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Abstract 

Electrochemical impedance spectroscopy (EIS) is a characterization technique used widely in 

electrochemistry. Obtaining EIS data is simple when modern electrochemical workstations are 

used; however, analyzing EIS spectra is still a considerable quandary. The distribution of 

relaxation times (DRT) has emerged as a solution to this challenge. Nevertheless, DRT 

deconvolution underlies an ill-posed optimization problem, which is often solved by ridge 

regression (RR). RR’s accuracy strongly depends on the choice of the regularization level as 

encapsulated in the parameter 𝜆. In this article, five cross-validation methods (i.e., generalized 

cross-validation, modified generalized cross-validation, robust generalized cross-validation, re-im 

cross-validation, and k-fold cross-validation) and the L-curve method are studied for the selection 

of 𝜆. A hierarchical Bayesian DRT (hyper-𝜆) deconvolution method is also analyzed, whereby 𝜆0, 

a parameter analogous to 𝜆, is obtained through cross-validation. The analysis of synthetic data 

suggests that the values of 𝜆 selected by generalized and modified generalized cross-validation are 

the most accurate among the methods studied. Furthermore, synthetic EIS spectra show that the 

hyper-𝜆  approach outperforms optimal RR when 𝜆0  is obtained by generalized and modified 

generalized cross-validation. This research is expected to foster additional research on the central 

topic of regularization level selection for DRT analysis. This article not only explores various 

cross-validation methods, but also provides, through pyDRTtools, an implementation that may 

serve as a starting point for future research. 

Keywords: Electrochemical Impedance Spectroscopy, Distribution of Relaxation Times, Inverse 

Problem, Cross-Validation, Hyperparametric Methods  
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1 Introduction 

Electrochemical impedance spectroscopy (EIS) is an experimental technique commonly used in 

electrochemistry [1,2] with broad applications spanning energy science [3], materials [4], medicine 

[5], and biology [6]. EIS characterization is attractive because it provides frequency-dependent 

information ranging across several orders of magnitude of timescales ( i.e., from mHz to MHz) [7]. 

Furthermore, modern, state-of-the-art electrochemical workstations afford the collection of high-

quality EIS data with limited experimental expertise. Despite these advantages, interpreting EIS 

spectra remains a considerable challenge [8]. The analysis is usually performed by fitting spectra 

against equivalent circuits models (ECMs) [9]. However, ECMs are often just circuit analogs and 

lack uniqueness [10]. Alternatively, physical models can be used, but these models are system-

specific and significantly more difficult to implement [6,8,11]. To overcome these challenges, the 

distribution of relaxation times (DRT) has emerged as a complementary method enabling the 

identification of the characteristic timescales in EIS spectra [12–17]. Explicitly, within the DRT 

analysis framework, the impedance model, 𝑍DRT (𝑓), is fashioned to originate from relaxations, 

leading to the following expression [10,11,18]: 

𝑍DRT (𝑓) = 𝑖2𝜋𝑓𝐿0 + 𝑅∞ + ∫
 𝛾(log 𝜏)

1 + 𝑖2𝜋𝑓𝜏
𝑑 log 𝜏

∞

−∞

 (1) 

where 𝑓 , 𝐿0 , 𝑅∞ , 𝛾(log 𝜏) , and 𝜏  are the frequency, inductance, resistance, distribution of 

relaxation times, and timescale, respectively.  

While the DRT model is conceptually simple, deconvolving 𝛾(log 𝜏)  is difficult because the 

underlying problem is ill-posed [19–23]. Many methodologies have been developed to conduct 

DRT deconvolution. Those include genetic and evolutionary methods [24,25], Fourier transform 

methods [15,26], maximum entropy approaches [27], artificial-intelligence-driven methods 
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[11,28], Gaussian processes [10,18,29], Bayesian and hierarchical Bayesian methods [30–32], and 

ridge regression (RR) [23,30,33], with RR being arguably the most widely used. 

As described in more detail in Section 2.1, in RR, the DRT is obtained by minimizing the sum of 

squared residuals plus an additional term penalizing "ridges" in 𝛾(log 𝜏) [14,33]. Namely, if 𝒙 is 

(loosely) defined as the vector of the DRT at discrete log 𝜏 values (a more precise definition and 

more details are given in Section 2.1.1.1), DRT deconvolution through RR requires solving the 

following problem [30,33]: 

𝒙 = argmin
𝒙′≥0

(‖𝒁exp − 𝑨𝒙′‖
2

+ 𝜆‖𝑳𝒙′‖2) (2) 

where ‖∙‖ is the Euclidean norm, 𝒁expis a vector of experimental impedances, 𝑨 is a discretization 

matrix, and 𝜆‖𝑳𝒙‖2 is a penalty. In the latter term, 𝜆 is a parameter, and 𝑳 is a differentiation 

matrix. The optimal selection of 𝜆 is the goal of this article. 

The solution to problem (2) strongly depends on 𝜆 [30,34], where small and large values of 𝜆 result 

in over-fitting and over-regularization, respectively [35,36]. It is, therefore, imperative to select an 

appropriate parameter 𝜆 when performing RR. In the fields of statistics and inverse problems, 

several methods have been developed for this purpose, including generalized cross-validation 

(GCV) [37,38], modified generalized cross-validation (mGCV) [37], robust generalized cross-

validation (rGCV) [37], real-imaginary cross-validation (re-im CV) [33,39], k-fold generalized 

cross-validation (kf-CV) [40], and the L-curve (LC) method [41]. Among these methods, only LC 

[41,42] and re-im CV [14,33] have been used for DRT deconvolution. 

Through an array of well-controlled synthetic experiments, this work investigates the quality of 

the aforementioned methods for the selection of 𝜆  in the context of DRT deconvolution and 
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impedance recovery through RR (Figure 1). For RR, the analysis of synthetic spectra suggests that 

GCV and mGCV give 𝜆 values that are the closest to the optimal ones. It is also shown that 𝜆0, 

one of the hyperparameters of the previously developed hierarchical Bayesian method (hyper-𝜆) 

(the definition and more details are given in Sections 2.1.1.2 and 2.1.3), can be obtained using 

GCV and mGCV [31]. Artificial experiments suggest that DRT recovery obtained using hyper-𝜆 

methods with 𝜆0 from CV is generally more accurate than RR, especially for discontinuous and 

"hook"-type DRTs.  

To ensure reproducibility and allow other groups to extend these methods, the software 

pyDRTtools was updated and shared on GitHub [34]. It is envisioned that this work and the 

updated pyDRTtools will enable more effective DRT deconvolution and impedance recovery, 

possibly leading to several follow-up works. 
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Figure 1. Schematic illustrating the steps taken to select the regularization parameter 𝜆 and recover 

DRT and impedance starting from experimental data. 

2 Methods 

As already outlined in the Introduction, the outcome of RR strongly depends on 𝜆 as defined in 

(2). As is well known, small values of 𝜆  result in noisy DRT (but accurate recovery of the 

impedance), while large values of 𝜆  give smooth DRT (but inaccurate impedance) [34,38]. 

Therefore, choosing 𝜆  “optimally” so as to strike a balance between smoothing the DRT and 

regressing the impedance is key to DRT deconvolution. This section first outlines the DRT 

deconvolution nomenclature, then it illustrates how to obtain an "optimal" 𝜆 using an array of 

statistics-oriented methods. 
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2.1 Theory 

2.1.1 DRT Deconvolution 

2.1.1.1 Ridge Regression 

We start by introducing the quantities and corresponding notations used thereafter. Following our 

previous articles [33,34], the real and imaginary parts of the DRT impedance model vector given 

by 𝒁DRT = 𝒁DRT,re + 𝑖𝒁DRT,im are approximated as follows:  

𝒁DRT,re = 𝑅∞𝟏 + 𝑨𝛾,re𝜸 (3a) 

𝒁DRT,im = 2𝜋𝐿0𝒇 + 𝑨𝛾,im𝜸 (3b) 

with (𝜸)𝑛 = 𝛾(log 𝜏𝑛 )  for 𝑛 = 1 ,  2 ,…, 𝑁 , and (𝒁DRT,re)
𝑚

= Re(𝑍DRT (𝑓𝑚 )) , (𝒁DRT,im)
𝑚

=

Im(𝑍DRT (𝑓𝑚)), 𝟏 is an 𝑁-dimentional column vector of ones, and (𝒇)𝑚 =  𝑓𝑚 for 𝑚 = 1, 2, …, 

𝑀. The log 𝜏𝑛  values are the log timescales at which 𝛾(log 𝜏) is approximated, and the 𝑓𝑚 values 

are the experimental frequencies. 𝑨𝛾,re and 𝑨𝛾,im are discretization matrices given elsewhere [34].  

The following two matrices can also be defined: 

𝑨re = (𝟎 | 𝟏 | 𝑨𝛾,re)  (4a) 

𝑨im = (2𝜋𝒇 | 𝟎 | 𝑨𝛾,im) (4b) 

where 𝟎 is an 𝑀-dimensional column vector of zeros. In turn, the matrix 𝑨 in (2) can be defined 

as 

𝑨 =  (
𝑨re

𝑨im
) (5) 
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Then, 𝒙 = (𝑅∞, 𝐿0, 𝜸⊤)⊤  can be estimated by solving (2) where 𝒁exp = (
𝒁exp,re

𝒁exp,im
) with 𝒁exp,re 

and 𝒁exp,im  being the vectors of real and imaginary parts of the experimental impedance, 

respectively. 

2.1.1.2 Hyper-𝝀 Ridge Regression 

In a hierarchical Bayesian framework, 𝜆 is a log 𝜏-dependent random variable [30,31]. Thus, the 

implementation needs a random vector 𝝀 ∈ ℝ𝑁𝜆 with 𝑁𝜆 defined as 𝑁𝜆 = 𝑀 − 𝑞 where 𝑀 is the 

number of EIS frequencies and 𝑞 is the derivative order of the differentiation matrix 𝑳 in (2) [30]. 

As explained in earlier publications [30,31], the probability, 𝑝(𝒙, 𝝀|𝒁exp), of 𝒙  and 𝝀  given 

the experimental impedance 𝒁exp is given by 

𝑝(𝒙, 𝝀|𝒁exp)𝑝(𝒁exp) = 𝑝(𝒙, 𝝀)𝑝(𝒁exp|𝒙,𝝀) (6) 

where 𝑝(𝒁exp) is the probability of observing the specific experimental EIS vector 𝒁exp (this 

results in a constant), and 𝑝(𝒁exp|𝒙,𝝀) is the likelihood of the experimental data given 𝒙. The 

prior on 𝒙 and 𝝀 jointly, 𝑝(𝒙, 𝝀), can be rewritten as 

𝑝(𝒙, 𝝀) = 𝑝(𝒙|𝝀)𝑝(𝝀) (7) 

By choosing a Gaussian prior on 𝒙, i.e., 𝑳𝒙 ~𝒩(0, 𝚲−1) with (𝚲)ℎ𝑘 = {
0  𝑖𝑓 ℎ ≠ 𝑘

(𝝀)𝑘  𝑖𝑓 ℎ = 𝑘
 for ℎ, 𝑘 =

1, 2, …, 𝑁𝜆, the prior 𝑝(𝒙|𝝀) can be rewritten as 

𝑝(𝒙|𝝀) ∝ 𝟏(𝒙 ≥ 0) ∏ √
(𝝀)𝑘

2𝜋
exp (−

(𝝀)𝑘

2
(𝑳𝒙)𝑘

2 )

𝑁𝜆

𝑘=1

 (8) 
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In this work, we set 𝑞 = 2; in other words, 𝑳 is used to approximate 
𝑑2𝛾(log 𝜏) 

𝑑 log 𝜏2 . The indicator 

function 𝟏(𝒙 ≥ 0) (equal to 1 if all entries in 𝒙 are positive, and 0 otherwise) is used to enforce 

the non-negativity constraint on the DRT.  

All components of 𝝀 are taken to be independent and identically distributed with the following 

Gamma hyperprior distribution: 

𝑝HP((𝝀)𝑘 , 𝝃) = (𝝀)𝑘

𝛽
2

−1
exp (−

𝛽 − 1

2𝜆0

(𝝀)𝑘) (9) 

with the parameter vector defined as 𝝃 =  (
𝛽
𝜆0

) , where 𝛽  is the parameter of the hyperprior 

distribution, and 𝜆0 is the nominal regularization level1. 

The prior 𝑝(𝝀) in (7) is then given by [30,31] 

𝑝(𝝀) = ∏ 𝟏((𝝀)𝑘 ≥ 0)𝑝HP ((𝝀)𝑘 , 𝝃)

𝑁𝜆

𝑗=1

 (10) 

We note that the maximum a posteriori (MAP) estimate of 𝒙 and 𝝀 are obtained by alternate 

minimization, as described in [31], and the (𝝀)𝑘  values are given analytically by [30,31] 

(𝝀)𝑘 =
𝜆0

𝜆0

𝛽 − 1 (𝑳𝒙)𝑘
2 + 1

 
(11) 

2.1.2 Hyperparameter Selection with the CV and LC Scores 

As shown in the central panel of Figure 1, 𝜆 is determined by minimizing a score function. The 

seven scores used in this work are described in the present section. 

 
1 We note that 𝜆0, from (11), is the regularization level obtained for 𝑳𝒙 = 𝟎. 
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2.1.2.1 Optimal 𝝀 

The optimal 𝜆, 𝜆opt , is obtained by solving the following problem: 

𝜆opt = argmin
𝜆≥0

 ‖𝜸exact(log 𝝉) − 𝜸(𝜆)‖2 (12) 

Where (𝜸exact(log 𝝉))
𝑛

= 𝛾exact(log 𝜏𝑛) for 𝑛 = 1, 2, …, 𝑁 2, and 𝜸(𝜆) is the DRT part of the 𝒙 

vector obtained by solving (2)3. 

2.1.2.2 Cross-Validation Methods 

CV is a statistical method utilized for model selection, performance estimation, and 

learning/tuning model parameters [43]. Only the re-im CV method proposed by Saccoccio et al. 

[33] has been used for DRT parameter selection. Other CV methods have yet to be used for DRT 

parameter selection. In this section, GCV, mGCV, rGCV, kf, and re-im CV are overviewed and 

applied to DRT deconvolution. 

2.1.2.2.1 Generalized Cross-Validation 

GCV has been used, in statistics and machine learning, for computing the regularization 

parameters [38]. Following the seminal work of Wahba et al., GCV determines 𝜆 by minimizing 

the following function [38]: 

GCV(𝜆) =
(2𝑀)−1‖(𝑰 − 𝑲(𝜆))𝒁exp‖

2

[(2𝑀)−1tr(𝑰 − 𝑲(𝜆))]
2  (13) 

 
2  𝜸exact was selected to be the analytical DRT (Table S1 of the supplementary information (SI)) for synthetic 

experiments. For real EIS data, we used the DRT obtained from the regressed ECM, which is denoted as 𝜸ECM (see 
Section 3.2). 
3 𝜆opt depends on the log𝝉 chosen. 
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𝑲(𝜆) = 𝐀(𝐀⊤𝐀 + 𝜆𝑳⊤𝑳)−1𝐀⊤ ∈ ℝ2𝑀×2𝑀  and 𝑰 is the 2𝑀 × 2𝑀 identity matrix. The reader is 

invited to consult Section S1.1 for the derivation. 

2.1.2.2.2 Modified Generalized Cross-Validation 

To stabilize the GCV, Kim et al. [44] developed the mGCV criterion, which minimizes the 

following function: 

mGCV(𝜆) =
(2𝑀)−1‖(𝑰 − 𝑲(𝜆))𝒁exp‖

2

[(2𝑀)−1tr(𝑰 − 𝜌𝑲(𝜆))]
2  (14) 

where 𝜌 > 1 is a stabilization parameter calculated using the following empirical rule: 

𝜌 = {
1.3 if 𝑀 < 50 
 2 if 𝑀 ≥ 50

 (15) 

2.1.2.2.3 Robust Generalized Cross-Validation 

The rGCV method can be used to overcome under-smoothing arising when the sample size is too 

small. To that end, the rGCV method minimizes a weighted average of the GCV given by [35,37] 

rGCV(𝜆) = (𝜉 + (1 − 𝜉)𝜇2(𝜆))GCV(𝜆) (16) 

Where 𝜇2(𝜆) = (2𝑀)−1tr(𝑲2(𝜆)) and the rule 𝜉 =  {
0.2 if 𝑀 < 50 
 0.3 if 𝑀 ≥ 50

  was used to calculate the 

robust parameter 𝜉 [37]. 

2.1.2.2.4 Re-Im Cross-Validation 

In re-im CV, the real, 𝒁exp,re, and imaginary, 𝒁exp,im, parts of the experimental impedance vector 

defined in Section 2.1.1.1 can be used separately to determine two values of 𝒙, called 𝒙re and 𝒙im, 

respectively [33]. In the re-im CV approach, the following sum of squared errors of 𝒁exp,re and 

𝒁exp,im is minimized: 
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re-im(𝜆) = ‖𝒁exp,re − 𝑨re𝒙re‖
2

+ ‖𝒁exp,im − 𝑨im𝒙im‖
2
 (17) 

2.1.2.2.5 k-Fold Cross-Validation 

In kf-CV, the experimental impedance, 𝒁exp, is initially partitioned into k subsamples or “folds” 

of equal size. The 𝑝-th partition (𝑝 = 1, 2, …, k) 𝒁𝑝,test is treated as the test set, while the rest of 

𝒁exp is used to estimate the DRT vector, 𝒙𝑝(𝜆), by solving an optimization problem formally 

equivalent to (2). Then, using 𝒙𝑝(𝜆) and 𝒁𝑝,test, the square residuals between predicted and test 

impedance are computed (see (S9) in Section S1.2). Finally, the kf-CV score, kf(𝜆), is obtained as 

the average of these residuals [40]. We emphasize that, as 𝑘 increases, so does the computational 

time. In this article, we chose 𝑘 = 5 [45]. 

2.1.2.3 L-Curve 

In the L-curve approach, the optimal 𝜆 maximizes the curvature of the function defined as the 

logarithm of the squared residual, 𝜂(𝜆) = log(‖𝒁exp − 𝑨𝒙(𝜆)‖2), versus the logarithm of the 

regularization penalty, 𝜃(𝜆) = log(𝜆‖𝑳𝒙(𝜆)‖2) [41], where 𝒙(𝜆) is computed by solving (2). In 

short,  

𝜆LC = argmax
𝜆≥0

 LC(𝜆) (18) 

 where 

LC(𝜆) =

𝑑2𝜃(𝜆)
𝑑𝜆2

𝑑𝜂(𝜆)
𝑑𝜆

−
𝑑𝜃(𝜆)

𝑑𝜆
𝑑2𝜂(𝜆)

𝑑𝜆2

((
𝑑𝜃(𝜆)

𝑑𝜆
)

2

+ (
𝑑𝜂(𝜆)

𝑑𝜆
)

2

)

3/2  (19) 
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2.1.3 CV-based Selection of the DRT Regularization Parameter in Hyper-𝝀 

In the hyper-𝜆 framework (Section 2.1.1.2), the regularization vector 𝝀 is a function of the two-

dimensional vector 𝝃 = (
𝛽
𝜆0

), see (11). While the tunable parameters 𝛽 and 𝜆0 provide the hyper-

𝜆 method with more flexibility over RR, herein, we set 𝛽 = 2 so that the hyperprior 𝑝HP(𝜆, 𝝃) in 

(9) becomes an exponential distribution [30,46]. The 𝜆0 was selected using GCV and mGCV. The 

optimal 𝜆0, indicated as 𝜆0,opt, was computed by solving a problem analogous to (12) in Section 

2.1.2.14. 

2.2 Implementation 

We generated artificial experiments in the 10−2 − 106 Hz frequency range with 10 points per 

decade [47,48]. For the exact impedance 𝑍exact(𝑓), we studied the single ZARC, 2×ZARC, 

piecewise constant (PWC), Gerischer, and "hook" models [30,49]. Table S1 shows the analytical 

expressions of each impedance and DRT model; the parameters used are reported in Tables S2, 

S3, and S4. Each synthetic impedance 𝑍exp(𝑓) was obtained by corrupting the exact impedance 

with various error models.  

As a first step, uniform errors were considered: 

𝑍exp(𝑓) = 𝑍exact(𝑓) + 𝜎𝑛
exp(𝜀re + 𝑖𝜀im) (20) 

where the real, 𝜀re, and imaginary, 𝜀im, components of the error are independent and identically 

distributed with 𝜀re, 𝜀im ~ 𝒩(0,1). Unless otherwise specified, the error level 𝜎𝑛
exp

 was set to 

0.2 Ω. 

 
4 𝜆0,opt was obtained as 𝜆0,opt = argmin

𝜆0≥0
 ‖𝜸exact(log𝝉) − 𝜸hyper(𝛽 = 2, 𝜆0)‖

2
where 𝛾hyper(𝛽 = 2, 𝜆0) is obtained 

from MAP. 



14 

 

Two frequency-dependent error models were also considered, namely, 

𝑍exp(𝑓) = 𝑍exact(𝑓) + 𝜉𝑛
exp

|𝑍exact(𝑓)|(𝜀re + 𝑖𝜀im) (21a) 

𝑍exp(𝑓) = 𝑍exact(𝑓) + 𝜉𝑛
exp(|𝑍exact,re(𝑓)|𝜀re + 𝑖|𝑍exact,im(𝑓)|𝜀im) (21b) 

where 𝜉𝑛
exp

 is a scalar, whose value will be given in the corresponding section (Section 3.1.1.4). 

For RR deconvolution, 𝜆  (given 𝑍exp(𝑓)) was selected using all parameter selection methods 

described in Section 2.1.2 in the range from 10−7 to 10−1 by minimizing the corresponding score 

(Section 2.1.2.2). The vector 𝒙 was obtained by solving (2) using the 𝜆 values obtained using each 

model. For the hyper-𝜆 methods, 𝒙 was obtained through the alternate minimization algorithm 

described in Section 2.1.1.2. We must stress that the non-negativity constraint in (2) was not 

enforced for “hook” EIS spectra (Section 3.1.4). For all the methods, the DRT impedance, 𝒁DRT, 

was computed using 𝒁DRT =  𝑨𝒙. 

2.3 Quality Scores 

To compare the values of 𝜆 obtained from each parameter selection method to 𝜆opt  in (12), the 

absolute error on 𝜆, abs𝜆, the normalized absolute error on 𝜆, absnorm,𝜆, and the mean squared 

error on 𝜆, MSE𝜆, were introduced: 

abs𝜆 =
1

𝑁exp
∑ |𝜆opt,𝑘 − 𝜆CV,𝑘|

𝑁exp

𝑘=1

 

(22a) 

absnorm,𝜆 =
1

𝑁exp
∑

|𝜆opt,𝑘 − 𝜆CV,𝑘|

𝜆̅
opt

𝑁exp

𝑘=1

 

(22b) 
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MSE𝜆 =
1

𝑁exp
∑ (𝜆opt ,𝑘 − 𝜆CV,𝑘)

2

𝑁exp

𝑘=1

 

(22c) 

where 𝑁exp is the number of synthetic experiments, 𝜆opt  is the optimal 𝜆 (Section 2.1.2.1) whose 

average 𝜆̅
opt is 𝜆o̅pt =

1

𝑁exp
∑ 𝜆opt ,𝑘

𝑁exp

𝑘 =1
, and 𝜆CV  is the 𝜆  selected using a given parameter 

regularization method. 

To score the accuracy of DRT recovery, the normalized DRT square error, SEnorm,𝛾 , and the 

normalized DRT mean square error, MSEnorm,𝛾, were used: 

SEnorm,𝛾 =
‖𝜸exact − 𝜸CV(𝜆)‖2

‖𝜸exact‖2  
(23a) 

MSEnorm,𝛾 =
1

𝑁exp
∑

‖𝜸exact − 𝜸CV,𝑘(𝜆)‖
2

‖𝜸exact‖2

𝑁exp

𝑘=1

 

(23b) 

where 𝜸exact  is the exact DRT, and 𝜸CV(𝜆)  is the DRT recovered with a given parameter 

regularization method.  

Lastly, we introduce the normalized impedance mean square error, MSEnorm ,𝑧, as 

MSEnorm,𝑧 =
1

𝑁exp
∑

‖𝒁exact − 𝒁CV,𝑘(𝜆)‖
2

‖𝒁exact‖2

𝑁exp

𝑘=1

 

(24) 

where 𝒁exact is the exact impedance, and 𝒁CV(𝜆) the impedance recovered with a given parameter 

regularization method. 
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3 Results 

Synthetic experiments were used to investigate the accuracy of the different 𝜆-selection scores. 

Then, the two best scores were used to select the hyperparameter 𝜆0 (for the hyper-𝜆 methods) 

optimally. Finally, the accuracy of these two hyper-𝜆 methods was investigated with synthetic and 

real EIS data from three batteries and one fuel cell. 

3.1 Artificial Experiments 

3.1.1 Single ZARC Model 

3.1.1.1 Investigation of the Optimal Method 

First, we studied a single ZARC model. Panels (a), (c), and (e) of Figure 2 show the experimental, 

exact, and recovered impedances for one synthetic experiment using the optimal, GCV, and 

mGCV scores, respectively. The corresponding DRTs are presented in panels (b), (d), and (f) of 

Figure 2. The DRT and impedance recoveries appear close to the exact ones for all three methods 

except for slight DRT oscillations at 𝜏 ≈ 10−3 s and 10−1 s.  

Next, 500 artificial experiments were generated. Figure 3 (a) shows the boxplot of the 𝜆 values of 

all optimized scores. It is worth stressing that the notch, rhombus, and whiskers refer to the median, 

25-75% interquartile range, and 1.5 times this range, respectively. LC, mGCV, and rGCV methods 

have the highest 𝜆 values5 (Figure 3 (a)), which leads to over-smoothing (panels (f) and (h) of 

Figure S1 and Figure S2 (b), respectively). Conversely, optimizing the GCV, re-im CV, and kf-

CV scores allowed the identification of the DRT peak, and led to better DRT recoveries (Figure 

S1 (d) and panels (d) and (f) of Figure S2, respectively). For all methods, the impedance of the 

 
5 Note that the values of 𝜆 selected by the optimal, a given CV, and the LC method are denoted as 𝜆opt,𝜆CV, and 𝜆LC, 

respectively. 
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single ZARC model was recovered well (left panel of Figures S1 and S2). As expected from (12), 

the optimal 𝜆opt  leads to the lowest normalized square errors, SEnorm,γ, as shown in Figure 3 (b).  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 2. For the single ZARC model ( 𝜎𝑛
exp = 0.2 Ω ), exact, experimental, and recovered 

impedances based on (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and (e) mGCV and 

hyper-mGCV methods are shown. Exact and recovered DRTs are shown in panels (b), (d), and (f).  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 3. Boxplots of the optimal 𝜆 values shown together with the ones minimizing each score 

(𝜎𝑛
exp  = 0.2 Ω). The 𝜆 shown were obtained using 500 synthetic experiments and the (a) single 

ZARC, (c) overlapping 2×ZARC, and (e) PWC models. Corresponding boxplots of SEnorm,γ are 

reported in panels (b), (d), and (f). 

3.1.1.2 Correlation between 𝝀 and 𝝀𝑜𝑝𝑡  

To show the joint distribution between the optimal 𝜆opt  and the 𝜆  values selected using each 

parameter regularization method, we plot in Figure 4 the correlation plots with their respective 
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marginal distributions. We observe that 𝜆LC , 𝜆mGCV , and 𝜆rGCV are strongly correlated with 𝜆opt . 

Interestingly, the values of 𝜆mGCV , and 𝜆rGCV are densely concentrated around 𝜆mGCV =  𝜆rGCV ≈

10−4, while the LC values are mostly concentrated around 𝜆LC  ≈  10−3 , see panels (b), (c), and 

(f) of Figure 4. These high 𝜆 values explain the under-recovered DRTs when the 𝜆 used is obtained 

via these methods (panels (f) and (h) of Figure S1 and Figure S2 (b)). Conversely, the 𝜆CV values 

from GCV, re-im CV, and kf-CV are visually closer to 𝜆opt  as shown by a distribution centered 

near the diagonal, which explains the more accurate identification of the DRT peak in Figure S1 

(d) and in panels (d) and (f) of Figure S2, respectively. 

To assess how 𝜆LC , 𝜆mGCV , and 𝜆rGCV correlate with 𝜆opt , the scores introduced in Section 2.3 

were used. GCV presents the lowest values for all the scores, with kf-CV coming second, see Table 

1 and Table S5. The wall clock time needed to minimize each score was also computed (Table 1). 

The GCV and kf-CV were the fastest and slowest methods, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 4. For the single ZARC model (𝜎𝑛

exp  = 0.2 Ω), correlation plot between the optimal 𝜆opt  

and (a) 𝜆GCV, (b) 𝜆mGCV , (c) 𝜆rGCV, (d) 𝜆re−im, (e) 𝜆kf , and (f) 𝜆LC  as obtained using 500 synthetic 

experiments. 

GCV 

kf 

mGCV 

rGCV re-im 

LC 
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Table 1. For the single ZARC model ( 𝜎𝑛
exp  = 0.2 Ω  and 500 synthetic experiments), abs𝜆 , absnorm,𝜆 , MSEλ , MSEnorm,𝑍opt

, 

MSEnorm,𝑍exp
, MSEnorm,𝑍exact

, MSEnorm,𝛾opt
, MSEnorm,𝛾exact

6, and clock time for each parameter regularization method. 

Method abs𝜆 absnorm,𝜆 MSE𝜆 MSEnorm,𝑍opt
 MSEnorm,𝑍exp

 MSEnorm,𝑍exact
 MSEnorm,𝛾opt

 MSEnorm,𝛾exact
 Clock time (s) 

GCV 6.060E-5 8.213E-5 6.353E-9 4.621E-9 5.661E-5 2.883E-7 1.236E-5 1.143E-3 8.839E-2±3.618E-2 

mGCV 3.372E-4 3.643E-4 1.318E-7 1.597E-6 6.032E-5 2.672E-6 7.867E-3 2.075E-2 8.049E-1±2.537E-1 
rGCV 6.820E-4 7.275E-4 5.149E-7 3.609E-6 6.263E-5 4.980E-6 1.426E-5 2.608E-2 9.995E-1±4.563E-1 

re-im CV 9.720E-5 3.619E-4 3.763E-8 6.382E-6 5.802E-5 4.867E-7 1.689E-5 1.509E-2 4.619E0±2.145E0 

kf-CV 8.822E-5 8.229E-5 1.187E-7 8.460E-8 5.876E-5 5.612E-7 5.624E-4 8.734E-3 8.175E0±4.730E0 
LC 5.641E-3 5.960E-3 3.433E-5 2.917E-5 8.905E-5 3.157E-5 3.431E-2 4.944E-2 1.664E0±1.036E0 

 

 
6 The mean square errors with respect to 𝜸opt and 𝜸exact are defined as MSEnorm,𝛾opt

 and MSE𝛾exact
, respectively. Similarly, we define the normalized mean square 

impedance error on the impedance recovered using 𝑍opt, 𝑍exp, and 𝑍exact as MSEZopt
, MSEZexp

, and MSEZexact
, respectively. 
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3.1.1.3 Influence of the Experimental Error on the Regularization Parameter Values 

The influence of 𝜎𝑛
exp

, the experimental noise level, on the 𝜆 from CV and LC methods was also 

studied. Specifically, we repeated the same procedure described in Section 3.1.1.1 with 𝜎𝑛
exp =

0.4 , 0.6 , 0.8 , and 1.0 Ω . Graphically, Figures S3–S4, S5–S6, S7–S8, and S9–S10 show the 

averaged recovered impedances and DRTs using each parameter regularization method for 𝜎𝑛
exp =

0.4, 0.6, 0.8, and 1.0 Ω, respectively. For increasing 𝜎𝑛
exp

, we note that the impedance recovery 

with the GCV, mGCV, re-im CV, and kf-CV methods are more accurate compared to the rGCV 

and LC methods. Quantitatively, the values of all the scores reported in Table S5 increase with 

𝜎𝑛
exp

, indicating an increasing distance between the optimal 𝜆opt  and the selected 𝜆  as 𝜎𝑛
exp

 

increases. Moreover, consistent with the experiments of Section 3.1.1.1, GCV and mGCV remain 

the most accurate methods for this set of experiments (Table S5). 

3.1.1.4 Frequency-Dependent Error Models 

In this section, the two frequency-dependent error models are studied for 𝜉𝑛
exp = 0.02 (Section 

2.2). Figures S11 and S12 show the averaged recovered impedances and DRTs using each 

parameter regularization method for the error model in (21a). The LC and rGCV methods slightly 

under-recovered the exact DRT (Figure S11 (f) and Figure S12 (b), respectively), and the 

corresponding recovered impedances slightly mismatched the exact impedance (Figure S11 (e) 

and Figure S12 (a), respectively). The DRTs recovered with the re-im CV and kf-CV methods are 

characterized by a higher uncertainty as evidenced by broader confidence bands (see the grey 

regions in panels (d) and (f) of Figure S12, respectively). Furthermore, Table S6 displays the values 

of the quality scores for each method. Similar to the white noise case (Sections 3.1.1.1 and 3.1.1.3), 

GCV appears to outperform all other methods. Figures S13 and S14 show the averaged recovered 

impedances and DRTs for each method studied and the noise model in (21b). Consistent with our 
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findings, we note that GCV and mGCV methods led to satisfactory impedance and DRT recovery, 

LC and rGCV under-recovered the DRT while re-im CV and kf-CV were more uncertain. 

3.1.2 2×ZARC Model 

Next, we studied the standard 2 ×ZARC model with overlapping ( 𝜏1 =  10-1 s, 𝜏2 =  10-2 s), 

separated (𝜏1 = 10-1 s, 𝜏2 =10-4 s), and distant (𝜏1 = 1 s, 𝜏2 = 10-4 s) timescales. We proceeded in 

the same manner as the single ZARC model and started with a single synthetic experiment for the 

overlapping 2×ZARC model. The recovered impedances and DRTs are displayed in Figure 5 and 

Figures S15-S16. The DRT peaks were well identified for all the methods and the impedance was 

closely recovered. The boxplots of the obtained 𝜆 and SEnorm,𝛾 are shown in panels (c) and (d) of 

Figure 3, respectively. The marginal distribution and correlation plots of the selected 𝜆 against 

𝜆opt  are displayed in Figure S17. Consistent with the conclusions for the single ZARC model, we 

find that the GCV method outperforms all other parameter regularization methods (see the lower 

values of all the quality scores in Table S7).  

Next, we studied the separated 2×ZARC model. The DRTs and impedances were well recovered 

as shown in Figure 6 and Figures S18-S19. Panel (a) of Figures S20 and S21 show the boxplot of 

𝜆 values obtained and SEnorm,𝛾 values, respectively, while Table S8 depicts the values for the 

quality scores. We note that the LC method slightly under-recovered the DRT (Figure S18 (f)). 

Unsurprisingly, for the distant 2 × ZARC model with 𝑅ct,1 < 𝑅ct,2  and 𝑅ct,1 > 𝑅ct,2  whose 

parameter values are reported in Table S3, the LC method under-recovered the DRT, and re-im 

CV and kf-CV recovered the DRT with significant uncertainty, see Figures S22-S25 and Table S9 

for 𝑅ct,1 > 𝑅ct,2 . We further studied the influence of 𝜎𝑛
exp

 for the overlapping, separated, and 

distant (𝑅ct,1 > 𝑅ct,2) 2×ZARC models, and we observed that the selected 𝜆 values for all the 
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methods were closer to the optimal value 𝜆opt , but slightly affected by higher 𝜎𝑛
exp

 (Tables S7-

S9). The GCV and mGCV methods consistently outperformed all the parameter regularization 

methods, even when the EIS data was corrupted with noise (21) in Section 2.2 (Figures S26-S37 

and Tables S10-S12).  
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

 

 

Figure 5. For the overlapping 2×ZARC model (𝜎𝑛
exp = 0.2 Ω), exact, experimental, and recovered 

impedances based on (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and (e) mGCV and 

hyper-mGCV methods are shown. Exact and recovered DRTs are shown in panels (b), (d), and (f).  
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

 

 

Figure 6. For the separated 2×ZARC model (𝜎𝑛
exp = 0.2 Ω), exact, experimental, and recovered 

impedances based on (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and (e) mGCV and 

hyper-mGCV methods are shown. Exact and recovered DRTs are shown in panels (b), (d), and (f).  
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3.1.3 Piecewise Constant and Gerischer Models 

To investigate whether the proposed methods can capture discontinuities in the DRT, the PWC 

and Gerischer models were also studied [30,31,50]. Figure 7 and Figures S38-S39 show the 

averaged recovered Nyquist plots and DRTs for the PWC. Consistent with the single and 2×ZARC 

models, the LC method slightly under-recovered the exact DRT while the re-im CV and kf-CV 

methods led to the recovered DRTs with larger uncertainty (see Figure 3, Figure 7, and Figures 

S38-39). For the Gerischer model, the same conclusion can be reached as for the PWC model 

(Figure 8 and Figures S40-S41). Due to their proximity to the optimal method and their lower 

uncertainty, the GCV and mGCV methods appeared to outperform the other methods, including 

when the error level increased and when the noise was modeled according to (21) (Figures S42-

S49, and Tables S13-S16).  

So far, we have used a fixed number 𝑁 of collocation points (𝑁 = 81 log timescales). Therefore, 

we also investigated the influence of the number 𝑁  on the accuracy of the DRT recovery. 

Specifically, we studied the cases 𝑁 = 41, 61, 101, and 121 log timescales, and found that the 

DRT recovery using GCV and mGCV were the most accurate as 𝑁 increased (see Figure S50-S57 

and Table S17). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 7. For the PWC model (𝜎𝑛
exp = 0.2 Ω), exact, experimental, and recovered impedances 

based on (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and (e) mGCV and hyper-

mGCV methods are shown. Exact and recovered DRTs are shown in panels (b), (d), and (f).  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 8. For the Gerischer model (𝜎𝑛
exp = 0.2 Ω), exact, experimental, and recovered impedances 

based on (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and (e) mGCV and hyper-

mGCV methods are shown. Exact and recovered DRTs are shown in panels (b), (d), and (f).  
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3.1.4 "Hook" Model 

We tested whether the proposed methods are also applicable when the impedance is characterized 

by high-frequency "inductive" loops [51]. The left and right panel of Figure 9 and Figures S58-

S59 show the averaged recovered impedances and DRTs for each method, respectively. Similar to 

the single ZARC, 2×ZARC, PWC, and Gerischer models, we observed that the LC method led to 

over-smooth DRTs and mismatched impedances (Figure S58 (f)). Conversely, the re-im CV and 

kf-CV methods are characterized by a larger uncertainty, leading to more significant confidence 

bands (panels (d) and (f) of Figure S59). Due to their proximity to the optimal method and narrow 

confidence bands, we conclude that the GCV and mGCV methods outperform all the other 

methods under study (Table S18), even when the experimental noise level increases and when the 

noise is modeled with error models (21) in Section 2.2, see Figures S60-S63 and Tables S18-S19. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 9. For the "hook" model (𝜎𝑛
exp = 0.2 Ω), exact, experimental, and recovered impedances 

based on (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and (e) mGCV and hyper-

mGCV methods are shown. Exact and recovered DRTs are shown in panels (b), (d), and (f). 
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3.1.5 Hyper-𝝀 

Due to the closeness to the optimal 𝜆opt  and least uncertainty, we identified the GCV and mGCV 

methods as the two most accurate approaches amongst all methods. Therefore, the nominal 

regularization level, 𝜆0 , in (11), which is analogous to 𝜆  in RR, was selected, leveraging the 

optimal, GCV, and mGCV scores. To compare these three methods against the corresponding 

hyper-𝜆 method, we generated a synthetic experiment (N = M = 81) with 𝜎𝑛
exp  = 0.2 Ω for the 

single ZARC, each 2×ZARC, the PWC, and the Gerischer models. Then, we recovered the DRTs 

and impedances, leveraging the iterative algorithm described elsewhere [31].  

3.1.5.1 Single ZARC Model 

Figure 2 shows the averaged recovered impedances and DRTs obtained using hyper method with 

𝜆0,opt and the 𝜆 = 𝜆0 from the GCV and mGCV methods. The DRTs peaks were better identified 

by hyper-𝜆  method relative to RR with lower normalized impedance mean square errors (i.e., 

MSEnorm,𝑍exp
, MSEnorm,𝑍exact

, and MSE𝛾norm,exact
, see Tables S20 and S21). 

3.1.5.2 Overlapping, Separated, and Distant 2×ZARC Models 

Figure 5, Figure 6, and Figure S65 show the recovered impedances and DRTs for the overlapping, 

separated, and distant 2×ZARC models, respectively. Consistent with Section 3.1.5.1, the hyper-

𝜆 methods outperformed the classical optimal, GCV, and mGCV methods by closely identifying 

the DRT peaks (Figure S64), which resulted in lower normalized impedance mean square errors 

as shown in Tables S20 and S21. 

3.1.5.3 Discontinuous DRTs 

Usually, RR is not able to adequately capture the position of discontinuities, even when the optimal 

𝜆opt  is used. Interestingly, the hierarchical Bayesian regularization method, which allows a 
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variation of 𝜆 with respect to the log timescale log 𝜏, has proven to satisfactorily capture the DRT 

discontinuities [30,31]. Therefore, we extended our analysis to the PWC and Gerischer models. 

The left and right panels of Figure 7 shows the recovered impedances and DRTs for the PWC 

model using the hyper-opt, hyper-GCV, and hyper-mGCV methods. For the hyper-opt, hyper-

GCV, and hyper-mGCV methods, the recovered impedances and DRTs closely matched the 

corresponding exact, and the positions of the discontinuities were excellently captured compared 

to the optimal, GCV, and mGCV methods (see panels (b), (d), and (f) of Figure 7, respectively). 

The same conclusions can be drawn for the Gerischer model (panels (b), (d), and (f) of Figure 8). 

Additionally, Tables S22 and S23 gather the computed values of the impedance errors 

MSEnorm,𝑍exp
, MSEnorm,𝑍exact

, and MSE𝛾norm,exact
 for the opt-, GCV-, and mGCV-based hyper-𝜆 

methods, including when the number of collocation points increases. We noticed that both scores 

were lower for the hyper-𝜆 methods, i.e., these methods led to more precise impedance recoveries 

of the Gerischer and PWC models compared to RR. 

3.1.5.4 DRTs with the "Inductive" Loops 

We continued our analysis with the "hook" model. Figure 9 displays the recovered impedances 

and DRTs. Consistent with the single ZARC, each 2×ZARC, the PWC, and the Gerischer models, 

the hyper-𝜆 methods captured both the peak and the ring of the "hook" model excellently compared 

to the corresponding optimal, GCV, and mGCV methods. The "hook" impedance was also closely 

recovered, see the values of MSEnorm,𝑍exp
, MSEnorm,𝑍exact

, and MSE𝛾norm,exact
 in Table S22. 
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3.2 Real Experiments 

In Section 3.1, GCV and mGCV were identified as the best parameter regularization scores 

amongst the scores studied. In this section, the RR and hyper-RR are analyzed using real EIS data 

from three batteries and one fuel cell.  

3.2.1 Lithium-ion Batteries 

3.2.1.1 Composite Polymer Electrolyte 

We first studied the EIS spectrum from a battery with a composite polymer electrolyte, a Li-metal 

anode, and a LiFePO4 cathode [52]. The EIS frequencies were taken between 1 Hz and 7 MHz 

with five points per decade, and the ECM parameters are presented in Table S24. Each row of 

Figure 10 show the impedance (left panel) and DRT (right panel) recovered using the optimal and 

hyper-opt, GCV and hyper-GCV, and mGCV and hyper-GCV methods. We observed that the 

hyper-𝜆 approaches recovered the DRT more accurately compared to the corresponding parameter 

regularization method (panels (b), (d), and (f) of Figure 10 and Table S25 for the values of 

MSEnorm,𝑍exp
, MSEnorm,𝑍ECM

, and MSE𝛾norm,ECM
7).  

 
7 It is worth stressing that, for real EIS experiments, the exact DRT and impedance are replaced by the ECM-fitted 

DRT and impedance, respectively. Moreover, no exact value can be given for these scores since the ECM is not 
unique. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 10. For the battery with a composite polymer electrolyte, ECM-fitted, experimental, and 

recovered impedances based on the (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and 

(e) mGCV and hyper-mGCV methods are shown. ECM-fitted recovered DRTs are shown in panels 

(b), (d), and (f).  
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3.2.1.2 Solid-like Dual-Salt Polymer Electrolyte 

We investigated EIS data gathered from a battery with the same electrode as the battery studied in 

Section 3.2.1.1, but with a solid-like dual-salt polymer electrolyte [53]. The results of the DRT 

and impedance recoveries are displayed in Figure 11 and Table S25 and we found that the hyper-

𝜆 methods exceled at recovering the DRT and impedance of this battery.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 11. For the DSPE battery, experimental impedance, ECM-fitted impedance, and recovered 

impedances based on the (a) optimal and hyper-opt, (c) GCV and hyper-GCV, and (e) mGCV and 

hyper-mGCV methods are shown. ECM-fitted and recovered DRTs are shown in panels (b), (d), 

and (f).  
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3.2.1.3 Commercial Li-ion Battery 

Next, we investigated the EIS spectrum collected from a Li-ion battery with frequencies in the 

range from 5 mHz to 600 Hz [18,33] The regressed ECM parameters are reported in Table S24. 

The recovered impedances and DRTs are displayed in Figure S65. The DRT peak of the estimated 

DRTs mismatched the peak of the DRT obtained with the ECM, but the impedances were closely 

recovered. These findings are validated with the values of the quality scores presented in Table 

S25. 

3.2.2 Symmetric Protonic Ceramic Fuel Cell 

Lastly, we analyzed data recovered from a symmetric cell with Sr0.9Ce0.1Fe0.8Ni0.2O3- as the 

electrode material and Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3- as the electrolyte at 500℃ in an atmosphere of 

93% Air-6% H2O [54]. The probed frequencies ranged from 0.01 Hz to 200 kHz with five points 

per decade. The ECM parameters are reported in Table S24. The DRT and impedances recovered 

with each method are shown in Figure 12. The results confirm that the hyper- 𝜆  methods 

outperformed the other methods, which was further validated by the low values of MSEnorm,𝑍exp
, 

MSEnorm,𝑍ECM
, and MSE𝛾norm,ECM

 for each hyper-𝜆 method (Table S25). 
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

 

 

Figure 12. For the symmetric protonic ceramic fuel cell, ECM-fitted, experimental, and recovered 

impedances based on the (a) optimal and hyper-optimal, (c) GCV and hyper-GCV, and (e) mGCV 

and hyper-mGCV methods are shown. ECM-fitted and recovered DRTs are shown in panels (b), 

(d), and (f).  
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4 Remarks and Future Work 

This article provides a thorough investigation of various methods for the selection of the 

regularization parameter for DRT deconvolution. Despite its broad scope, several opportunities 

for future extensions can be outlined. First, piecewise linear functions were used to discretize the 

DRT impedance in (3), but other discretizations (e.g., radial basis functions and neural networks) 

should also be studied as they are widely used [34]. Second, other hyperparameters aside from 𝜆, 

namely the parameter 𝛽 of the hyperprior distribution, the number 𝑁 of collocation points, the 

derivative order q of the differentiation matrix 𝑳 in (2), the partitioning parameter k of the kf-CV, 

and the minimum 𝜏min and maximum 𝜏max timescales, could be “optimally” selected. Third, other 

methods could be studied, including strong robust CV [55], generalized maximum likelihood [38], 

randomized generalized approximate CV [56], and Mallow CP [57]. 

5 Conclusions 

Amongst all methods implemented to deconvolve the DRT, RR has been widely applied, but its 

accuracy still depends upon a regularization parameter that can significantly affect the quality of 

the DRT and impedance recoveries. In this work, we studied six scores for parameter regularization 

selection, including five cross-validation scores and the L-curve. Using an array of synthetic 

experiments, we showed that the GCV and mGCV scores outperformed the other scores studied. 

Additionally, we extended the previously developed hyper-Bayesian approach by leveraging the 

GCV and mGCV scores. Then, we showed with various artificial and real EIS spectra that 

hyperparametric selection recovers DRTs and impedances more precisely than RR. The 

implementation of the code used to generate these results is provided in pyDRTtools, allowing 

other researchers to follow up on this work. 
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Code Availability 

Relevant code is available at https://github.com/ciuccilab/pyDRTtools. 
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List of Symbols 

Greek letters 

𝜸 Vector of the discretized DRT 

𝛾(log 𝜏) Distribution of relaxation times 

𝜆 Regularization parameter (𝜆opt  or 𝜆CV) 

𝜆hyper  Hyper-𝜆 optimal regularization parameter  

𝜎𝑛
exp

 Level of experimental noise for the synthetic 

experiments 

𝜏 Relaxation time 

 

Latin letters 

𝑨re Discretization matrix for the real part of the 

impedance 

𝑨im Discretization matrix for the imaginary part of 

the impedance 

𝑳 Differentiation matrix 

𝒁DRT Vector of the regressed impedances 

𝒁exp Vector of the experimental impedances 

𝒙 Vector of discretized DRTs for RR 

abs𝜆 Mean absolute distance 

absnorm,𝜆 Mean absolute normalized distance 
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𝑓 Frequency 

N Number of collocation points 

M Number of frequencies 

MSE𝜆 Mean square error of the selected 𝜆 

MSEnorm,𝛾 Normalized DRT mean square error (𝛾 = 𝛾opt 

or 𝛾exact) 

MSEnorm,𝑍 Normalized impedance mean square error (𝑍 =

𝑍opt , 𝑍exp, 𝑍ECM, or 𝑍exact) 

SEnorm,𝛾 Normalized DRT square error 

 

List of Abbreviations 

CV Cross-validation 

DRT Distribution of relaxation times 

ECM Equivalent circuit model 

EIS Electrochemical impedance spectroscopy 

GCV Generalized cross-validation 

kf-CV k-fold cross-validation 

LC L-curve 

MAP Maximum a posteriori 

mGCV Modified generalized cross-validation 

PWC Piecewise constant 
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re-im CV Real imaginary cross-validation 

rGCV Robust generalized cross-validation 

RR Ridge regression 

  



47 

 

References 

[1] C. Byoung-Yong, P. Su-Moon, Electrochemical impedance spectroscopy, Annual Rev. Anal. 

Chem. 3 (2010) 29–207. 

[2] F.E. Bedoya-Lora, I. Holmes-Gentle, A. Hankin, Electrochemical techniques for 

photoelectrode characterization, Curent Opinion in Green and Sustainable Chemistry. 29 

(2021) 100463. 

[3] H. Nara, T. Yokoshima, T. Osaka, Technology of electrochemical impedance spectroscopy 

for an energy-sustanined society, Current Opinion in Electrochemistry. 20 (2020) 66–77. 

[4] I.D. Raistrick, Application of impedance spectroscopy to materials science, Annual Rev. 

Mater. Sci. 16 (1986) 343–370. 

[5] S.B. Rutkove, Electrical impedance myography: Background, current state and future 

direction, Muscle Nerve. 40 (2009) 936–946. 

[6] K. Krukiewicz, Electrochemical impedance spectroscopy as a versatile tool for the 

characterization of neural tissue: A mini review, Electrochemistry Communications. 116 

(2020) 106742.  

[7] D.D. Macdonald, Reflections on the history of electrochemical impedance spectroscopy, 51 

(2006) 1376–1388. 

[8] F. Ciucci, Modeling electrochemical impedance spectroscopy, Current Opinion in 

Electrochemistry. 13 (2019) 132–139.  

[9] D. Klotz, J.P. Schmidt, A. Kromp, A. Weber, E. Ivers-Tiffée, The distribution of relaxation 

times as beneficial tool for equivalent circuit modeling of fuel cells and batteries, ECS Trans. 

41 (2019) 25–33.  



48 

 

[10] A. Maradesa, B. Py, E. Quattrocchi, F. Ciucci, The probabilistic deconvolution of the 

distribution of relaxation times with finite Gaussian processes, Electrochim. Acta. 413 (2022) 

140119. 

[11] E. Quattrocchi, T.H. Wan, A. Belotti, D. Kim, S. Pepe, S.V. Kalinin, M. Ahmadi, F. Ciucci, 

The deep-DRT: A deep neural network approach to deconvolve the distribution of relaxation 

times from multidimensional electrochemical impedance spectroscopy data, Electrochim. 

Acta. 392 (2021) 139010.  

[12] D. Medvedev, Distribution of relaxation time analysis for solid state electrochemistry, 

Electrochim. Acta. 360 (2020) 137034. 

[13] B.A. Boukamp, A. Rolle, Use of a distribution function of relaxation times (DFRT) in 

impedance analysis of SOFC electrodes, Solid State Ionics. 314 (2018) 103–111.  

[14] N. Schlüter, S. Ernst, U. Schröder, Finding the optimal regularization parameter in 

distribution of relaxation times analysis, ChemElectroChem. 6 (2019) 6027–6037.  

[15] N. Florsch, C. Camerlynck, A. Revil, Direct estimation of the distribution of relaxation times 

from induced-polarization spectra using a Fourier transform, Near Surface Geophysics. (2012) 

517–531. 

[16] K. Kobayashi, T.S. Suzuki, Extended distribution of relaxation times analysis for 

electrochemical impedance spectroscopy, Electrochem. 90 (2022) 017004. 

[17] M.A. Danzer, Generalized distribution of relaxation times analysis for the characterization of 

impedance spectra, Batteries. 5 (2019) 53.  

[18] J. Liu, F. Ciucci, The Gaussian process distribution of relaxation times: A machine learning 

tool for the analysis and prediction of electrochemical impedance spectroscopy data, 

Electrochim. Acta. 331 (2020) 135316.  



49 

 

[19] J. Weese, A reliable and fast method for the solution of Fredholm integral equations of the 

first kind based on Tikhonov regularization, Computer Physics Communications. 69 (1992) 

99–111. 

[20] A.C. Alvarez, G. Hime, D. Marchesin, P.G. Bedrikovetsky, The inverse problem of 

determining the filtration function and permeability reduction in flow of water with particles 

in porous media, Transp Porous Med. 70 (2007) 43–62.  

[21] J. Kaipio, E. Somersalo, Statistical inverse problems: Discretization, model reduction and 

inverse crimes, Journal of Computational and Applied Mathematics. 198 (2007) 493–504. 

[22] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, A.G. Yagola, Numerical methods for the 

solution of ill-posed problems, Springer Netherlands, Dordrecht, 1995.  

[23] S.V. Pereverzev, S.G. Solodky, V.B. Vasylyk, M. Žic, Regularized collocation in distribution 

of diffusion times applied to electrochemical impedance spectroscopy, Computational 

Methods in Applied Mathematics. 20 (2020) 517–530. 

[24] S. Hershkovitz, S. Tomer, S. Baltianski, Y. Tsur, ISGP: Impedance spectroscopy analysis 

using evolutionary programming procedure, ECS Trans. 33 (2019) 67–73.  

[25] A.B. Tesler, D.R. Lewin, S. Baltianski, Y. Tsur, Analyzing results of impedance 

spectroscopy using novel evolutionary programming techniques, J Electroceram. 24 (2010) 

245–260.  

[26] B.A. Boukamp, Fourier transform distribution function of relaxation times; application and 

limitations, Electrochim. Acta. 154 (2015) 35–46.  

[27] T. Hörlin, Deconvolution and maximum entropy in impedance spectroscopy of noninductive 

systems, Solid State Ionics. 107 (1998) 241–253.  



50 

 

[28] J. Liu, F. Ciucci, The deep-prior distribution of relaxation times, J. Electrochem. Soc. 167 

(2020) 026506.  

[29] F. Ciucci, The Gaussian process Hilbert transform (GP-HT): Testing the consistency of 

electrochemical impedance spectroscopy data, J. Electrochem. Soc. 167 (2020) 126503.  

[30] M.B. Effat, F. Ciucci, Bayesian and hierarchical Bayesian based regularization for 

deconvolving the distribution of relaxation times from electrochemical impedance 

spectroscopy data, Electrochim. Acta. 247 (2017) 1117–1129.  

[31] F. Ciucci, C. Chen, Analysis of electrochemical impedance spectroscopy data using the 

distribution of relaxation times: A Bayesian and hierarchical Bayesian approach, Electrochim. 

Acta. 167 (2015) 439–454.  

[32] J. Huang, M. Papac, R. O’Hayre, Towards robust autonomous impedance spectroscopy 

analysis: A calibrated hierarchical Bayesian approach for electrochemical impedance 

spectroscopy (EIS) inversion, Electrochim. Acta. 367 (2021) 137493.  

[33] M. Saccoccio, T.H. Wan, C. Chen, F. Ciucci, Optimal regularization in distribution of 

relaxation times applied to electrochemical impedance spectroscopy: Ridge and lasso 

regression methods - a theoretical and experimental study, Electrochim. Acta. 147 (2014) 

470–482.  

[34] T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the 

distribution of relaxation times deconvolution: Implementing radial basis functions with 

DRTtools, Electrochim. Acta. 184 (2015) 483–499.  

[35] M.A. Lukas, F.R. de Hoog, R.S. Anderssen, Efficient algorithms for robust generalized cross-

validation spline smoothing, Journal of Computational and Applied Mathematics. 235 (2010) 

102–107.  



51 

 

[36] M. Eckert, L. Kolsch, S. Hohmann, Fractional algebraic identification of the distribution of 

relaxation times of battery cells, in: 2015 54th IEEE Conference on Decision and Control 

(CDC), IEEE, Osaka, 2015: pp. 2101–2108.  

[37] M.A. Lukas, F.R. de Hoog, R.S. Anderssen, Practical use of robust GCV and modified GCV 

for spline smoothing, Comput Stat. 31 (2016) 269–289.  

[38] G. Wahba, A comparison of GCV and GML for choosing the smoothing parameter in the 

generalized spline smoothing problem, Ann. Statist. 13 (1985) 1378–1402. 

[39] S. Effendy, J. Song, M.Z. Bazant, Analysis, design, and generalization of electrochemical 

impedance spectroscopy (EIS) inversion algorithms, J. Electrochem. Soc. 167 (2020) 106508.  

[40] T. Fushiki, Estimation of prediction error by using K-Fold cross-validation, Stat Comput. 21 

(2011) 137–146.  

[41] P.C. Hansen, D.P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed 

problems, SIAM J. Sci. Comput. 14 (1993) 1487–1503. 

[42] T. Paul, P.W. Chi, P.M. Wu, M.K. Wu, Computation of distribution of relaxation times by 

Tikhonov regularization for Li ion batteries: usage of L-curve method, Sci Rep. 11 (2021) 

12624. 

[43] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, Springer, New York, NY. (2016). 

[44] Y.J. Kim, C. Gu, Smoothing spline Gaussian regression: More scalable computation via 

efficient approximation, Journal of Royal Statistical Society. 66 (2004) 337–356. 

[45] M. Kuhn, K. Johnson, Applied predictive modeling, Springer New York, New York, NY, 

2013.  

[46] M.P.J Van der Loo, Distribution based outlier detection in univariate data, Statisctics 

Netherlands. (2010). 



52 

 

[47] A.-K. Hjelm, G. Lindbergh, Experimental and theoretical analysis of LiMn2O4 cathodes for 

use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS), 

Electrochim. Acta. 47 (2002) 1747–1759. 

[48] P. Su-Moon, Y. Jung-Suk, Electrochemical impedance spectroscopy for better 

electrochemical measurements, Anal. Chem. 75 (2003) 455A-461A. 

[49] A. Lasia, Electrochemical impedance spectroscopy and its applications, Springer New York, 

New York, NY, 2014.  

[50] B.A. Boukamp, Derivation of a distribution function of relaxation times for the (fractal) finite 

length Warburg., Electrochim. Acta. 252 (2017) 154–163. 

[51] D. klotz, Negative capacitance or inductive loop -A general assessment of a common low 

frequency impedance feature, Electrochemistry Communications. 98 (2019) 58–62. 

[52] Z. Dai, J. Yu, J. Liu, R. Liu, Q. Sun, D. Chen, F. Ciucci, Highly conductive and nonflammable 

composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries, Journal 

of Power Sources. 464 (2020) 228182.  

[53] J. Yu, J. Liu, X. Lin, H.M. Law, G. Zhou, S.C.T. Kwok, M.J. Robson, J. Wu, F. Ciucci, A 

solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over 

an extended temperature range, Energy Storage Materials. 37 (2021) 609–618.  

[54] Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong, M. Liang, M.J. Robson, X. Xiong, Z. Zhang, 

G. Kim, Z. Shao, F. Ciucci, Nanocomposites: A new opportunity for developing highly active 

and durable bifunctional air electrodes for reversible protonic ceramic cells, Adv. Energy 

Mater. 11 (2021) 2101899.  

[55] M.A. Lukas, Strong robust generalized cross-validation for choosing the regularization 

parameter, Inverse Problems. 24 (2008) 034006. 



53 

 

[56] G. Wahba, Support vector machines, reproducing kernel Hilbert spaces and the randomized 

generalized approximate cross-validation (GACV), MIT Press. (1999) 69–88. 

[57] K.C. Li, Asymptotic Optimality for CP, CL, Cross-validation and generalized cross-validation: 

Discrete Index Set, Ann. Statist. 15 (1987).  

 


