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Finite-temperature stability of crystals is of continuous importance in solid-state chemistry with
many exciting properties only emerging in high-temperature polymorphs. Currently, the discovery
of new phases is largely serendipitous due to a lack of computational methods to predict crystal
stability with temperature. Conventional methods use harmonic phonon theory, but this breaks
down when imaginary phonon modes are present, and anharmonic methods are thus warranted to
describe dynamically stabilised phases. We investigate the high-temperature tetragonal-to-cubic
phase transition of zirconia based on first-principles anharmonic phonon theory and molecular dy-
namics simulations as an archetypical example of a phase transition involving a soft phonon mode. It
is shown that the stability of cubic zirconia cannot be attributed solely to anharmonic stabilisation,
and is thus absent for the pristine crystal. Instead the stabilisation is attributed to spontaneous
defect formation which is also responsible for superionic conductivity at elevated temperatures.

Zirconia, ZrO2, is one of the most studied metal ox-
ide ceramics with several interesting properties in both
pure and doped forms, which includes high hardness,
ionic conductivity and low thermal conductivity. Thus, it
finds application both as a hard ceramic [1, 2], as an elec-
trolyte in solid oxide fuel cells [3], and for thermal bar-
rier coatings [4]. In its pure form, zirconia is observed to
have three stable phases at ambient pressure depending
on the temperature. At low temperature, the structure
is monoclinic, at intermediate temperatures a tetragonal
polymorph is stable, and at high temperatures the cubic
fluorite structure is stable [5]. The tetragonal and cu-
bic polymorphs are shown in Fig. 1, and the monoclinic
polymorph in Fig. S1.

The phase transition from seven-fold coordinated Zr in
the monoclinic polymorph to eight-fold coordinated Zr
in the tetragonal polymorph is understood to be a recon-
structive phase transition of first order [5, 6]. In contrast,
the transition between tetragonal and cubic polymorphs
is thought to be a displacive phase transition of second
order, which is allowed by the group-subgroup relation
between the phases [7]. However, a latent heat has been
measured for this transition, suggesting that weak first-
order behaviour could be present [8]. Furthermore, there
are conflicting reports from computational studies with
some suggesting it to be second-order [9, 10] and others
suggesting it to be first-order [11].

Ultimately, the stability of a given phase is determined
from its free energy, �G, in relation to its competing
phases [12, 13]. Stability in the solid state is often de-
termined from the internal energy or enthalpy based on
density functional theory (DFT) calculations, but when
comparing phase stability at di↵erent temperatures, en-
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FIG. 1. a and b crystal structures and c and d harmonic
phonon dispersions and density of states (DOS) for tetragonal
(a and c) and cubic (b and d) polymorphs of zirconia. Zr
atoms are shown in green, and oxygen atoms in red.

tropic contributions must be taken into account.

�G = �H|{z}
enthalpy

� T (�Svib +�Sother)| {z }
entropy

(1)

The main source of entropy in an crystalline solid is usu-
ally of vibrational origin, which can to a first approx-
imation be determined using the (quasi-)harmonic ap-
proximation to describe the vibrational degrees of free-
dom. However, when dynamic instabilities are present
in the phonon dispersion, which is often the case for
high temperature phases, the harmonic approximation
breaks down and the vibrational entropy becomes ill-
defined [14]. In such cases, we must resort to an an-
harmonic treatment of the phonons. In recent years,
significant progress has been made in the modelling of
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anharmonic lattice vibrations including the temperature
dependent e↵ective potential method [15, 16], stochas-
tic self-consistent harmonic approximation [17, 18], and
self-consistent phonon theory [19, 20]. This has paved
the way for modelling of finite temperature phonon dis-
persions, lattice thermal conductivities, as well as free
energy calculations beyond the harmonic approximation
[13, 16, 21].

Anharmonic lattice dynamics of ZrO2. The
monoclinic-to-tetragonal phase transition in zirconia is
well-understood within the (quasi-)harmonic approxima-
tion, with the tetragonal phase showing a larger vibra-
tional entropy compensating the lower internal energy
of the monoclinic phase [22]. For improved quantitative
agreement of the phase transition temperature, anhar-
monic e↵ects have been included [10].

From the harmonic phonons of ZrO2 in Fig. 1, we ob-
serve that cubic zirconia is predicted to be dynamically
unstable with an imaginary phonon mode at the X-point
of the Brillouin zone. The eigenvector of this mode cor-
responds to a distortion to the tetragonal phase with a
doubling of the unit cell. This distortion from the cubic
phase is favourable in terms of internal energy. Thus, to
understand the observed dynamic stability of this poly-
morph, we must resort to an anharmonic description,
which we perform within the framework of self-consistent
phonon (SCPH) theory [19, 20]. The anharmonic force
constants are determined using compressive sensing (see
Methods for details), which allows for extraction of high-
order force constants at a significantly lower computa-
tional cost compared with direct determination of the
force constants using symmetry-adapted finite displace-
ments [23].

At the simplest level of SCPH theory (SC1), corre-
sponding to the first-order expansion of the anharmonic
free energy, the fourth-order force constants are included
in the self-consistent determination of phonon frequen-
cies [20]. The resulting anharmonic phonon dispersion
for cubic ZrO2 clearly shows that the material is now
predicted to be dynamically stable with no imaginary
phonon modes (Fig. 2a). However, it is also noted that
the phase is predicted to remain stable at significantly
lower temperatures than observed experimentally. This
is a result of only including fourth-order force constants,
which can lead to an overstabilisation of soft modes [24].

It is possible to extend SC1 theory by including higher-
order corrections to the free energy. We can first include
the e↵ect of volume expansion through the use of the an-
harmonic free energy [21], i.e. coupling of the free energy
to lattice degrees of freedom. Secondly, we can include
the next order in the free energy expansion—the so-called
bubble correction—which is determined from third-order
force constants [24]. As seen from Fig. 2b, volume ex-
pansion leads to an increased softening of the mode, but
the phase transition is still predicted to happen below
1000 K. Rather, inclusion of third-order force constants
in phonon quasi-particle (QP) theory does result in the
prediction of a soft-mode phase transition at high tem-
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FIG. 2. Anharmonic phonon dispersions in cubic zirconia. a
SC1 theory at the 0 K DFT volume, b SC1 theory including
volume expansion at the SCPH level. cQP-NL phonon theory
at the 0 K DFT volume, and d temperature dependence of the
soft-mode at the X-point for the di↵erent levels of theory and
at the 0 K DFT and including volume expansion, respectively.

perature (Fig. 2c). Fig. 2d shows the transition temper-
ature predicted with SC1 and various levels of QP theory
at both 0 K DFT volumes and volumes predicted from
anharmonic free energies. The transition temperature
predicted from QP-NL theory at the 0 K DFT volume,
⇠2850 K, is in good agreement with the experimental
values of 2650 K [5], whereas inclusion of thermal ex-
pansion increases the predicted transition temperature
to above the experimental melting point. A similar be-
haviour was observed by Tadano et al. for CsPbBr3 and
was attributed to deficiencies in the underlying PBEsol
exchange-correlation functional [24].
Thus, anharmonic phonon theory allows for prediction

of the cubic-to-tetragonal phase transition upon cooling,
though with a significant dependence of the transition
temperature on the level of approximation.
A complete theory should also be able to predict the

reverse transition upon heating. In a second-order phase
transition, this should manifest itself in a similar phonon
mode softening upon increasing temperature, and a con-
vergence of the free energies of the two phases at the
phase transition temperature. However, no softening of
the phonon modes is observed for the tetragonal poly-
morph in Fig. S5. The tetragonal phase is also predicted
to be 20-40 meV atom�1 more stable at all temperatures
when comparing both harmonic and anharmonic free en-
ergies (Fig. S4, S6 and Fig. 3a).
Entropic stabilisation of cubic ZrO2. Since the

anharmonic free energies fail to describe the phase tran-
sition, we posit that other entropic factors must stabilise
the cubic phase. Given the consistent 20-40 meV atom�1

greater stability of the tetragonal phase, an additional
entropic stabilisation, �Sother in Eq. 1, on the order of
⇠0.01 meV atom�1 K�1 is needed at the phase transition
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FIG. 3. a Free energy and free energy di↵erence of tetrago-
nal and cubic zirconia including anharmonic e↵ects. b Free
energy profile from constrained molecular dynamics along the
soft-mode at the X-point. The free energy is determined from
integration of the free energy gradient in the Blue Moon en-
semble, and the black dots indicate the order parameters at
which simulations were performed.

temperature. We consider three origins: (i) higher-order
anharmonic contributions, e.g. the temperature depen-
dent internal coordinates are not included at the present
level of theory [20]; (ii) a dynamic or static ensemble of
local tetragonal domains to produce a quasi-cubic phase
on average; (iii) fast ionic conductivity, which is a com-
mon feature of fluorite type structures [25, 26]. These
possibilities can be tested through various aspects of ab
initio molecular dynamics (AIMD) simulations.

1. Higher-order anharmonicity. This contribution is
probed using constrained MD with the Blue Moon en-
semble along an order parameter given as the collective
oxygen displacement along the soft-mode at the X-point
[9, 27]. This gives access to the free energy gradient along
the order parameter (see Methods) which can be inte-
grated to obtain the free energy as a function of the or-
der parameter. As shown in Fig. 3b, the free energy
surface remains of double well nature at temperatures
up to 3000 K. Thus, no transition is predicted to occur
below the melting point. Thus, we cannot attribute the
stabilisation of cubic zirconia to higher orders of anhar-
monicity not included with the current level of SCPH.
Importantly, with the constrained MD, no ionic di↵usion
is allowed.

2. Local tetragonal domains. The distribution of oxy-
gen atoms around their equilibrium positions from AIMD
at 2500 K is shown in Fig. S7. Here, no signs of ion
o↵-centering is observed. We do observe strong local cor-
relations corresponding to the displacement of ions along
the soft-mode, which exist along all three cartesian di-
rections, corresponding to the three possible symmetry
lowering pathways from cubic to tetragonal. However,
this is exactly the expected behaviour from a low energy
phonon mode. Thus, there are no signs of the cubic phase
being an average over multiple locally tetragonal phases.
While there is no evidence to support their formation, we
cannot rule out that such domains do emerge over longer
length- and/or time scales.

3. Ionic conductivity. Finally, we consider the pos-
sibility of stabilisation of the cubic fluorite phase due to

ionic di↵usion. From an AIMD simulation at 2500 K,
we observe the spontaneous formation of Frenkel defect
pairs consisting of an oxygen vacancy and an intersti-
tial oxygen atom as shown in Fig. 4 [28]. This leads
to spontaneous di↵usion even in a stoichiometric zirco-
nia sample following the mechanism previously proposed
for other fluorite type structures including CeO2 [26]. In
this mechanism, one oxygen atom enters an interstitial
site immediately followed by another oxygen atom oc-
cupying the empty site. Thus, a Frenkel defect pair is
created, and vacancy mediated di↵usion can now occur
throughout the material.
Besides its importance for ionic transport, the sponta-

neous defect formation and di↵usion must have implica-
tions for the phase stability. A simple model for fluorite
type structures has been derived by Voronin [29]. Here,
all interstitial sites are considered accessible and the con-
figurational entropy arising from random occupation of
interstitials and vacancies is calculated. The configura-
tional entropy (per atom) is given as

Sconfig =
kB

3

⇥
2 ln 2� (2� x) ln (2� x)

� (1� x) ln (1� x)� 2x lnx
⇤
, (2)

where x is the fraction of occupied interstitials.
The result is shown in Fig. 4c, and it is noted that

at a defect concentration of only ⇠3 %, the configura-
tional entropy is 0.01 meV atom�1 K�1, which at the
high temperatures considered here (⇠2500 K) amount to
a significant energetic stabilisation on the same order as
the free energy di↵erence between cubic and tetragonal
phases. Thus, it appears that cubic zirconia could be
stabilised by configurational entropy arising from partial
melting of the oxygen sublattice through the spontaneous
formation of Frenkel defect pairs.
It should be noted that this description only takes into

account the configurational entropy in the cubic phase,
and not a similar entropy in the tetragonal phase. Thus,
a likely mechanism is that upon heating, Frenkel defect
pairs are created in the tetragonal phase, and since these
are created at random positions with random relative
orientations, an isotropic “pressure” is exerted upon the
crystal resulting in an overall average cubic symmetry.
This is similar to the stabilisation mechanism in yttria-
stabilised-zirconia (YSZ), where the Y substitutions are
compensated by oxygen vacancies. Here, it has been
shown that the stabilisation of the cubic phase can be
attributed solely to the oxygen vacancies [30].
In conclusion, we have shown that the cubic-to-

tetragonal phase transition in zirconia upon cooling can
be partly described within the framework of anharmonic
phonon theory. Conventional SC1 theory based only on
frequency renormalisation from fourth order force con-
stants fails to describe an adequate softening of the
phonon mode responsible for the transition. Inclusion
of third order force constants through the bubble self-
energy results in a further mode softening and lead to a
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FIG. 4. Di↵usion in cubic zirconia from AIMD at 2500 K and entropic stabilisation from defect concentration a Displacements
from equilibrium of four selected oxygen atoms as a function of time. The dashed line indicates the displacement that should
occur along all three axes to enter the interstitial site, while the dotted line indicates the displacement at should occur along
one direction to enter another oxygen site. b Di↵usion mechanism showing one oxygen entering an interstitial site immediately
followed by another oxygen atom occupying its original position. A Frenkel defect pair is thus created, and an oxygen site is
vacant allowing for easy ionic di↵usion. The schematic is inspired by ref. [26]. c Entropic contribution from Frenkel defect
pairs following a simple configurational model of Voronin [29] given in Eq. 2. The interstitial concentration is given as the
fraction of occupied interstitials.

prediction of the phase transition temperature in reason-
able agreement with experimental observation—though
quantitatively highly dependent on the exact details of
the quasi-particle correction.

Within anharmonic phonon theory, however, the re-
verse tetragonal-to-cubic transition upon heating is not
well described, and the tetragonal phase remains of lower
free energy at all temperatures. Thus, it is expected
that a further stabilisation mechanism is involved. From
AIMD simulations, we show that spontaneous formation
of Frenkel defect pairs occur in cubic zirconia at elevated
temperatures. Thus, we propose that this defect forma-
tion is responsible for the stabilisation of cubic zirconia
through a similar mechanism as that of YSZ. Interest-
ingly, the transition is observed to occur at ⇠80% of the
melting point temperature, which is similar to the Bredig
transition temperature in other fluorite type structures,
which is the temperature at which these structures be-
come superionic conductors [31, 32].

Furthermore, a stabilisation mechanism involving the
creation of defect pairs would explain the weak first-order
transition behaviour observed experimentally as an en-
thalpy of transition [8], since defect creation requires en-
ergy. This suggests that the transition should not be
considered a simple second-order group-subgroup transi-
tion purely driven by the soft phonon mode.

METHODS

Density functional theory and harmonic phonon
calculations

Density functional theory (DFT) calculations are per-
formed within the projector augmented wave method im-
plemented in the Vienna ab initio simulation package
(VASP) employing the PBEsol functional [33–35]. Cal-
culations employ a plane wave energy cuto↵ of 700 eV.
Gamma-centered k -meshes of 6⇥6⇥4 and 6⇥6⇥6 were
used for tetragonal and cubic ZrO2, respectively. Har-
monic phonon calculations were performed using the fi-
nite displacement method in PHONOPY with forces cal-
culated using VASP [36]. 3⇥3⇥2 and 2⇥2⇥2 conven-
tional cubic supercells where used for tetragonal and cu-
bic zirconia, respectively.

Self-consistent phonon calculations

Self-consistent phonon calculations were performed
with ALAMODE [37]. 3⇥3⇥2 and 4⇥4⇥4 primitive cells
were used for tetragonal and cubic zirconia, respectively.
Force constants were determined using compressive sens-
ing. First a short (2 ps) ab initio molecular dynamics
simulation was performed with VASP at a temperature
of 1000 K and a step size of 2 fs. 50 equidistant configu-
rations were extracted, and a random displacement of 0.1
Å was added to each atom to avoid strong correlations
between configurations, and DFT calculations were per-
formed on each of these configuration. Force constants
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were fitted using least absolute shrinkage and selection
operator (LASSO) regression [23], for which the regu-
larisation parameter was determined using 10-fold cross-
validation.

The self-consistent phonon equations were solved on
an 8⇥8⇥8 reciprocal space grid [19], and three di↵erent
additional bubble corrections termed QP[0], QP[S] and
QP-NL were included besides the first order SC1 the-
ory only based on the loop diagram [24]. Anharmonic
free energies were calculated including anharmonic cor-
rection from both loop and bubble diagram according to
the method of Oba et al. [21].

Ab initio molecular dynamics simulations

Ab initio molecular dynamics (AIMD) simulations of
cubic zirconia were performed with VASP. In all cases a
time step of 2 ps and a Noose thermostat was used in
an NVT emsemble. For standard AIMD simulations, a
plane wave energy cuto↵ of 700 eV, a 4⇥4⇥4 primitive
supercell and �-point sampling was used. For the con-

strained MD simulations, oxygen atoms were displaced
along the X-mode and one coordinate for each oxygen
was kept fixed. These simulations were performed with a
plane wave energy cuto↵ of 400 eV, a 2⇥2⇥2 conventional
supercell and 2⇥2⇥2 k-point sampling. The free energy
gradient was extracted using the Blue Moon ensemble,
and the free energy profile was determined through nu-
merical integration [27].
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