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ABSTRACT: Since the pioneering report by Selvin, we have been fascinated by the potential of using 
lanthanide luminescence in bioimaging. The uniquely narrow emission lines and long luminescence life-
times both provide the potential for background free images together with full certainty of probe locali-

zation. General use of lanthanide based bioimaging was first challenged by low brightness, and later by 
the need of UV (<405 nm) excitation sources not present in commercial microscopes. Here, three lantha-
nide-based imaging probes were synthesized, characterized, and used in bioimaging on dedicated as well 

as commercial microscopes. It was proven without doubt that the lanthanide complexes enter the cells 
and luminesce internally. Even so, no lanthanide luminescence were recovered on the commercial micro-
scopes. Thus, it was concluded that even though the commercial microscopes are capable of single photon 

detection, lanthanide luminescence based bioimaging still requires dedicated hardware. 

INTRODUCTION 
Optical bioimaging is a central tool in life sci-

ence.1 Fluorescence microscopy provides infor-
mation on both structure and function, but relies 

on fluorescent probes, either of biological origin 
or introduced as small molecules.2 In commercial 

microscopes, the quality of the images is directly 
proportional to the brightness of the probe. Thus, 
high brightness organic and biological fluorescent 
probes dominate optical bioimaging.3, 4 Two paths 
exist for increasing the image quality: improving 
dyes or improving the detection efficiency of the 

microscope. In the research laboratories laser ex-
citation sources and optical detectors, where each 
pixel has single photon sensitivity, are common. 

Indeed, most commercial microscopes have these 
capabilities. Thus, probe development should pro-
vide the biggest potential for improvement. While 

the organic fluorescent probes that are commonly 
used have been optimised by first Drexhage,5 

Haugland,6 and more recently Lavis,7 other emit-
ters—disregarding fluorescent proteins—are still 
to find widespread use in optical bioimaging.4 

Since the early work by Selvin, Beeby, and 

Faulkner,8, 9 the narrow emission band, long lumi-
nescence lifetime, and emission in the near-IR 
have made lanthanide luminescence interesting 

for bioimaging applications.8, 10 Indeed, named 
classes of lanthanide based probes have been re-
ported.11 Even so, challenges remain for the ex-

ploitation of lanthanide based luminescent 
probes.12 The lanthanide centred optical transi-
tions are all forbidden, which is the origin of the 

long luminescence lifetimes, but also dictate very 

low molar absorption coefficients (ε ≤ 1 cm-1 M-1) 

i.e. a low brightness. This can be circumvented by 

sensitisation by organic chromophores,13 where 
the excited state of the antenna chromophore is 
higher in energy than the emitting state of the lan-

thanide(III) ion. Using primarily europium(III) lu-
minescence and dedicated microscopes,14, 15, 1617 

the benefits of the narrow emission lines and the 
long luminescence lifetime have been amply 
demonstrated.18-20, 21 Often 355 nm (3rd Harminic 

of Nd:YAG) excitation is used, which requires mi-



 

croscopes with quartz optics and is highly photo-
toxic. Two-photon excitation was developed to 
avoid the issues with high UV-exposure,18, 22 and 

while similar demonstrations of the benefits of 
using lanthanide based probes was reported, this 
method also require customized microscopes. 

Following the availability of wavelength re-

solved detectors in commercial microscopes, we 
used a research microscope to show how spectral 
imaging can give rise to background free images.23 

We moved on to show that bioimaging following 

direct excitation of ε ≤ 0.1 cm-1 M-1 bands was fea-

sible on this dedicated platform.24 As commercial 

microscopes now come equipped with highly sen-
sitive detectors and powerful lasers light sources, 
we set out to demonstrate that now is the time for 

lanthanide based probes to shine throughout the 
life sciences.  

 

Figure 1. Illustration of the energy transfer to the 
Eu(III) center from the antenna and the chemical 

structure of the investigated Eu(III) complexes with 
the ligands L1, L2 and L3.  

When creating a lanthanide based luminescent 

probe, two pre-requisites have to be met: 1) the 
probe must sensitized following excitation of an 
antenna chromophore using the blue 405 nm laser 

line. And 2) the probe must be stable in biological 
media. The latter is readily ensured by using ki-
netically inert lanthanide binding pockets,25 while 

selecting a suitable chromophore is aided by the 
significant contribution of Parker and co-work-

ers.19 Thus, we chose to make the europium(III) 
complexes of the 1-azathioxanthone appended 
1,4,7,10-tetraazacyclododecane 1,4,7-triacetic 

acid ligands shown in Figure 1. 

The choice of the thioxanthone chromophore 

class was aided by the fact that we can use 
Dewar’s rules to predict the chromophore struc-

ture that will give us the desired photophysical 

properties.26 As the photophysical properties are 

known to change, when the chromophore is incor-
porated in a lanthanide(III) ligand, we synthe-
sized three Eu(III)-complexes. Their photophysi-

cal properties were investigated in aqueous buff-
ered media at neutral pH mimicking biological 
conditions. Binding to biological proteins were 

tested and live cell and fixed cell imaging was the 
done on commercial and dedicated microscopes.  

We found that the brightness of the lanthanide 
based probes at the point of excitation are low 

compared fluorescence probes, but better than 
any other lanthanide probe for 405 nm excitation. 
The probes were shown to stain cells, both live, 

dead and permeabilized, and beautiful cell images 
were recorded on microscopes dedicated to de-

tecting lanthanide emission. However, when the 
same protocols were used at a facility for conven-
tional optical bioimaging, no lanthanide emission 

was recovered. Following several control and 
model studies, it was concluded that commercial 
microscopes currently are biased against using 

lanthanide luminescence based probes. Therefore, 
changes in instrumentation must be in place, be-
fore we can start benefitting from the unique 

properties of lanthanide luminescence.  

RESULTS AND DISCUSSION 
Synthesis and characterization. The three 1-

azathioxantone derivatives were synthesized fol-
lowing literature procedure through a two-step 

reaction.27 Bromination in the α-position on 2-me-
thyl-1-azathioxanone has previously been de-
scribed in the literature using a Wohl—Ziegler 
bromination.28, 29 However, it was not possible to 
reproduce this reaction in our labs. Though multi-

ple modifications were attempted in the reaction 
conditions, the reaction either did not yield the 
desired molecules in high enough yields to con-

tinue the synthetic procedures or gave undesired 

products. As an alternative, a patent describing 
functionalization of the α-position was used with 

minor modifications, see SI for experimental de-
tails.29, 30 In the preferred procedure, see Scheme 

1, the parent 2-methyl-1-azathioxanthone deriva-

tives were oxidized using iodide, iron(III)sulfate, 
TFA, and tert-butyl iodide in DMSO. The reaction 

was performed at least three times for each deriv-
ative, and it was shown that tert-butyl iodide is 
not required for the oxidation to occur. The reac-

tion yields a mixture of the desired alcohol (7-9) 
as the minor product and the aldehyde (7a-9a) as 
the major product. The reaction mixture, contain-

ing both alcohol and aldehyde, was taken directly 
to the next step, where lithium borohydride with 

trimethylsilyl chloride in THF was used to reduce 
the sulfone and the aldehyde of the major product 
(7a-9a). Following the reduction, the alcohol (7-



 

9) was isolated after aqueous workup in an over-
all yield between 40-50 %. To introduce a better 

leaving group, the alcohol was treated with me-
thanesulfonyl chloride, and the reactive chromo-
phores (10-12) were isolated in acceptable yields 

by chromatography. The chromophore was at-
tached to the kinetically inert DO3A-scaffold using 
K2CO3 in acetonitrile. After removal of the tert-bu-

tyl esters using trifluoroacetic acid, the ligands 
L1, L2 and L3 were isolated by tituration.31 Fi-

nally,  the  Eu(III) complexes Eu·L1, Eu·L2, and 

Eu·L3 were formed by complexation in a 1:1 mix-

ture of H2O and MeCN at neutral pH using euro-
pium(III)chloride as the Eu(III) source. The com-

plexes were isolated following de-salting on a se-
phadex PD-10 column. The complexation is as-
sumed to be quantitative, but no yields are re-

ported as the highly hygroscopic compounds does 
not allow for accurate determination of absolute 
purity or recovered mass.32 The formation of the 

Eu(III) complexes were confirmed with 1H-NMR, 
mass spectrometry, and luminescence spectros-
copy (see SI for details).  

 

Scheme 1. Synthetic pathway to Eu(III) complex Eu·L1, Eu·L2, and Eu·L3 

 

 



 

 

Figure 2. Paramagnetic 1H-NMR of Eu·L1 (top), Eu·L2 

(middle) and Eu·L3 (bottom) in DMSO-d6 at 27 °C. 

Figure 2 shows the paramagnetic 1H-NMR spec-

tra of the Eu·L1, Eu·L2, and Eu·L3 complexes rec-

orded in DMSO- d6.  Paramagnetic 1H-NMR spectra 
of lanthanide complexes with DOTA and DO3A-

like ligands are well understood and has been 
characterized in detail previously.33, 34 The spectra 

in Figure 2 show similar characteristics and are 
consistent with reported spectra of eight-coordi-
nated unsymmetrical Eu(III) complexes with 
three coordinating carboxylate arms on a cyclen 

backbone.35 Due to the constrained conformation 
of an eight-coordinated complex, fast exchange 

between different forms of are restricted result-
ing in resolution of the axial protons in the cyclen 
ring (25 -35 ppm).31, 33 The NMR spectra clearly 

show that the Eu(III) binding pocket is similar in 
all three complexes.  

Antenna chromophore photophysics. The pho-

tophysical properties of Eu·L1, Eu·L2, and Eu·L3 

were investigated in PBS buffer (pH 7.4) at 1.5·10-

5 M and contrasted to the properties of the parent 

1-azathioxanthone.27 Figure 3 shows the absorp-
tion spectra, which display strong absorption in 
the UV range with 2-3 bands in the range of 300—
400 nm. 1, with no substituents on the azathi-
oxanthone chromophore, has 2 bands in the range 

from 300—400 nm, and the primary absorption 
band of 1 has a maximum of 382 nm. This 12 nm 
redshift compared to the 1-azathioxanthone, we 

assign primarily to solvatochromism.27  

Figure 3 shows that the primary absorption 

band of 3 has a maximum of 369 nm. The data re-
veals that the addition of the electron donating 

methoxide group in the para-position to the car-
bonyl group i.e. going from 1 to 3, induces a 
blueshift of the primary ππ* transition and cre-

ates a close lying nπ* state at 315 nm. This was 
also seen in the parent chromophore.27, 36  

In Eu·L2 the methoxy substituent is in the para-

position to the bridging sulfur atom. This induces 
a redshift of the absorption maximum and creates 

a chromophore with a maximum absorption at 
403 nm, close to the 405 nm central wavelength 
of the blue laser line commonly used in commer-

cial microscopes.  

Figure 3 shows that the excitation spectra of all 
three complexes exclusively show the primary 
band of the chromophore. No bands arising from 
direct excitation of the Eu(III) center can be seen. 

Further, the excitation spectra are identical to the 
absorption spectra. Note that the absorption spec-

trum of 1 extends into the blue and can be excited 
using a 405 nm laser. All photophysical details of 
the antenna chromophores are compiled in Table 

1, and the corresponding data can be found in the 
SI. Note that the mirror image rule works for 1 and 
3, while a second band on the red is seen for 2. 

This is assigned to ligand centered phosphores-
cence.27, 36 
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Figure 3. Normalized absorption (black), excitation 
(dashed green on top of absorption) and emission 

(red) spectra of Eu ·L1 (λex 380, λem 701), Eu·L2 (λex 

405, λem 701) and Eu·L3 (λex 370, λem 701) in PBS 

buffer pH 7.4 at 1.5·10-5 M. The black vertical dashed 

line is positioned at 405 nm, to show the central ex-
citation wavelength in a blue laser.  



 

Table 1. Photophysical properties of Eu ·L1, Eu·L2 

and Eu·L3 determined in PBS solution at pH 7.4. 

See SI for details. 

 1 2 3 

λabs (nm) 382 403 369 

λfl (nm) 452 517 440 

ES (cm-1) 24240 22560 25030 

ET (cm-1) 22500 19800 23040 

ΔS1-T1 (cm-1) 1360 2519 1990 

<τfl> (ns) 3.67 8.3  0.61 

ϕfl (%) 9.3 6.9 2.1 

Φlum(%) 2.8 0.8 2.5 

Log(ε) at λ max 3.8 3.7 3.8 

B at λmax 188 44 174 

Log(ε) at λ405 3.0 3.7 2.0 

B at λ405 26 42 2.5 

τ (H2O) (ms) 0.604 0.256 0.539 

τ (D2O) (ms) 1.753 0.424 2.017 

q  1.0 ±0.5 - 1.3 ±0.5 

 

Eu(III) photophysics. The emission spectra 

shown in Figure 3 have the characteristic euro-
pium centered luminescence on the red side of lig-
and fluorescence and phosphorescence. The nar-
row emission lines of the europium luminescence 
report on the local symmetry.37 The fine structure 

is very similar in all three spectra, which confirms 
the observation from NMR, that the three com-
plexes have similar coordination geometry and so-

lution structure.33, 35  

A prerequisite for efficient lanthanide sensitiza-

tion is energy overlap between donor and accep-
tor states. Thus, the relative energies of the ex-
cited states involved in the energy transfer cas-

cade leading to the lanthanide-centered lumines-
cence must be considered for the three complexes. 
Figure 4 shows the energy levels of the first ex-

cited singlet (ES) and triplet (ET) states of Eu·L1, 

Eu·L2 and Eu·L3 compared to the lowest excited 

energy levels for the europium(III) aqua ion. In 
the three complexes sensitization from S1 and T1 
are viable mechanisms considering the overlap of 
energy levels.38 Back energy transfer from euro-

pium(III) to the antenna chromophore is unlikely 
as the energy gap is higher than 2000 cm−1.39 

  

Figure 4. Energy diagram for Eu·L1, Eu·L2, and Eu·L3 

together with the energy levels of Eu(III).40 Solid 
lines show excited singlet (red), triplet (green), ap-
proximate redox level (blue), and energy levels of 
Eu(III) (black). The dashed black line is used to com-

pare the energy between the excited states on the an-
tenna to that of Eu(III). The reduction potentials 
used in the figure are EuIII/EuII = –0.35 V in water 
vs. NHE and for thioxanthone in DMF: 1.62 V vs. 

NHE.29, 41 

The luminescence lifetimes were measured in PBS 

(pH = 7.4) prepared from H2O and D2O to determine 
the number of solvent molecules coordinated to the 

europium(III) center using the modified Horrocks’ 
equation.42 The lifetimes of 1 and 3 are as expected, 

while the lifetime of too short. This is assigned to 
back energy transfer to the triplet state T1 2500 cm-1 

over the 5D0 state, most likely mediated by thermal 
population of the 5D1 level. 

For 1 and 3 q, the number of coordinating sol-

vent molecules, can be calculated and the average 
number of coordinating water molecules is 1 for 
both complexes. This indicates that the chromo-

phore pendant arm is coordinating the lanthanide 
center.43 

1 and 2 as luminescent probes. The key photo-
physical properties of the complexes are compiled 
in table 1. The quantum yield for the organic fluo-
rescence (ϕfl) and the Eu(III)-centered emission 
excited through the antenna (Φlum) were deter-

mined by the dilution method.44 The Eu(III) lumi-
nescence quantum yields were found to be in the 
range of 0.5-3 %. For luminescent probes it is im-

portant to contrast the quantum yield to the molar 
absorption coefficient in order to evaluate the ef-
ficiency of the complex as a probe. This can be 

evaluated as the brightness (B = ε(λex) · QY). While 



 

the brightness of 1 and 2 are low compared to or-
ganic fluorophores (~100 vs ~100.000), it is 
greatly improved when compared to a Eu(III) 

complex with no antenna appended. Compared to 
EuDOTA an increase of a factor 10.000-100.000 is 

observed.45 Note that Eu·L2 has the lowest bright-

ness of the complexes at the primary absorption 
maximum, but the highest brightness at 405 nm. 

Due to the redshift in absorption, Eu·L2 becomes 

the brightest luminescent probe.    

In biological samples, binding of proteins will 

change the property of luminescent probes.46 This 
was investigated by incremental addition of bo-

vine serum albumin (BSA) to Eu·L1, Eu·L2, and 

Eu·L3 while maintaining constant concentration 

of the complex, see supporting information. The 

results are summarized in Table 2. For Eu·L1 and 

Eu·L3 the Eu(III) luminescence is reduced by half, 

while it for Eu·L2 is increased 3.5-fold.  

Table 2. Relative change in ligand fluorescence 
and Eu(III) luminescence after addition of 20 

mg/mL BSA.  

 I(with BSA)/I(in buffer) 

 EmLigand EmEu 

Eu·L1 0.26 0.43 

Eu·L2 0.89 3.56 

Eu·L3 1.29 0.56 

 

Cell imaging. Eu·L1 and Eu·L2 were investi-

gated for use in bioimaging. Eu·L3 was not used 

as the absorption maximum is in the UV-region. 
The complexes were investigated with high reso-

lution Laser Scanning  Confocal Microscopy 
(LSCM) images recorded on a modified Leica SP5 
II microscope, equipped with a SIM technique 

called PhMoNa at Durham University.15 Cell up-
take and co-localization studies were done for 

Eu·L1 and Eu·L2 in living mouse skin fibroblasts 

(NIH-3T3). Both Eu·L1 and Eu·L2 permeated into 

the NIH-3T3 cells when loaded in DMEM (Dul-
becco’s modified Eagle’s medium) with 10 % FBS 

(fetal bovine serum) and 1% pen strep at 37 ° in 
5% CO2/air. Incubation times from 2-24 hours 
were tested together with concentrations ranging 

from 12.5 μM up to 50 μM. The cells remained vis-
ible healthy over the full period of examination of 
up to 24 h with 50 μM loading concentration. 

Colocalization experiments were done using Mi-
totracker Green and Lysotracker Green to confirm 
the localization of the Eu(III) complexes in the 
cell.  Mitotracker Green confirmed that the com-

plexes were predominantly localized in the mito-
chondria (Figure 5). 

The cells stained with the two Eu(III) complexes 
were all excited using a 405 nm laser and the im-
ages were measured with detection from 570 -700 

nm where only Eu(III) luminescence is emitted cf. 
Figure 3. To further confirm that the emission ob-
served from the cells originated from the Eu(III) 

center, and not from the antenna or background 
fluorescence, time-resolved emission spectra 

were measured from the cells stained with Eu·L1: 

The cell slides were placed on a custom built spe-
cialized inverted microscope adapted to allow for 

time-gated imaging and spectroscopy.16 Due to in-
strumental limitations, these spectra were rec-
orded using 355 nm excitation. Figure 5 shows the 

steady state spectrum and the time-gated spec-
trum, which both clearly display the Eu(III) lumi-
nescence following excitation of the ligand. These 

spectra confirm that Eu·L1 permeates the cells 

and that the images recorded on the dedicated mi-
croscope arise from Eu(III) luminescence.  
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Figure 5. Top panel: 50 uM Eu·L1 incubated for 4 h. 

Middle panel: 50 uM Eu·L2 incubated for 24 h. Co-

staining with mitotracker green (P = 0.74 and 0.69 
respectively). Transmission images are shown for 
each row confirming cell viability. All cell images are 

obtained with 405 nm excitation. Scale bars repre-
sent to 20 μm. Bottom left: Time-gated emission 

spectrum of Eu·L1 excited at 355 nm with 20 µs gate 

time.16 Bottom right: Steady-state emission spectrum 

of Eu·L1 excited at 355 nm.  

To test the luminescent probes on a conven-

tional microscope, we used the Core Facility for 
Integrated Microscopy at the University of Copen-
hagen. Here, cell uptake studies were done on for-

maldehyde fixed HeLa cells permeabilized with 

Triton X stained with 50 µM dye. The images were 

obtained using a Zeiss Confocal microscope LSM 

780 where an emission profile of the lumines-
cence detected was obtained together with the cell 



 

image using a 405 nm laser, f-MBS:405/505c or f-
MBS:405/565c beam splitter, and the 32-channel 
detector without any additional optical elements. 

For Eu·L2 no signal was obtained from the stained 

cells. For Eu·L1 bright images of cell nuclei were 

recorded, see figure 6A. The images obtained were 
compared with DAPI stained cells to confirm to lo-

calization of the complex in the nuclei, see SI. The 
emission profile obtained directly from the cell 

images on the microscope did not reveal any 
Eu(III) luminescence (Figure 6C). However, when 
the same cover slide with the stained cells were 

placed in the fluorimeter, the characteristic 
Eu(III) luminescence with emission bands at 595 
nm and 620 nm were observed (Figure 6D). This 

clearly demonstrates uptake of the Eu(III)-

complex in the cell, and that the issue is the mi-
croscope, not the luminescent probe. These exper-

iments were replicated with live cells with the 
same result.  

 

Figure 6. A: 50 µM Eu·L1 stained cell. B: Image of 

emitted light from a 150 µM Eu·L1 solution in PBS. C: 

Emission profile of the luminescence collected from 
the nuclei (red square, 7A). The spectrum was ob-
tained from LSM 780 microscope. D: Steady state 

emission spectrum of the same cell slide obtained 
from a fluorimeter. All images and spectra are ob-
tained with 405 nm excitation. A, B, and C are using 
identical settings on the same microscope. 

The experiments done on the LSM 780 micro-

scope indicated that the commercial setup was not 
able to detect the Eu(III) luminescence in cells. To 

test the capability of the instrument to detect the 
sharp emission lines originating from Eu(III), an 
emission profile was obtained directly of a solu-

tion of the dye. Figure 6B shows that the pink 
color of Eu(III) luminescence was easily observed 
with the eye. We went on to show that at high con-

centration, peaks around 590 nm and 620 nm can 

be detected on the microscope, see supporting in-
formation. 

ICP-MS analysis was used to confirm that the 

uptake of Eu(III) in the cell for both Eu·L1 and 

Eu·L2 documenting that the complexes are pre-

sent in the cells. Perfect ignore comment above)  

To further support this conclusion—and in addi-
tion to the spectra in Figure 5—the luminescence 

lifetime of the Eu·L1 complex was determined in 

the cells. The luminescence lifetime decreases to 

99 µs in cells. This is significantly less than the 

604 µs luminescence lifetime in PBS, and lower 

than the 239 µs determined in pure DMEM cell 

media. This indicates strong quenching effects 
from both cell media and the cell biology, which is 
not unexpected since Eu(III) luminescence is 

strongly affected by the chemical environment.21, 

47  

Conclusion 
Three lanthanide based luminescent probes were 
synthesized, characterized and their performance 

in bioimaging was investigated in great detail. 
While high quality images of the mitochondria was 

recorded using Eu(III) luminescence on a dedicated 
microscope, no Eu(III) luminescence was recorded 

on conventional commercial microscopes. It was 
clearly shown that europium(III) was present in the 

investigated cell samples, and did luminesce in the 
cells. Thus we conclude that at the current state of 

development, conventional fluorescence micro-
scopes are not suitable platforms for lanthanide 

based bioimaging. 
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