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Abstract 8 

Methane emission rates originating from oil and gas production facilities are highly skewed and span 6-8 9 

orders of magnitude. Traditional leak detection and repair programs have relied on surveys with handheld 10 

detectors at intervals of 2 to 4 times a year to find and fix emissions, however this approach leads to leaks 11 

being active for the same interval independently of their magnitude. In addition, manual surveys are labor 12 

intensive. Novel methane detection technologies offer opportunities to further reduce emissions by 13 

quickly detecting the high-emitters, which account for a disproportionate fraction of total emissions. In 14 

this work, combinations of methane detection technologies were simulated in a tiered approach for 15 

facilities representative of the Permian Basin, a region with skewed emission rates and large numbers of 16 

high-emitters, which include sensors on satellites, aircraft, continuous monitors and Optical Gas Imaging 17 

(OGI) cameras, with variations on survey frequency, detection thresholds and repair times. Results show 18 

that in oil and gas production regions with skewed emission rates and large numbers of high-emitters, 19 

strategies that increase the frequency of surveys targeting high-emitters while decreasing the frequency 20 

of OGI inspections, which find the smaller emissions, achieve higher reductions than quarterly OGI and, 21 

in some cases, reduce emissions further than monthly OGI.  22 
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Synopsis 27 

Tiered leak detection and repair programs using novel methane detection technologies that quickly find 28 

and fix high-emitting sources achieve higher emission reductions than manual programs at fixed intervals. 29 
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 33 

Introduction 34 

Methane is a potent greenhouse gas which exerts the second largest climate forcing after carbon dioxide.1 35 

Rapid reductions on methane emissions are needed to limit global warming to 1.5°C. As such, in 2021 36 

nations around the globe signed the Global Methane Pledge, committing to reduce their collective 37 

methane emissions 30% from 2020 levels by 2030.2 Atmospheric methane has multiple natural and 38 



anthropogenic origins, with activities from coal mining and oil and natural gas systems accounting for 39 

~18% of global emissions for the year 2017.3 Emissions from the oil and natural gas systems are seen as 40 

the sector that can account for the majority of emission reductions by 2030 and multiple companies have 41 

set targets for emission reduction.4 42 

Multiple studies performed over the last decade have improved the knowledge of emissions occurring 43 

along oil and gas supply chains and have shown that emission distributions are highly skewed,5,6 with a 44 

few number of sources accounting for a large fraction of emissions. The variation of emission rates can be 45 

significant, with emission rates spanning six to eight orders of magnitude (Figure 1a).7,8 Emission rates 46 

reported from these studies are snapshots, however absolute emissions are given by the time a leak is 47 

active and by its emission rate. One strategy to reduce emissions from oil and gas activities is through 48 

mitigation of un-intended emissions in Leak Detection and Repair Programs (LDAR), which shorten the 49 

time that leaks are active. 50 

 51 

  52 

Figure 1. (a) Emission distributions from oil and gas infrastructure, and (b) same total emissions for 53 

various emission rates and durations. 54 



 55 

The highest methane emission rate reported by Allen et al.,7 in a study that sampled production sites in 56 

multiple basins with Optical Gas Imaging (OGI) cameras, was 5.5 kg/hr. If this leak was active for 91 days 57 

(half of the time between two times a year LDAR inspections) it would release the same amount of 58 

methane that the highest emission rate from a study surveying the Permian basin using aircraft based 59 

measurements8 would, if it was active for less than an hour (Figure 1b). Thus, high emission rates active 60 

for a relatively short amount of time can have a significant impact on total emissions, so they should be 61 

detected and fixed quickly.  62 

Traditionally LDAR programs have relied on OGI or method 21 with inspections two or four times a year, 63 

which, until recently were the only options allowed by federal regulations.9 Under this approach the time 64 

between surveys has been independent of the size of leaks, leading to leaks with high emission rates to 65 

potentially be active for large amounts of time before they are found. However, in recent years, there 66 

have been rapid advancements in technologies to detect methane with sensor platforms including 67 

aircraft, satellites, drones, fixed monitors or cameras on pads and trucks, offering opportunities for LDAR 68 

programs with greater emission reductions and that are less labor intensive than conventional 69 

approaches.10 70 

In order to compare the reduction in emissions between LDAR programs, computational models such as 71 

FEAST11or LDAR-Sim12 have been developed. With these models it has been demonstrated that novel 72 

technologies can achieve at least the same reduction as two or four times a year OGI, and that OGI 73 

inspections are still needed in follow-ups from the novel technologies to find the smallest leaks.13 However 74 

studies that employ these models have not evaluated combinations of multiple technologies nor 75 

continuous monitors. In addition, these studies have simulated facilities with the same equipment and 76 

components, while the types of equipment can vary depending on their vintage and throughput. 77 



Multiple studies have shown that emissions from oil and gas activities are larger than reported emissions, 78 

and the discrepancy is attributed to large un-intended emissions.14,6 There is a need to achieve emission 79 

reductions in a way that is effective and safe, as frequent inspections using manual OGI cameras require 80 

extensive driving between facilities. This work will explore LDAR programs that rely on combinations of 81 

methane detection technologies, focusing on quickly detecting and fixing the highest emitters, while 82 

decreasing the number of OGI inspections. The facilities simulated are heterogeneous and representative 83 

of the Permian Basin, which is an oil and gas production basin with large numbers of high-emitters.8,15,16 84 

 85 

Methodology 86 

This work uses a model based on the leak module of the Methane Emission Estimation Tool (MEET),17,18 87 

with the inclusion of LDAR programs. The resulting model is similar in operation to other open source 88 

LDAR models,11,12 but has some differences that are detailed in the following sections. The simulation is 89 

stochastic and each LDAR scenario was ran in a Monte Carlo approach 50 times to get a range of 90 

reductions. The temporal resolution of the simulation was one day and was ran for a period of 5 years. 91 

 92 

Facilities 93 

The facilities simulated here include tank batteries taken from Stokes et al.,19 comprising large centralized 94 

facilities and smaller ones based on the number of tanks, plus wellhead only sites. The smaller tank 95 

batteries are representative of older facilities which typically include one or a few wellheads, separation 96 

equipment and tanks on the same pad. On the other hand, the centralized tank batteries include larger 97 

numbers of tanks and typically do not have wellheads on the pad, rather they process output from 98 

multiple wellhead only sites located at pads in close proximity. The types of facilities here simulated are 99 



the first difference compared to previous simulations,11,12 making the simulation more representative of 100 

facilities in the field, particularly the Permian basin and allowing to test the effect of having certain LDAR 101 

programs present only at facilities with larger potential to emit. Details on equipment and component 102 

counts at each facility are described in the Supporting Information (SI) Section S.1. 103 

 104 

Emission measurements 105 

One of the most important parameters in LDAR models is the emission distribution, which needs to be 106 

representative of the conditions in the field, for example by including high emitters. Here, the approach 107 

was not to fit a distribution to the data and rather sample from measurements, as done in Zavala-Araiza 108 

et al.14 and Allen et al.20 Only non-routine emissions were simulated as the objective was to estimate 109 

emission reduction. 110 

Here, two different sources of emissions based on field data were combined to have a representative 111 

emission distribution of the Permian basin. The first dataset came from studies using close range 112 

inspections (OGI cameras or method 21) from Allen et al.,7 Bell et al.21 and Kuo et al.,22 as described by 113 

Kemp et al.13 with the addition of data from Pacsi et al.23 These studies were chosen as they have 114 

information of the equipment where each emission originated from, which was used to randomly assign 115 

emissions in this study from that equipment category, for example a component at a separator will sample 116 

from the emissions originating from separators from the combined datasets. The second dataset was from 117 

Permian basin flyovers from Bridger Photonics, whose distribution is shown in Figure 1 and was also 118 

disaggregated by equipment. This dataset includes measurements that are higher than 26 kg/hr, which is 119 

a threshold typically used to refer to high-emitters (also referred to as super-emitters).14 Bridger Photonics 120 

uses a continuous wave LiDAR measurements and has been described and evaluated by Johnson et al.24 121 

and Conrad et al.25 From this dataset, only the emissions where operators confirmed that the source was 122 



non-routine, after following-up, were included in the distribution. Sensitivity analysis S0 was performed 123 

by adding to the distribution of close range inspections data from ERG26 and Ravikumar et al.,27 as 124 

described by Kemp et al.,13 and assigning emissions randomly from a combined distribution, 125 

independently of which equipment the data came from, except for tanks and flares where the data comes 126 

from the flyover distribution.  127 

Emissions from the studies using close range inspections were added to the flyover dataset, which 128 

surveyed 1251 facilities, to account for the emissions below the detection threshold of the aerial flyovers. 129 

The first step to integrate these measurements was to average the percentage of sites with emissions in 130 

each close range study weighting the average based on the number of sites surveyed in each study. The 131 

weighted average resulted in 71% of sites having leaks from the close range inspection datasets. This value 132 

carries uncertainty as it aggregates field studies performed in different locations, with different types of 133 

facilities and at different times, thus, this value was varied in sensitivity analyses S1 and S2 to be 91% and 134 

51%, respectively, to assess the effect of this parameter on the emission reduction results. Additional 135 

details on how emissions from the close range inspection were combined to the flyover dataset are 136 

detailed in SI Section S.2. 137 

 138 

Leak generation rates 139 

Transitions between leaking and non-leaking states were simulated with the same equations (Eqs. 1-3) as 140 

in the MEET model.17,18  Non-routine emissions from tanks and flares were also simulated with these 141 

equations, and they were modeled at the equipment level, whereas emissions from the other equipment 142 

were modeled at the component level. 143 

𝑡 𝑛𝑒𝑥𝑡 𝑙𝑒𝑎𝑘 𝑠𝑡𝑎𝑟𝑡𝑠 = 𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑒𝑎𝑘 𝑠𝑡𝑜𝑝𝑠 − 𝑀𝑇𝐵𝐹 ∗ 𝐿𝑛(1 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟)  (Eq. 1) 144 



𝑡𝑙𝑒𝑎𝑘 𝑠𝑡𝑜𝑝𝑠,   𝑛𝑜 𝐿𝐷𝐴𝑅 = 𝑡𝑙𝑒𝑎𝑘 𝑠𝑡𝑎𝑟𝑡 − 𝑀𝑇𝑇𝑅 ∗ 𝐿𝑛(1 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟)        (Eq. 2) 145 

𝑀𝑇𝑇𝑅 = (
𝑝𝐿𝑒𝑎𝑘

1−𝑝𝐿𝑒𝑎𝑘
) ∗ 𝑀𝑇𝐵𝐹                                           (Eq. 3) 146 

Where pLeak is the fraction of a particular component or equipment that are observed to be emitting in 147 

a given point in time during field studies. Mean Time Between Failures (MTBF) is the average time it takes 148 

for a new leak to emerge and is estimated based on field data; this variable is referred to as leak 149 

generation rate in FEAST and LDAR-Sim. Mean Time To Repair (MTTR) represents the time that leaks  stop 150 

emitting  outside LDAR inspections, and is a parameter referred to as null repair rate in FEAST and LDAR-151 

Sim.11,12 MTTR is included in these types of models as it keeps the number of leaks relatively steady at the 152 

value of pLeak, when averaged over a long period of time and over multiple simulations, in scenarios that 153 

do not have LDAR programs. 154 

From the variables in Eqs. 1-3, pLeak can be directly obtained from surveys, MTBF is typically estimated 155 

based on surveys, and MTTR is then estimated based on Eqn. 3. The way that MTBF is typically estimated 156 

is to count the number of components of a particular kind that are leaking on a given LDAR survey and 157 

then divide the total time those components were operating in between LDAR surveys by the number of 158 

leaks, to arrive at the average time to leak.12 The MTTR and MTBF parameters for component type of leaks 159 

were taken directly from the MEET model, while MTTR and MTBF for emissions from tanks and flares were 160 

estimated using the same approach as components, based on the time between the first Bridger flyover 161 

and the second one. Because some sites had OGI inspections in between the aerial surveys, if a site had 162 

detected emissions during an OGI inspection (some tanks were found to be emitting) those findings were 163 

also counted in the number of emissions in the time frame, as they were repaired before the second 164 

Bridger flyover. The pLeak value used for tanks was from the first aerial surveys as this is the baseline. For 165 

flares, the pLeak was taken from aerial surveys from the Environmental Defense Fund’s PermianMap,28 166 

which reports that 10% of tanks in the Permian have flares that are malfunctioning, including half of the 167 



malfunctioning as unlit. At the beginning of the simulation the pLeak number of each component or 168 

equipment was assigned to determine which components and equipment were emitting initially. Table 1 169 

shows the values of pLeak, MTBF and MTTR used for the base case simulations. MTBF and MTTR are mean 170 

values that will lead to temporal variability of individual leaks based on Eqs. 2-3. Figure S4 shows a 171 

distribution of times for leak onset and times before leaks stop in the absence of LDAR to illustrate the 172 

temporal variation. 173 

Table 1. Parameters used in base case scenarios for transition between leaking and non-leaking states. 174 

Component/equipment pLeak MTBF [days] MTTR [days] 

Valves 0.00191 191132 366 

Connectors 0.000665 548968 365 

OEL 0.00646 56536 368 

PRV 0.0272 13398 375 

Flanges 0.000665 548968 365 

Other 0.000665 548968 365 

Tanks 0.046 1515 73 

Flares 0.1 1435 159 

 175 

Leak generation rates and null repair rates (MTBF and MTTR) are among the parameters with the most 176 

uncertainty and also ones that affect outcomes the most.12,13 To account for the uncertainty in their 177 

values, Fox et al.12 suggest performing sensitivity analyses varying these parameters. In this work 178 

sensitivity analyses were constructed based on empirical data on duration of emissions from Cusworth et 179 

al.,8 which surveyed facilities multiple times in the Permian in 2019 for a month and a half period to assess 180 

persistency of high emitters. To be able to use Eqs. 1-3, the traditional approach is to get pLeak from 181 

surveys, estimate MTBF from survey data and calculate MTTR using Eq. 3. Here, the approach was to first 182 

estimate MTTR values based on empirical data on emission duration from Cusworth et al.,8 followed by 183 

calculation of MTBF values using Eq. 3 and the pLeak values from surveys. A description of how these 184 

parameters were derived is detailed in SI Section S.3., and the values varied across the sensitivity analyses  185 

are shown in Table 2. 186 



 187 

Table 2. Parameters varied in sensitivity analyses and base case simulations. 188 

Set of 
simulations 

Close range 
inspection 
datasets, which 
are then combined 
with the flyover 
dataset 

Fraction of sites with 
emissions from close range 
inspections, when 
combining close range and 
flyover datasets at each 
Monte Carlo iteration 

pLeak* MTBF [days]* MTTR 
[days]* 

Base case Allen et al.,7 Bell et 
al.,21 Kuo et al.,22 

Pacsi et al.23 † 

0.71 

Tanks = 
0.046 
Flares 
= 0.1 

Tanks  = 1515 
Flares = 1435 

Tanks  = 
73 

Flares = 
159 

Sensitivity 
analysis S0 

Allen et al.,7 Bell et 
al.,21 Kuo et al.,22 

Pacsi et al.,23 
ERG,26 Ravikumar 

et al.27 ‡ 

Sensitivity 
analysis S1 

Allen et al.,7 Bell et 
al.,21 Kuo et al.,22 

Pacsi et al.23 † 

0.91 

Sensitivity 
analysis S2 

0.51 

Sensitivity 
analysis S3 

0.71 

Tanks = 103.7 
Flares = 45 

Tanks & 
flares = 5 

Sensitivity 
analysis S4 

Tanks = 207.4 
Flares = 90 

Tanks & 
flares = 10 

Sensitivity 
analysis S5 

Tanks = 622.2  
Flares = 270 

Tanks & 
flares = 30 

     * All sets of simulations use the pLeak, MTBF and MTTR parameters specified in Table 1 for: valves, 189 
connectors, OEL, PRV, flanges and other components. † Emissions assigned based on equipment type 190 
from measurements, for all sources. ‡ Emissions assigned independently of equipment type from 191 
measurements, except for tanks and flares. 192 

 193 

LDAR scenarios 194 

In this work, multiple combinations of technologies with various levels of detection thresholds were used. 195 

Initially the simulations were performed using the base case parameters. In addition, all scenarios were 196 

performed again for the various sensitivity analysis (S0-S5). 197 

The first scenario was no LDAR, that serves as a baseline to which the LDAR scenarios were compared to 198 

in order to estimate reduction; the first year of each simulation was not included when estimating 199 



reduction, only years 2-5 were included. Scenarios with only OGI surveys were included with frequencies 200 

of 1x (1 time a year), 2x, 4x, 6x and 12x, with a detection threshold taken from Ravikumar et al.29 assuming 201 

a distance of 1.5m. The 4x OGI scenario corresponds to the survey frequency proposed by EPA for new 202 

regulations,30 and was used as reference.  203 

Aerial scenarios were simulated in combination with OGI by having in a given year one scheduled OGI 204 

inspection at all facilities plus 1x-11x aerial surveys. For example, 1x aerial + 1x OGI means two inspections 205 

a year 6 months apart from each other, one using aerial and one using OGI. The detection thresholds 206 

simulated for aerial were: 2, 5, 10 and 25 kg/hr. Scenarios with combinations of satellite + aerial + OGI 207 

were included by having the same scenarios described for aerial + OGI, plus the satellite coverage. For 208 

satellites, two frequencies that cover all facilities were included, daily revisit and weekly revisit; while 209 

these revisit frequencies might not be currently available multiple satellite constellations are being 210 

planned which will enable them.31,32 The two satellite detection thresholds included were 50 and 100 211 

kg/hr, which are within the range of what Jacob et al.31 described as the capabilities of point source 212 

monitoring satellites. Scenarios with satellites + 1x OGI and no aircraft were also included. Satellite 213 

detection of emissions is diminished by cloud cover, and details of how their effect were implemented in 214 

the model are detailed in SI Section S.4.  215 

Continuous monitoring were included by using networks of sensors: one or less than one sensor per site, 216 

combined with OGI 1x. Based on simulated data from Chen et al.,33 it was assumed that these networks 217 

of sensors were able to detect emissions of 5 kg/hr and 10 kg/hr within 1 week of emission onset (uniform 218 

distribution, sample randomly the number of days to detection). Additional scenarios were included that 219 

add satellite detection in parallel with of the networks of continuous monitors + OGI. 220 

Continuous monitors were also simulated as being present on a site basis combined with OGI 1x. It was 221 

assumed that all sites had sensors and emissions were detected within 1 day of onset. The detection 222 



thresholds simulated were 0.2, 2, 5 and 10 kg/hr. Additional scenarios were included that add satellite 223 

detection on top of the continuous monitors + OGI. 224 

Finally, a tiered approach was used with site level continuous monitors present only on tank batteries 225 

(priority sites), which have tanks and/or flares, since they are the most common sources of super-emitters, 226 

while wellhead only sites (non-priority sites) were not assigned continuous monitors. The priority sites 227 

had continuous monitors + 1x OGI, while the non-priority sites had scenarios of 1x OGI, and 1-5x aerial + 228 

1x OGI. Scenarios with satellites in parallel with the described sensors were also included. Table S2 shows 229 

in detail the scenarios simulated.  230 

 231 

Repair times. 232 

Once leaks were found by the detection technologies, they were scheduled for repair. For OGI inspections, 233 

repair times were selected at random between 1 and 30 days after inspections. For aerial inspections, 234 

repair times were randomly selected between 1 and 30 days after the final report was received, which 235 

was received 8-14 days after the first flyover. Leaks found with continuous monitors and satellites were 236 

assumed to be repaired within 7 days and 2 days, respectively, chosen at random from a uniform 237 

distribution. When surveys from different technologies coincide on the same day (e.g. satellite and 238 

aircraft), and if the leak was found by more than one technology, the lowest repair time was chosen.  239 

Scenarios were performed by having leaks detected by satellites and continuous monitors, repaired within 240 

30 days, as opposed to sooner, to compare the effect of repair times on the emission reduction. In total, 241 

based on the permutations of detection threshold and repair times, 566 simulations were ran for the base 242 

case, in addition to 566 for each of the sensitivity analysis S0-S5 (See tables 2 and S2 for details of 243 

simulations ran). Technologies such as aerial, continuous monitors and satellites need a follow up to find 244 

the exact cause of the leak and repair it, and while being at the site operators might survey parts or the 245 



entire facility to find additional potential leaks. Here, it was assumed that only the emissions found in the 246 

original surveys were repaired as a conservative approach.  247 

 248 

LDAR simulation results 249 

The following sub-sections focus on particular combinations of technologies, repair times and site visits. 250 

SI section S.6. analyzes the effect on emission reduction of including vs not including emissions from flares; 251 

given that there is no significant difference on a relative or absolute basis, results including emissions from 252 

flares are reported in following sub-sections. SI section S.7 assesses the change in reduction of the 253 

sensitivity analyses compared to the base case simulations; at it shows that the most sensitive parameters 254 

are the leak generation and null repair rates. Results reported in following sub-sections include base case 255 

and sensitivity analysis S3 simulations to contrast results since they have the longest and shortest duration 256 

of high-emitters, respectively.  257 

 258 

Combinations of satellite, aerial and OGI sensors 259 

Figure 2a shows the emission reduction of aerial surveys with 10 kg/hr detection threshold and yearly 260 

OGI. As has been reported previously,13 emissions decrease with increasing frequency of inspections. 261 

However, the benefit of additional inspections has diminishing returns. This figure also shows a tiered 262 

approach with daily satellite revisits with a detection threshold of 50 kg/hr plus the aerial and OGI surveys. 263 

The addition of satellite-based detection further reduces emissions considerably, as all scenarios with 264 

satellite lead to more reductions than even a scenario with 12x OGI. This reduction occurs because of the 265 

skewness in the emission distribution, where high emitters account for a disproportionate share of total 266 

emissions, and by having a strategy to prioritize detection and repair of the high-emitters. Figure 2b shows 267 



the same LDAR programs under sensitivity analysis S3 (shortest duration of emission). Here the data also 268 

shows that a tiered approach leads to further reductions than the OGI only or aerial + OGI. 269 

 270 

Figure 2. Emission reduction of LDAR scenarios with aerial + OGI and satellite + aerial + OGI for (a) base 271 

case (long duration of high-emitters) and (b) sensitivity analysis S3 (short duration of high-emitters) 272 

simulations. Horizontal lines indicate the reduction of OGI only LDAR programs. The horizontal axis 273 

represents frequency of inspections for aerial and OGI. 1x for aerial + OGI is equal to 1x OGI, while 1x for 274 

satellite + aerial + OGI is equal to satellite + 1x OGI. 275 

 276 

Effect of aerial detection threshold 277 

Having a lower detection threshold helps aerial technologies achieve higher reductions in scenarios with 278 

long-duration of high emitters, particularly as the number of flyovers per year increases (Figure S8). On 279 

the other hand, in scenarios with short duration of high emitters the detection threshold of aerial 280 

technologies is not substantial. In scenarios of both short and long duration of high-emitters, significantly 281 

higher reductions can be achieved with tiered approaches that include frequent inspections with satellites 282 

in parallel to the aerial + OGI surveys, as opposed to more frequent aerial surveys with a lower detection 283 

threshold. 284 



 285 

Effect of satellite frequency and detection threshold  286 

Figure S9 shows the reductions of LDAR programs that include satellite, aerial and OGI technologies, with 287 

variations in the satellite revisit times and detection thresholds. In scenarios with long duration of high 288 

emitters (S9a) all combinations perform better than 4x OGI and some scenarios better than 12x OGI. The 289 

highest reduction is achieved by 50 kg/hr and daily revisits, and lowest by 100 kg/hr and weekly revisits. 290 

At lower numbers of aerial surveys, 50 kg/hr and weekly revisit leads to higher reduction than 100 kg/hr 291 

and daily revisit, while in scenarios with more frequent aerial surveys, 100 kg/hr and daily revisits leads to 292 

higher reduction. On the other hand, in scenarios with short duration of high emitters (Figure S9b) 293 

frequency is the most important parameter, with 50 kg/hr and daily revisits having the highest reduction, 294 

followed by 100 kg/hr and daily revisits. All scenarios of satellite detection lead to higher emissions than 295 

OGI 12x, however the reduction is significantly higher for those with daily revisit than weekly revisit. 296 

 297 

Combinations of continuous monitors with satellite, aircraft and OGI sensors 298 

Networks of continuous monitoring sensors 299 

Emission reductions for scenarios with networks of continuous monitor sensors + 1x OGI are shown in 300 

Figure 3. Given that emissions can be found on a continuous basis, the time that larger leaks are emitting 301 

is reduced significantly, and higher reductions than OGI 4x and even OGI 12x can be achieved, 302 

independently of the presence of satellites. When the duration of high-emitters is shorter (Figure 3b), 303 

networks of continuous monitoring sensors + OGI with/without satellites still perform better than OGI 304 

12x, however the combinations with daily revisits of satellite perform better than those without satellites 305 

or with satellites and weekly revisits. This differences arise because the time assumed for detection of 306 



emissions with networks of sensors were within 7 days, while the mean duration of high-emitters was 5 307 

days in the sensitivity analysis S3 scenarios.  308 

 309 

Figure 3.  Emission reduction of LDAR scenarios with continuous monitoring networks + OGI and satellite 310 

+ continuous monitoring networks + OGI for (a) base case (long duration of high-emitters) and (b) 311 

sensitivity analysis S3 simulations (short duration of high-emitters). LDAR type A is no satellite. LDAR type 312 

B is satellite with 50 kg/hr and daily revisits. LDAR type C is satellite with 100 kg/hr and daily revisits. LDAR 313 

type D is satellite with 50 kg/hr and weekly revisits. LDAR type E is satellite with 100 kg/hr and weekly 314 

revisits. Horizontal lines indicate the reduction of OGI only LDAR programs. 315 

 316 

Site level continuous monitoring 317 

Scenarios with site level continuous monitoring sensors across all sites result in slightly greater but 318 

comparable reductions on emissions than networks of sensors (Figure S10). Similarly, reductions achieved 319 

by having only continuous monitoring on priority sites are comparable to those having them across all 320 

sites (Figure S11), suggesting that strategies that have continuous monitoring sensors located only at 321 

facilities with equipment prone to be high-emitting are equally effective. All scenarios with site level 322 

continuous monitors achieve higher reductions than the OGI only inspections, including 12x OGI. 323 



 324 

Effect of repair times 325 

Some simulations were performed assuming that all leaks were repaired randomly within 30 days of being 326 

found, independently of their magnitude. Figure 4 compares the effect that repair times have on emission 327 

reduction for scenarios with continuous monitors at priority sites, satellites and 1x OGI. All scenarios 328 

achieve larger reductions than 12x OGI, under both long duration of high-emitters (Figure 4a) and short 329 

duration of high-emitters (Figure 4b). However, repairing larger emissions quicker can lead to significantly 330 

more reductions, the effect is even more pronounced in scenarios with short duration of high-emitters. 331 

For satellite + aerial + OGI, many of the scenarios have more reduction than OGI 4x, however most 332 

reductions tend to be below or near those of OGI 12x (Figure S12). 333 

 334 

Figure 4. Emission reduction of LDAR scenarios with continuous monitors at priority sites, satellites and 335 

OGI, comparing repair times for sources detected with satellites and continuous monitors prioritized vs. 336 

all within 30 days for (a) base case (long duration of high-emitters) and (b) sensitivity analysis S3 (short 337 

duration of high-emitters) simulations. LDAR type A is satellite with detection threshold of 50 kg/hr and 338 

daily revisit. LDAR type B is satellite with detection threshold of 100 kg/hr and daily revisit. LDAR type C is 339 

satellite with detection threshold of 50 kg/hr and weekly revisit. LDAR type D is satellite with detection 340 



threshold of 100 kg/hr and weekly revisit. Horizontal lines indicate the reduction of OGI only LDAR 341 

programs. 342 

 343 

Number of LDAR Hours Required 344 

In addition to evaluating emission reduction, the time needed to carry out the LDAR programs was 345 

considered in the analysis, including ground inspection, administrative and driving hours. The approach is 346 

similar to the one described by Sridharan, et al.34 and is detailed in SI Section S.11. Figure 5 shows the 347 

number of hours required in each LDAR program normalized by the hours needed in the OGI 4x program. 348 

All simulations in the base case scenarios (Figure 5a) using advanced detection technologies lead to less 349 

time needed than OGI 2x, suggesting that many LDAR programs can achieve high emission reductions and 350 

be less labor intensive. On the other hand, when the duration of high emitters is short, the number of site 351 

visits increases significantly (Figure 5b). For sensitivity analysis S3 all scenarios of LDAR with aerial + OGI 352 

or satellite + aerial + OGI require less hours than 4x OGI, however those that incorporate continuous 353 

monitoring require more hours than OGI 4x. The detection threshold of continuous monitors is inversely 354 

proportional to the LDAR hours required, as those with lower detection threshold require more time 355 

(Figure S13). Figure S14 shows the number of site visits required for sensitivity analysis S4 and S5 356 

scenarios. The duration of high-emitters is a sensitive parameters for both the LDAR required hours and 357 

for emission reduction (Figures 5 and S14). 358 

 359 



 360 

Figure 5. Number of hours required by LDAR programs normalized by the hours required by OGI 4x vs. 361 

their emission reduction for (a) base case (long duration of high-emitters) and (b) sensitivity analysis S3 362 

(short duration of high-emitters) simulations. The data points are colored by LDAR category: “A” = OGI, 363 

“B” = Aerial + OGI, “C”= Satellite + aerial + OGI, “D” = Satellite + OGI, “E” = Continuous + OGI, “F” = Satellite 364 

+ continuous + OGI, “G” = Satellite + continuous at priority sites + OGI, “H” = Satellite + continuous at 365 

priority sites + aerial at non priority sites + OGI. Horizontal lines indicate the number of visits of OGI only 366 

LDAR programs. The vertical line indicates the reduction of OGI 4x. Each data point corresponds to one 367 

scenario in a particular LDAR category, with differences in detection threshold, frequency of inspections 368 

and repair times. 369 

 370 

Model limitations and implications 371 

One assumption of LDAR models is that the leak generation rates are constant throughout the simulation, 372 

due to limited data on leak recurrence, in particular for high-emitters. Variations in times of leak 373 

reoccurrence or absence of leak reoccurrence might occur due to equipment replacement or preventive 374 

maintenance. These practices were not implemented in this work, however they would be expected to 375 



achieve further emission reductions that those reported here. While information on leak recurrence is 376 

lacking, recent empirical studies suggest that effective reductions can be achieved by LDAR in the oil and 377 

gas production sector.27,35,36 There is also lack of data on the temporal characteristics of high-emitters, 378 

which is a very sensitive parameter. Future work should focus on obtaining information on duration of 379 

high-emitters and on root-cause analysis, which will be particularly relevant when doing LDAR modeling 380 

coupled with a process based simulator that includes routine emissions and with a finer simulation 381 

temporal resolution. Emissions from gathering pipelines were not included in this work since this model 382 

does simulations for individual facilities and not over a particular geographic area coupled with 383 

atmospheric dispersion models. Recent evidence suggest that this source can be significant in some 384 

regions,8,37 and novel technologies, in particular remote sensing platforms, are helpful to detecting these 385 

emissions. Recent studies show larger emissions than the distribution from non-routine emissions in the 386 

Permian here used, but don’t distinguish if they are leaks or routine short-duration emissions;8,16 if some 387 

of these larger emissions were unintended, the distribution would be more skewed, leading to even more 388 

reductions with the combinations of advanced technologies.  389 

LDAR models like the one used in this work can effectively compare LDAR programs on a relative basis 390 

and have large uncertainty on predicting absolute emission reductions given the uncertainty in certain 391 

parameters. However, after varying key parameters in sensitivity analyses, consistent results evidence 392 

that LDAR strategies that combine detection technologies with a focus on finding and fixing the largest 393 

emissions quickly while having less frequent OGI inspections lead to greater reductions than strategies 394 

with only OGI surveys at intervals of months. Multiple combinations of technologies achieve larger 395 

reductions than OGI 4x or even OGI 12x, giving operators multiple options to choose from. These results 396 

are specific for oil and gas production basins that have large numbers of high-emitters, and could differ in 397 

basins with low levels of high-emitters. 398 

 399 
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