The 
target property was the impact sensitivity ℎ.# (cm) values quantified by drop-weight 
measurements. After a preliminary screening of 42 ML algorithms, four were selected based on 
the lowest root mean square errors: Extra Trees, Random Forests, Gradient Boosting, and 
AdaBoost. The predicted ℎ.# values of molecules having very different sensitivities for the four 
algorithms are in the range 19% - 28% compared to experimental data. The most important 
properties for predicting ℎ.# are the electron delocalization in the ring atoms and the polarization 
of the nitro groups with averaged weights of 39% and 35%, followed by the charge (16%) and 
number (10%) of nitro groups. A significant result is how the contribution of these properties to 
ℎ.# depends on its sensitivities: for the most sensitive explosives (ℎ.# up to ~ 50 cm), the four 
properties contribute to reducing ℎ.#, and for intermediate ones (~ 50 cm ≲	ℎ.# 	≲	100 cm) #𝑁𝑂' 
and ∑𝑄*(𝑁𝑂') contribute to increasing it and the other two properties to reducing it. For highly 
insensitive explosives (ℎ.# ≳	 200 cm), all four properties essentially contribute to increasing it. 
These results furnish a consistent molecular basis of the sensitivities of known explosives that also 
can be used for developing safer new ones.   
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1.  Introduction 
 The impact sensitivity of explosives is a critical issue because large amounts of energy can 

be released quickly due to mechanical impacts. Shock, thermal or electric stimuli also produce the 

same effect.1-3 These materials are controllable storage systems of chemical energy that are 

frequently stored, transported, and broadly used. Therefore, a comprehensive understanding of the 

sensitivity of an explosive is paramount, for example, for reducing its sensitivity, thus increasing 

safety.4-8  

 

 Energetic materials are usually molecular solids made of polyatomic molecules arranged 

in complicated crystal structures.9-12 This class of materials, which also includes propellants and 

pyrotechnics, is most valuable when combining low sensitivity (i.e., they are safer) and high 

energy content.4 However, good performance of an energetic material usually corresponds to 

increased sensitivity.13, 14 These two apparently incompatible requirements demand a more 

significant fundamental understanding of the molecular origins of the sensitivity of energetic 

materials either known or to be developed.  

 

 The aforementioned different types of stimuli are helpful (and have practical implications) 

in quantifying the sensitivity of an energetic material.8, 15 The impact stimulus, the focus of this 

work, is frequently quantified by the ℎ.# value corresponding to the height ℎ in cm from where a 

standard weight dropped over a certain amount of explosive will start an explosion 50% of the 

drops.16, 17  Therefore, insensitive materials have large ℎ.# and vice-versa.  

 

 Different types of uncertainties involved in drop-weight measurements of ℎ.# include 

atmospheric conditions, particle size distribution and shape, presence of crystalline defects, 

humidity, and even the operator technique.18 Furthermore, the impact sensitivity depends not only 

on these macroscopic properties and experimental conditions but also on microscopic properties 

(e.g., bond-breaking activation energies and energy per molecule),19, 20 mesoscale properties (e.g., 

strain21, 22 and phonon energy transfer mechanics23, 24). Despite these issues, ℎ.# values are very 

helpful in quantifying the impact sensitivity. Additionally, this plethora of possible influences 

shows that the prediction of impact sensitivity based on physical properties “remains a 

challenge”.25  
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Considering that the stability of a molecule of an energetic material is related to its 

sensitivity, the latter stems from the chemical character of the materials,13 which can be accurately 

investigated by quantum chemical methods.26-28 Furthermore, this approach is particularly 

convenient because the macroscopic property impact sensitivity “is not known to depend directly 

on intermolecular interactions in bulk”,29 typical hazards of the experimental work are not involved 

especially on potential new energetic materials,29 not to say that “imprecise impact sensitivity 

measurements can provide a false sense of security that might result in fatalities when handling 

even small quantities of the material”.18, 30 Quantum chemical methods also allows safer screening 

of a more significant number of potentially greener energetic materials to reduce environmental 

contamination.31 

 

 Attempts to correlate molecular properties and impact sensitivities have a long history, 

beginning in the 1970s. These approaches developed models that included the proportion of 

oxygen atoms in the explosive molecules,17 molecular structural parameters such as the number of 

carbon atoms and molecular masses,32-34 quantitative structure-property relationships (QSPR) 

involving structural (e.g., weaker molecular bonds) and energetic (e.g., dissociation energies), 

among many other properties, known as descriptors in QSPR jargon.19, 25, 35, 36 Quantum chemical 

modeling of impact sensitivities, in particular, has quite been quite successful in this regard, 

especially for a given class category of materials such as nitroaromatics, nitramines, among others. 

Representative works of this approach include correlating impact sensitivities with molecular 

properties such as bond strengths and molecular electrostatic potentials,29, 37-39 whereas others 

employed Mulliken charge values of nitro groups15, 40 and examined binding forces using the 

Wiberg bonding index.41, 42 

 

 Our own quantum chemical work on the molecular origins of the impact sensitivity has 

been based on the decomposition of a quantum chemical molecular charge (electronic) density (for 

instance, computed using density functional theory, DFT or an ab initio method) into atom-

centered electric multipoles determined by the distributed multipole analysis (DMA) method.43-46 

This approach provides a detailed and accurate picture of the molecular charge density, which we 

have been used to investigate the impact sensitivity of different families of explosive molecules47-53 
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and different phenomena related to catalysis.54-57 We recently reviewed this work on the prediction 

of impact sensitivities and others based on different theoretical descriptions of molecular charge 

distributions.58  

 

 The variety and diverse nature of the properties related to sensitivity indicate that those 

relationships cannot all represent the fundamental causes of sensitivity because “many of them can 

be symptomatic”.14 Therefore, those properties correspond to general trends, not correlations,59, 60 

providing valuable estimates of the magnitude of the sensitivities.61 In this work, we search for 

these predictive trends by identifying and quantifying molecular properties that affect the 

sensitivity to impact.29 

 

 The application of artificial intelligence (AI) and machine learning (ML) techniques to 

chemistry and materials science, including the prediction of properties of energetic materials, is 

growing tremendously.62-67 In quantum chemistry applications, a given training data ML is now a 

“game changer” for inferring complicated and unknown nonlinear dependencies of molecular 

properties from fitting functions and making accurate predictions;68-70 In particular, ML can be 

used to learn features (properties) of materials properties.71-73  

 

Concerning the application of ML techniques to sensitivity, and in particular, to impact 

sensitivity, there have been sparse works in the last two decades. Most of them used a large number 

of molecular structure descriptors to fit experimental ℎ.# values employing a classical QSPR 

analysis.74 Most of these investigations employed QSPR packages to generate and select 

sometimes over 1000 molecular descriptors75 that are afterward reduced by statistical techniques.76 

The pioneering work of Nefati et al. employed neural networks to predict ℎ.# of 204 molecules of 

different families selected from originally 39 descriptors (27 purely topological and 12 from 

semiempirical electronic structure calculations) by a cross-validated (leave one out) standard error 

criterion,77 producing much better results compared to those from a linear regression. Choa and 

co-workers optimized neural networks based on this work and employed over 200 molecules of 

the same dataset, finding that compositional and topological descriptors gave better results 

compared to those composed of electronic descriptors, which may be due to their use of the not 

very accurate semiempirical AM1 method.78 Keshavarz and Jaafari also employed neural 
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networks, with 275  molecules comprising the training set and 14 explosive molecules the test 

set.79 The descriptors were primarily structural, namely, the number of N − NO' bonds, the number 

of 𝛼 −hydrogens, aromatic and heteroaromatic characters, and the number of each type of atom 

divided by the molecular weight. The predicted ℎ.# values were superior to the five quantum 

chemical models of Rice and Hare based on generalized interaction property functions (GIPFs) 

computed from molecular electrostatic potentials.29 Wang et al. employed neural networks and 

atom- and group-type electrotopological-state indices (ETSI),80 which combine the electronic and 

topological properties of a molecule and take the binding environment into account, to predict 

impact sensitivities of 156 compounds (training set with 127 molecules and test set with 29) of 

different chemical families (49 nitroaromatic, 55 nitramine, 40 nitroaliphatic compounds 

containing other functional groups, 7 nitrate esters, and 5 nitroaliphatics).81 Their results with 

neural networks had good agreement with experimental ℎ.# values and were superior compared 

to multi-linear regression and partial least squares modeling. 

 

In another work, Wang and coworkers employed a genetic algorithm for selecting 

descriptors for the QSPR analysis of 186 explosive molecules using neural networks.82 Nine 

topological and quantum descriptors were selected from an initial pool of over 500. Prana et al. 

investigated the impact sensitivity of 50 nitroaliphatic compounds using about 400 descriptors 

including quantum chemical ones based on DFT calculations.83 Linear and multi-linear regressions 

including internal and external validations provided accurate relationships with experimental 

ℎ.#	values. One interesting mechanistic finding is that several descriptors, especially the quantum 

mechanical ones, were related to the explosophore (functional group that makes a compound 

explosive) NO2 group involved in the decomposition of nitro compounds. Out of the four models, 

the most accurate also involved quantum chemical descriptors. Xu et al. applied ten 

three-dimensional (3D) descriptors that gather different information from the spatial structure of 

the molecule and neural networks74 on 156 molecules, obtaining better results compared to linear 

regression approaches. Deng and collaborators used sure independence screening and sparsifying 

operator (SISSO) methods to investigate the correlation between impact sensitivity and bulk 

modulus 𝐵 (a mechanical property that quantifies resistance of a material to compression)  of 240 

nitroaromatics, using 14 molecular structure descriptors and 7 structural parameters (including 

oxygen balance, crystal density and hydrophilicity), with results of similar accuracy when 
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compared to neural networks.76 They found that the oxygen-containing group, hydrophilicity, and 

some atomic properties are the main contributions to impact sensitivity. A particularly interesting 

result is that the impact sensitivity sharply decreases with increasing 𝐵 when 𝐵 is small, while the 

opposite trend occurs for materials with relatively large bulk modulus 𝐵.  

 

Lansford and coworkers used Chemprop’s84 purely graph-based directed-message passage 

neural networks (D-MPNNs)85 to apply a transfer learning approach simultaneously for training a 

multi-target regression model on a small number of molecules with experimentally measured ℎ.# 

values and related computed properties.30 They iteratively constructed an initial dataset of 172 

million likely energetic molecules from the PNNL (Pacific Northwest National Laboratory) 

database86 employing the ML ANI-1ccx force field87 (in some instances, DFT) to compute 

different energetic and geometric properties. Direct models using Chemprop’s bond features such 

as aromaticity, atomic mass and bond type were trained only on impact sensitivities, while other 

models were co-trained with DFT or other computed properties for small datasets. The co-training 

technique applied to experimental sensitivities improved the model performance of the physics-

based Mathieu’s modeling.61 Using an ensemble of models and 14 molecules as test set, they 

predicted the experimental ℎ.# values of PETN and CL-20, and slightly larger ℎ.# values of RDX, 

HMX, and TNAZ within the modeling error. The ordering of the predicted impact sensitivity 

follows the measured values for HNS, PYX, TNT, and TATB, while the insensitive nature of 

DNAN and NQ that have inaccurate experimental ℎ.# values were found. 

 

A related work was carried out by Wen at al. where they used estimated ℎ.# values 

computed with Mathieu’s approach19, 61, 88 and three more criteria (oxygen fluorine balance, 

detonation velocity and synthesis difficulty) to screen about 105 𝐶𝐻𝑂𝑁𝐹-containing molecules by 

combinatorial library design based on fragment-types. The top 10 promising molecules were 

further examined using DFT/B3LYP resulting in two of them having a large detonation velocity 

and comparable sensitivity compared with the widely used CL-20 explosive. 

 

The neural networks employed in those works have a powerful learning capacity but 

display a limited model explainability for identifying the features (in our case, the molecular 

properties) that affect the target property (here, the	ℎ.# value).89 In most cases, the investigations 
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employ such a large number of descriptors that it becomes almost impossible to identify the real 

molecular origin of the impact sensitivity. Moreover, while some descriptors have a direct 

chemical interpretation (e.g., an aromaticity index), others such as WHIM (Weighted Holistic 

Invariant Molecular), which is based on a principal component analysis of the weighted covariance 

matrix from atomic cartesian coordinates,90 though helpful, are not straightforward to interpret. An 

additional issue concerning the number of descriptors is that the results produced by adding more 

of them may lead to overfitting and chance correlations.74 

 

In an important work of ML applied to energetic materials, different machine learning 

models and several featurization methods were compared using a small training data set of 87 

diverse 𝐶𝑁𝑂𝐻𝐹 energetic molecules, and a test data of 22 molecules, predicted different explosive 

properties with small errors, such as detonation pressure, detonation velocity, explosive energy, 

heat of formation, density, among others.91 This work is also significant for the present purposes 

because it showed that a small number of descriptors – in some cases, only one (e.g., oxygen 

balance) can provide good results for the target feature. Their main conclusion is that feature 

selection is more important than model selection for making property predictions on a small data 

set, a conclusion also confirmed by our results. 

 

In this work, we combine high-level quantum chemical data – in our case, DMA site 

electric multipoles that accurately describe the DFT molecular charge density of molecules, with 

ML algorithms to identify molecular trends affecting the impact sensitivity of explosives. We 

investigate the broadly used class of nitroaromatics explosives that usually combine low sensitivity 

and high performance, hence, for this reason, are the most used type in warlike devices.92 The 

nitroaromatic molecules include nitrobenzenes, nibrobenzyls, nitroanilines, and nitrophenols, 

among other types.  

 

2.  Methods 
 Our original set of 50 nitroaromatic molecules52 was extended to 53 with the inclusion of 

2,4-DNP, TATB and ATNAN – see Scheme 1S of the Electronic Supplementary Information (ESI) 

for their molecular structures, and Table 1S for the meaning of the acronyms. In all cases, we 

employed the previously M06-2X/TZVP optimized geometries41 to compute single point 
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B3LYP/6-311+G(d) electron densities, which afterward were divided into atom-centered DMA 

electric multipoles. The properties of each molecule comprised three derived DMA properties 

described below and the number of nitro (𝑁𝑂') groups. The experimental ℎ.# values were taken 

from reference 41. 

 

The DMA of Stone decomposes a molecular charge density into atom-centered electric 

multipoles.43-46 It is a rapidly convergent expansion of the charge density that describes it 

accurately and in great detail. The expansion here employed was truncated at the electric 

quadrupole term, and its three first terms have a straight chemical interpretation. The monopole 

(in units of the fundamental charge 𝑒 = 1,602 × 10A*B C) represents a localized charge in an 

atom, with different atoms in a bond displaying some degree of charge separation.  Dipole atom-

centered moment vectors (in atomic units of 𝑒𝑎#, where 𝑎# is the Bohr radius) are represented by 

a vector pointing from a negative charge to a positive one of the same magnitude that describes an 

atom-centered charge displacement. Depending on the electronegativities of the involved atoms 

and the remaining bond environment, bond densities can produce significant atom-centered 

dipoles. An isolated atom has a perfectly spherical electron cloud, hence no dipole. Finally, the 

last term of the DMA atom-centered expansion is the electric quadrupole (in units of 𝑒𝑎#'), which 

is the first electrostatic moment to include contributions from out-of-plane density. For this reason, 

it is associated with delocalized 𝜋 electrons and lone pairs of electrons.44 Given that the quadrupole 

moment is a tensor, it is represented here by a number that corresponds to the square root of the 

sum of all components of the tensor squared. 

 

 We illustrate in Fig. 1 the power of the DMA atom-centered decomposition to rationalize 

the molecular charge density by describing the molecular charge density of DATB (2,4-diamino-

1,3,5-trinitrobenzene), one of the investigated molecules. The charges and the quadrupoles of the 

carbon ring atoms are clearly affected by the bonded group: for the strong electron-withdrawing 

nitro groups, their charges are slightly negative, while the quadrupoles, indicators of electron 

delocalization, have ~	30%  larger values compared to the carbons bonded to the electron donor 

amines (𝑁𝐻') due a resonance effect with 𝑁𝑂'; the charges on the carbons bonded to the amines 

are positive in contrast.  Depending on the nature of the moieties bonded to the other ring carbon 

atoms, these effects have different magnitudes on the pi-electron structure93 that are clearly 
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quantified by the DMA. Atom-centered polarization, given by the dipoles, is only appreciable in 

the highly electronegative oxygen atoms that have large negative charges and different 

quadrupoles depending on the type of neighbor hydrogen, either isolated or in an amine group. 

The nitrogen atoms in the amine groups have more than twice the quadrupole value of the nitrogen 

atoms in the nitro groups due to the lone pairs of the former; their charges are negative in the amine 

group while they are positive in the nitro groups. Hence, a very detailed picture of the molecular 

is furnished by the DMA.  

  

 
Fig. 1 DMA picture of the DATB (2,4-diamino-1,3,5-trinitrobenzene) molecule. Atomic dipoles 
are represented by vectors drawn at the corresponding nuclei. Monopole (charge) numbers (black) 
in units of elementary charge 𝑒 (1,602 × 10A*B C), and quadrupole values (red) in units of 𝑒𝑎#' 
(= 4.486 × 10AJ# Cm2).     
 

The three molecular properties based on DMA used as features in the ML algorithms are 

described at Table 1. These properties represent what has been considered as relevant molecular 

properties affecting the impact sensitivity of nitroaromatic properties.58 

 

Table 1   The three DMA molecular properties used as features in the machine learning simulations 
 
 

DMA formula	 Property 

K𝑄#(𝑁𝑂') Total charge of the nitro(s) group(s) 

K𝑄*(𝑁𝑂')	 Magnitude of the total dipole of the nitro(s) group(s) 

K𝑄'(𝐶)	 Magnitude of the quadrupole moment of the carbon atoms 



 10 

2.1 The machine learning algorithms 

 

 We now briefly discuss the four selected algorithms. In the following subsection, we 

present how they were selected and implemented. The input data – the four molecular properties 

and the target-feature (ℎ.#) are shown in Table 2S of the Supporting Information.  

 

 The root mean square error (RMSE) value is very used in ML to compare and evaluate 

regressors (i.e., to compute their errors). Additionally, very low RMSE values on the training set 

may indicate the overfitting of the model. The RMSE metric is defined as  

 

RMSE = P
1
𝑛K(𝑦 − 𝑦S)'

T

UV*

													(1) 

 

where 𝑛 is the total number of samples, 𝑦	is the observed (target) value and 𝑦S is the value estimated 

by the algorithm (model). In our case,  𝑦  is the experimental impact sensitivity value ℎ.# and 𝑦S	is 

the predicted value (target feature) predicted by each model. As it is well-known, the square of the 

difference (𝑦 − 𝑦S)' penalizes the most significant deviations, especially outliers. The square of 

the RMSE is the mean square error (MSE) or variance. The mean absolute error (MAE), another 

measure of the error, is defined in the usual way as 1/𝑛∑ |𝑦 − 𝑦S|T
UV* . 

  

 Four algorithms out of 42 tested in a preliminary screening were selected (see next section 

for the selection process). Two algorithms (Extra Trees and Random Forests) are based on 

Regression Trees, which are a Decision Trees Regressor94 used for regression tasks with the 

purpose of predicting output values. The other two, Gradient Boosting95 and AdaBoost (Adaptive 

Boosting),96, 97 are based on the concept of boosting, which is an ensemble method combining 

several weak learners (base methods) into a strong learner.  Boosting methods train predictors 

(predicted target features) sequentially, each trying to correct its predecessors. 

 

Extra Trees. When growing a tree in the Random Forest algorithm, at each node, only a subset of 

molecular properties (features or attributes in ML jargon) is considered for the subsequent tree 



 11 

splitting into other nodes (see Fig. 2). The trees can be made even more random by using train 

thresholds for each feature instead of searching for the best possible threshold, similarly to the 

process employed by a regular Decision Tree. These extremely random trees are called an 

extremely randomized ensemble, known for short as Extra-Trees.98 The algorithm “trades more 

bias for a lower-variance”,94 and, in this way, the Extra-Trees is much faster to train compared 

with the Random Forest because the most consuming task of growing a tree is to find the best 

possible threshold for each feature at every node, which is not an issue here given the present small 

size of the training set compared with more usual applications. In the present work, 125 trees were 

generated employing the GridSearch tool and used for prediction. 

 

 

 
Fig. 2 An excerpt of a regression tree built by the Extra-Trees algorithm. The colors are related to 
the predicted ℎ.# values - the darker colors correspond to larger values and the lighter ones to the 
smaller values. 
 

 Fig. 2 illustrates the growing process of a representative tree in the Extra-Trees algorithm 

for our problem. The first (root) node starts with a training group of 42 molecules (samples = 42), 

creating a pre-established rule for growing the tree. In this tree, the rule is the number of nitro 

groups bonded to the ring (#	𝑁𝑂')	less than 2.1. In each ramification of the tree, these values are 
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modified, the MSE is computed, the number of samples (molecules) is reduced, and at the end, a 

value of ℎ.# is computed for a given molecule. The algorithm selects the cuff-off value leading to 

the lowest MSE. Since Extra Trees is an ensemble algorithm, several trees are created, thus 

increasing its prediction ability. The final result is the average of the results computed by the 125 

trees, although other criteria for selection (voting in ML jargon) can be used (e.g., median or 

mode). 

 

 From the initial node, two more nodes are produced. If #	𝑁𝑂' ≤ 2.1, the left branch is 

formed with 4 new molecules (samples) in this node. If this inequality (i.e., the rule) is false, the 

right branch is formed with the remaining 38 samples of the training set. Subsequent nodes are 

formed, resulting in lower MSE values. When a terminal node is reached, the predicted ℎ.#value 

of a molecule given by the algorithm will be the average of the values from each of the 125 trees. 

 

Random Forests. Similarly to Extra Trees, Random Forests99 is an ensemble algorithm with a 

significant difference: for determining the initial node, its base algorithm (Regression Tree) selects 

the best property for further ramifications. Whereas Random Forests in the Scikit-Learn100 

implementation here used employed bootstrap replicas, i.e., it subsamples the input data, Extra 

Trees uses the whole sample, which may create more variance. Furthermore, Random Forests 

choose the optimum split, whereas Extra Trees select it randomly. However, after selecting the 

split points, the two algorithms pick up the best one between all subsets of features. Therefore, 

Extra Trees adds randomization but still has optimization. 

 

Gradient Boosting. This is a boosting algorithm of an ensemble method combining several weak 

learners into a strong learner training predictor sequentially.95 Gradient boosting builds many small 

models (e.g., decision trees) to sequentially reduce the residual errors from the previous steps by 

employing a gradient descent optimization algorithm.95 

 

AdaBoost (Adaptative Boosting) Regressor. Similarly to Gradient Boosting, AdaBoost is a 

boosting method because it combines sequentially weak models96, 97 However, in contrast to 

Gradient Boosting, it adjusts the instance weights at every interaction. In other words, the 

predictors are trained sequentially, each one trying to correct the predecessors’ output. In this kind 
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of algorithm, a component of randomness is removed compared to other techniques, considering 

that it uses the previous predictor to calibrate the next one. 

  

2.2 The machine learning computational approach  

 

 The Scikit-Learn Python library100  was used for the machine learning experiments run in 

the Google Colab environment.101 The high-quality quantum-chemical data combined with a piece 

of structural information (the number of the explosophore nitro groups) comprised the four 

properties (features) of each molecule. 

 

 The dataset was divided into training and testing data using the function train_test_split 

and the test_size parameter set as 0.2. This specifies that 20% of the original set will comprise the 

test set. Therefore, 42 molecules made up the training set and 11 the test set. The selection of the 

molecules in the training and test sets was made randomly but controlled by a predetermined seed. 

In this way, each set in each algorithm has the same molecules when the separation is done. The 

target feature of all ML simulations was a predicted impact sensitivity ℎ.#	value for each molecule.   

 

 The Lazy Predict tool of Scikit-Learn was employed to carry out a preliminary test of 42 

different algorithms using for the training step their default hyperparameter set. From those 42 ML 

algorithms, the tool selected the best four algorithms according to the lowest RMSE values defined 

as by Eq. (1). The RMSE of the 42 algorithms are collected in Table 3S of the Supporting 

Information. 

 

As mentioned in the previous section, the following algorithms were selected by Lazy 

Predict: Random Forest,99 Extra Trees,98  Gradient Boosting,95 and AdaBoost.96, 97 The XGBoost 

algorithm had similar RMSE values but was discarded because it is very similar to Gradient 

Boosting and more prone to overfitting. To obtain the best hyperparameter set for each of the four 

selected algorithms, a grid search technique that tests all the possible combinations of 

predetermined discrete parameter ranges was employed.102 For this purpose, we used the 

GridSearchCV class that produces the optimum hyperparameter set for each algorithm, resulting 

in a more calibrated estimator for the problem.100 Once the optimum set of hyperparameters of 
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each algorithm was found, the models were trained using a k-fold cross-validation103 technique 

with 5 folds.  Hence, the training set was randomly divided into 5 subsets. The remaining 11 (20%) 

molecules comprised the test set, as already mentioned. This number of folds was used due to the 

small size of the dataset. 

 

 Afterward, the relative importance of the molecular properties (features) - the three DMA 

multipole values and the number of nitro groups, most relevant for predicting the target feature 

ℎ.# in each case, according to each algorithm, was investigated.  For this step, the 

feature_importances tool was used to estimate the importance of each property for a given 

algorithm during its training step.104  

 

For the four algorithms, SHAP (Shapley Additive exPlanations) plots105 were built to 

display how much each feature (independent variable used in the regression analysis) – in our case, 

a molecular property, contributed either positively or negatively to the predicted ℎ.# value with 

respect to the average value of the set. This is a game theoretical approach developed to rationalize 

the output of any ML model, and it was used recently in a neural network QSPR work on impact 

sensitivity.76 

 

Those plots can be drawn for a given molecule or collectively for the complete test set. 

Features that contribute to increasing ℎ.#	values are shown in red, whereas those that contribute 

to decreasing the predictions are in blue. Therefore, SHAP values allow us to identify relevant 

patterns in the data. 

 

3.  Results and discussion 
 

 We previously developed quadratic models for predicting ℎ.# values employing the same 

features used here, namely, three different combinations of atom-centered DMA multipole values 

and the number of nitro groups.48, 52 The most extensive set comprised 50 of the present 53 

molecules. Simple functions combining 2, 3, or 4 of the present molecular properties were built. 

Five models were then constructed. These functions, called Γ, were fitted to quadratic expressions 

of the type ℎ.# = 𝛼Γ' + 𝛽Γ + γ, where ℎ.# are the experimental values of the impact sensitivity. 



 15 

In that work, it was found that the quadrupole of the ring atoms, ∑𝑄'(𝐶), a measure of electronic 

delocalization (aromaticity) of the ring atoms affected by substituent effects, and the total charge 

of the nitro groups,  ∑𝑄#(𝑁𝑂'), a measure of charge localization on the explosophore moiety, 

were the most important features affecting the prediction of ℎ.#. This conclusion was based on the 

good correlation (adjusted 𝑅' values greater than 0.90) of the models. However, the contribution 

weight of each property to the prediction of ℎ.# could not be quantified in that work. In contrast, 

we report here the weight of each one of the features involved, improved predicted ℎ.# values and 

investigate in detail the molecular properties that affect them. 

 

 The averaged contribution weight of each feature to a predicted ℎ.#	value computed by the 

four algorithms are collected in Table 2 for the test set (11 molecules) and Table 3 for the training 

set (42 molecules). Although we report the averaged contribution of the values computed by each 

algorithm, it is important to note that overall, for the test set, the percentage contribution of each 

feature for a given algorithm is similar. The ordering, thus the importance, of the features is the 

same, except for a slight inversion in the AdaBoost ordering of the 	∑𝑄'(𝐶) (37% weight) and  

∑𝑄*(𝑁𝑂') (38%) properties. For the training group, the electron delocalization of the ring atoms 

(∑𝑄'(𝐶)) and the 𝑁𝑂'	total dipole (∑𝑄*(𝑁𝑂')) are still by far the most dominant properties, but 

in contrast with the test group, it is followed by the number of the nitro groups (#𝑁𝑂') as the third 

most important and their charges, ∑𝑄#(𝑁𝑂'), as the forth. 

 

 Although the four properties contribute appreciably to the predicted ℎ.#, two of them are 

by far the most important, with similar weights both for the training and test groups. The 

importance of electron delocalization in the aromatic ring for predicting ℎ.# was found before by 

us48-52 and others.29, 39, 106 However, the importance of the magnitude of the total dipole moment 

of the explosophore nitro(s) group(s) was not identified before by us or the literature – its 

contribution in the test group (35%) is similar to the electron delocalization (39%). This is 

chemically justified because the dipole moment measures the polarization of the explosophore 

𝑁𝑂' that affects the ring electrons and, accordingly, its 𝐶 − 𝑁𝑂' bond strengths, thus 

characteristics of electronic structure of the molecule that are relevant for the sensitivity. We found 

that the charge of the nitro group contributes far less (16%), although, in other works, they were 

treated as the sole molecular contributor to ℎ.#.15, 107 
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 The test group included 11 molecules with a wide range of sensitivity (ℎ.#) values, varying 

from very sensitive (PTETNT, ℎ.# = 25 cm) to highly insensitive (DATB, ℎ.# = 320	cm). Table 

4 displays the errors of the predicted ℎ.# values for each molecule of the test set. The average 

errors in the predicted values for each algorithm (shown in the last row) are in the range 19% - 

28%, which can be considered quite good concerning the unknown uncertainties in the measured 

ℎ.# values and the variety of type of molecules and sensitivities in the test group.  In the test group, 

the AdaBoost algorithm not only has the lowest average error (19%) but presents six molecules 

possessing very different experimental ℎ.# values in the range 25 cmA*	–	320 cmA* with errors of 

the predicted ℎ.# values lower than 10%. GradientBoost also shows similarly consistent values, 

with eight molecules having errors less than 25%. The two algorithms based on Decision Trees, 

Random Forest, and Extra Trees, have six molecules with errors less than about 20%. 

 

Table 2 The averaged contribution weight of each feature for predicting the impact sensitivity ℎ.# 

values using the four algorithms for the molecules of the test set.  The average value in the last 

column is the average of the percent values computed by each algorithm.  

 

  Property 
TEST GROUP 

Extra Trees  
(%) 

Random Forest  
(%) 

Gradient Boost  
(%) 

AdaBoost  
(%) 

Average  
(%) 

K𝑄'(𝐶) 37 41 40 37 39 

K𝑄*(𝑁𝑂') 24 40 36 38 35 

K𝑄#(𝑁𝑂') 21 13 14 19 16 
#𝑁𝑂' 18 6 10 6 10 
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Table 3 The averaged contribution weight of each feature for predicting the impact sensitivity ℎ.# 

values using the four algorithms for the molecules of the training set.  The average value in the 

last column is the average of the percent values computed by each algorithm. 

 

Property 
TRAINING GROUP 

Extra Trees 
(%) 

Random Forest 
(%) 

Gradient Boost 
(%) 

AdaBoost 
(%) 

Average 
(%) 

K𝑄'(𝐶) 36 40 35 47 40 

K𝑄*(𝑁𝑂') 21 40 28 35 31 
#𝑁𝑂' 29 13 20 8 17 

K𝑄#(𝑁𝑂') 14 7 17 10 12 

 

  Table 4   Computed errors of each algorithm for the molecules of the test group. 

 

MOLECULE 𝒉𝟓𝟎	 
(𝐜𝐦) 

AdaBoost  
(%) 

Random  
Forest (%) 

Gradient  
Boost (%) 

Extra 
Trees (%) 

DATB 320 1.6% 4.1% 0.3% 12.5% 
DATNP 112 0.0% 22.3% 8.9% 34.8% 
DCLTNAN 75 41.3% 58.7% 65.3% 78.7% 
DNAN 220        38.0% 20.5% 13.2% 13.2% 
PATETNT  47 6.4% 12.8% 46.8% 19.1% 
PTETNT 25 4.0% 24.0% 20.0% 20.0% 
TETNB 28 21.4% 39.3% 21.4% 39.3% 
TMTNB 110 32.7% 57.3% 53.6% 31.8% 
TNBEtOH 68 45.6% 17.6% 0.0% 32.4% 
TNT 98 8.2% 1.0% 14.3% 7.1% 
DNB 100 10.0% 6.7% 8.7% 14.7% 
  AVERAGE 19.0% 25.8% 23.0% 27.6% 

 

The RMSE values of the test set for each algorithm and the previous results52 of the same 

molecules are presented in Fig. 3. In the previous work, the 21 molecules of the training group 

were selected according to the diversity of structures, groups, and bond types. The remaining 29 

comprised the test set, with four molecules (DATB, DCLTNAN, PTETNT, and TNT) common to 

both test sets. The four ML algorithms have RMSE values of about 30 cm compared to 50 cm of 

the previous work, a substantial improvement in the prediction of the ℎ.#. Despite the overall result 

of about 30 cm RMSE value for the eleven molecules of the test set, for sensitive molecules with 

ℎ.# values less than 30 cm (e.g., PTETNT and TETNB), good agreement (error between 
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parentheses) was found for AdaBoost, namely, PTETNTN (4.0%), and TETNB (21.4%); Gradient 

Boost also gave good results for the same molecules, respectively 20.0% and 21.4%. 

 

 
Fig. 3  Root mean square errors (RMSE) in cm in the predicted ℎ.# values for the four algorithms 
and previous work of the molecules of the test set.52 
 
 

 
Fig. 4. Influence of the features (molecular properties) for each algorithm according to the SHAP 
analysis for the training group – Train. G (42 molecules), and for the Test group – Test G (11 
molecules). Each dot represents a molecule, and each molecular property (listed in the vertical 
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axis) includes all molecules of the corresponding set. Note that the horizontal scale may be 
different in each plot. Red values contribute to increasing the ℎ.# value, and blue to reducing it. 
The darker the color, the larger the contribution – see the scale on the right. The features on the 
vertical axis are indicated by the letters 𝐴,𝐵, 𝐶 and 𝐷 according to the correspondence on the top 
right of the figure. 
 

 The SHAP plots in Fig. 4 present the results for each molecule that produced the average 

information of Tables 3 and 4. The ordering in the vertical axis indicates that the higher the 

property, the higher is its contribution to the final ℎ.#. The horizontal axis indicates the amount of 

contribution (positive or negative) of a given property to the ℎ.# value. The coloring of the plots 

conveys relevant information concerning the predicted value of ℎ.#: for the training group of the 

four algorithms, in most molecules, electron delocalization (∑𝑄'(𝐶)) contributes to reducing the 

ℎ.# value (dots are mostly in blue and have negative values) in contrast with what was found 

before 52, 106 – however, this is a subtle question, as we discuss below when examining the 

molecules of the test set individually. The other three properties, especially the number of nitro 

groups (#𝑁𝑂') and their dipole moments (∑𝑄*(𝑁𝑂')) also in most cases contribute to reducing 

ℎ.#. To examine in detail what is the role of each property in increasing or reducing the predicted 

ℎ.#, we examine the SHAP plots of individual molecules of the test set. 

 

 Fig. 5 collects the individual SHAPs of the molecules of the test set computed with the 

AdaBoost algorithm along with the experimental values of impact sensitivities (ℎ.#) collected 

from low to high values. The SHAP plots obtained with the other three algorithms, which are very 

similar to AdaBoost’s, are not shown. 

 

 A clear and very interesting pattern emerges from these plots in Fig. 5. The 11 molecules 

of the test group can be divided into three groups according to the values of ℎ.# and the direction 

of the contributing properties. For the most sensitive explosives (ℎ.# value between parentheses), 

PTETNT (25	cm), TETNB (28	cm) and PATETNT (47	cm), the four molecular properties 

contribute to reducing the ℎ.# value (i.e., they are in blue). According to AdaBoost results, which 

are similar to the one obtained with the other algorithms, the polarization of the nitro groups 

(∑𝑄*(𝑁𝑂')), followed by the electron delocalization of the ring atoms (∑𝑄'(𝐶)), are the two 

most important properties in this group by far. For the second group comprised of TNBEtOH 
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(68	cm), DCLTNAN (75	cm), TNT (98	cm), DNB (100	cm), TMTNB (110	cm), and DATNP 

(112	cm), two properties contribute to increasing ℎ.# (i.e., they are in red) and two to reducing it 

(i.e., they are in blue). The number of nitro groups (#𝑁𝑂'), and with a more significant 

contribution, the polarization of the nitro groups, contribute to increasing ℎ.#, whereas the other 

two properties (most importantly ∑𝑄'(𝐶), and the charge of the nitro groups, ∑𝑄#(𝑁𝑂')) 

contribute to lowering it. The exception is DNB, which has the charge of nitro groups instead of 

their polarization, contributing to an increase ℎ.#. In all cases of this intermediate group, the 

electron delocalization of the ring atoms is the most significant contributor to reducing ℎ.# (i.e., 

to increasing the sensitivity of the explosive). 

 

Finally, for the two most insensitive molecules of the test set, DNAN (220	cm) and DATB 

(320	cm), there is an extreme case – DATB – in which all properties contribute to increasing ℎ.#, 

whereas for DNAM the polarization of the nitro group contributes to slightly reducing ℎ.# and the 

other three properties significantly contribute to increasing it. In particular, we see the role of the 

electron delocalization (∑𝑄'(𝐶)): this property only contributes to increasing the value of ℎ.# for 

these two highly insensitive molecules.    
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Fig. 5. AdaBoost SHAP plots for the 11 molecules of the test set. Experimental impact sensitivity 
values (ℎ.#) are also shown. Red properties contribute to increasing the value of ℎ.# while blue 
one contributes to reducing it. 
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4.  Conclusions 
 

 We carried out comprehensive machine learning (ML) simulations to investigate the 

molecular origin of the impact sensitivities of 53 nitroaromatic explosives characterized by ℎ.# 

values. After an initial screening of 42 ML algorithms, the four with the smallest RMSE of the 

predicted ℎ.# values, namely, Extra Trees, Random Forests, Gradient Boosting, and AdaBoost, 

were further investigated. The algorithms used four features (i.e., properties), and were run with a 

training set of 42 molecules and a test set comprising 11 molecules involving the extensive range 

of sensitivities 25	cm ≤ ℎ.# ≤ 320	cm. Three electronic features were atomic-centered DMA 

electric multipoles that characterize accurately in detail the density functional DFT charge density 

of the explosive. The fourth was a structural one, the number of the explosophore nitro groups. 

 

 Therefore, three electronic molecular properties and a structural one were the input features 

for the ML regressions of the target feature, the impact sensitivity ℎ.# (cm). We found that the 

electron delocalization of the ring atoms, given by ∑𝑄'(𝐶), is a significant contribution to the 

predicted ℎ.# with a weight computed as the average of the four ML algorithms equal to 39%. The 

importance of this molecular electronic property agrees with previous results and our own, but this 

is the first time that its contribution has been quantified. The other contributing property with a 

similar average weight (35%) is the polarization of the nitro group, given by its total dipole 

∑𝑄*(𝑁𝑂') value, a result not found before.  The other two examined properties, the charge 

(∑𝑄#(𝑁𝑂')) and the number (#𝑁𝑂') of the nitro groups, had average weights of 16% and 10% 

respectively. 

 

 By using special plots known as SHAP plots, the contribution of a given feature to increase 

or decrease the predicted ℎ.# value of each molecule was evaluated. For the 11 molecules of the 

test set, the direction of the contribution depends on their sensitivity. For sensitive molecules 

(ℎ.# ≲ 50 cm), the four features contributed to reducing ℎ.#. For the intermediate range 70	cm ≲

ℎ.# ≲ 100 cm, the number of the nitro groups and, more significantly, the polarization of the nitro 

groups, contributed to increasing ℎ.# while the other two contributed to reducing it; in all cases, 

the electron delocalization of the ring atoms contributed to reducing ℎ.#. Finally, for the most 

insensitive molecules, DNAN (ℎ.# = 220	cm) and DATB (320 cm), all properties contributed to 
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increasing ℎ.# (i.e., to decrease the sensitivity), except for the polarization of the nitro groups that 

contributes to reducing slightly ℎ.# in DNAM. 

 

By identifying the molecular properties that most affect the impact sensitivity, our work 

illuminated structure-property relationships of known explosives and may be used as a valuable 

guide for designing safer new energetic molecules. 
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