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Abstract

Machine learning can make a strong contribution to accelerating the discovery of

transition metal complexes (TMC). These compounds will play a key role in the devel-

opment of new technologies for which there is an urgent need, including the production

of green hydrogen from renewable sources. Despite the recent developments in machine

learning for drug discovery and organic chemistry in general, the application of these

methods to TMCs remains challenged by their higher complexity and the limited avail-

ability of large datasets. In this work, we report a representation for deep graph learning

on TMCs – the natural quantum graph (NatQG), which leverages the electronic struc-

ture data available from natural bond orbital (NBO) analysis. This data was used to

define both the topology and the information expressed by the NatQG graphs. At the

topology level, two different NatQG flavors were developed: u-NatQG, with undirected

edges, and d-NatQG, with edges directed along donor → acceptor orbital interactions.

At the information level, the node and edge attribute vectors of both graphs contain

NBO data, including natural charges and bond orders. The NatQG graphs were used

to develop graph neural networks (GNNs) for the prediction of the quantum proper-

ties underlying the structure and reactivity of TMCs (e.g. HOMO-LUMO gap and

polarizability). These models surpassed baselines based on traditional descriptors and

performed at a level similar to, or higher than, state-of-the-art GNNs based on radial

cutoffs. The results showed that the electronic structure information encoded by the

models has a stronger impact on its accuracy than the geometric information. With

the aim of benchmarking the GNNs, we also developed the transition metal quantum

mechanics graph dataset (tmQMg), which provides the geometries, properties, and

NatQG graphs of 60k TMCs.
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Introduction

Machine learning (ML) is revolutionizing chemistry in all its diversity – from drug discov-

ery1–4 to materials science5–14 through related areas including computational chemistry,15–31

organic synthesis,32–36 biochemistry,37,38 catalysis,39–47 and clean energy.48,49 In this context,

the deep learning of graph representations50 is gaining momentum. Molecular graphs are

highly expressive, encoding not only the local environments represented by the atomic nodes

but also their relationships, which are represented by the bond edges.

A key advantage of molecular graphs is their direct connection to skeletal formulas (Fig-

ure 1), which can be regarded as the most universal language used by chemists. When

combined with graph neural networks (GNNs),51 the resulting models have achieved state-

of-the-art (SOTA) accuracy in the prediction of various properties.52 Further, in the context

of explainable AI,53–56 the interpretation of the GNNs57–59 can refer to a skeletal formula,

providing interpretations that are immediately intuitive. GNNs and related graph-based

methods have also succeeded in other challenging tasks, including the generation and inverse

design of molecular systems.60–62

Transition metal complexes (TMCs) are a diverse family of compounds, including bioinor-

ganic, Werner, and organometallic complexes, with key applications in multiple fields includ-

ing catalysis63 (e.g. synthesis of fine chemicals), nanomaterials64 (e.g. electronic devices),

medicinal chemistry65 (e.g. anticancer drugs), and renewable energies66 (e.g. photosensitiz-

ers). The development of accurate GNN models for the discovery and design of new TMCs

with optimal properties is motivated by the strong societal impact of these applications. In

line with this, there is a growing interest in the development of data-driven approaches to

the study of TMCs and their applications.67–76

For organic compounds, the derivation of molecular graphs is straightforward (Figure

1) and can be done from different inputs, including geometries and line notations (e.g.

SMILES77 and SELFIES78). In line with this, most GNN models have been developed for,

and tested on, organic molecules, often in the field of drug discovery.3 In contrast, TMCs are
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more difficult to express as graphs due to the metal d orbitals, which yield larger valences and

multi-center bonds. In this context, the representation of a TMC can become ambiguous,

with multiple possible graphs of different topology. This may include disconnected graphs

limiting the applicability of GNNs. Figure 1 illustrates this problem for the Zeise’s salt, the

first historical example of a metal–olefin complex.79 Graph generation from either line nota-

tions or geometries does not fully solve this problem — the former either don’t support or

are not robust for TMCs, and, from the latter, it is difficult to define the atomic connectivity.

Nonetheless, geometric information is highly valuable and it has been used successfully to

inform several graph representations with the aim of increasing the accuracy of GNN mod-

els.80 In contrast, the use of electronic structure information for the same purpose remains

largely unexplored, despite its availability from geometry optimization calculations and its

low computational cost.

Figure 1: Examples of skeletal formulas and molecular graphs for organic (salicylic acid) and
TMC (Zeise’s salt) compounds. Graphs G1 and G3 are connected, whereas G2 is disconnected. For
the sake of clarity, H atoms were not included in the graphs.
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In this article, we introduce the natural quantum graph representation (NatQG) for

TMCs and its implementation into GNN models based on message-passing algorithms.81

These models leverage the inductive bias provided by natural bond orbital (NBO) theory,82

which transforms the quantum wave function into a set of localized molecular orbitals (i.e.

the NBOs) corresponding to the electron pairs of a Lewis structure. In the context of this

theory, second-order perturbation analysis82 (SOPA) yields the nature and strength of the

interactions between pairs of NBO orbitals based on their energy difference and overlap. The

NBO and SOPA data were used to define the topology and inform the nodes and edges of

undirected (u-NatQG) and directed (d-NatQG) molecular graphs for TMCs (Figures 2 and

3, respectively), which were used in the prediction of their quantum properties with GNNs.

With the aim of benchmarking the GNNs, we developed the transition metal quantum

mechanics graph (tmQMg) dataset, which provides the NatQG graphs of 60k TMCs together

with their DFT geometries and properties. For most properties, the accuracy of the NatQG

GNNs surpassed that of other models, including graphs that were either informed with

classical descriptors or built from cutoff radius. This includes the HOMO-LUMO gap of

the TMCs, which underlies several TMC properties of high interest, including conductivity,

photochemistry, and thermal stability. The present work also showed how the electronic

structure data from a single-point calculation of the energy can be leveraged in machine

learning models to predict expensive quantum properties requiring the calculation of energy

derivatives, including the polarizability and the thermodynamic corrections.

Natural quantum graphs

The Zeise’s salt structure is known and yet its skeletal formula can be drawn in two different

ways differing on how the haptic Pt-ethylene bond is represented (Figure 2a); whereas one

formula may mostly represent the Pt← ethylene donation, with both C atoms bound to Pt,

the other would account for Pt → ethylene backdonation, with the metal interacting with

the π-bond of ethylene. These two formulas can be regarded as resonance forms yielding
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graphs of different topology. This issue can be solved by means of a natural bond orbital

(NBO) calculation,82 which yields a Lewis structure (Figure 2b) maximizing the electron

occupancies of the NBO orbitals (Figure 2c). With the NBO data, a single graph can be

defined for the Zeise’s salt, including its topology and the attribution of its nodes and edges

with rich electronic structure information. The NBOs can be computed with several quantum

chemistry programs and they have a low computational cost, requiring only a single-point

calculation of the energy. E.g., at the DFT level, the NBOs of the Zeise’s salt can be

computed in a laptop in a few seconds, and, by using lower levels of theory (e.g. DFTB),83

this computing time can be reduced by two orders of magnitude.

In this work, we used NBOs and their donor-acceptor interactions to derive two types of

natural quantum graphs (NatQG) differing in the nature of their edges, which are either undi-

rected (u-NatQG) or directed (d-NatQG). There is no node redundancy in either graph (i.e.

each node represents a single atom of a TMC), and both contain geometric information (i.e.

bond distances). For generating the graphs, we developed the Hylleraas deep graph learning

(HyDGL) program, with code openly available at https://github.com/hkneiding/HyDGL.
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Figure 2: Derivation of the Zeise’s salt u-NatQG graph. Abbreviations used for the NBO orbitals:
LP = lone pair, LV = lone vacancy, BD = bonding, BD* = antibonding. ΛBO = natural bond
order threshold.

Undirected graphs

Figure 2 illustrates the derivation of u-NatQG for the Zeise’s salt. First, the NBO orbitals

are used to define the topology of the graph. The one-center lone electron pairs (LP) and

vacancies (LV) NBOs are both expressed as atom nodes of the graph (Figure 2d). Next, the

two-center bonding (BD) NBOs are added to the graph as bond edges, and their atoms are

also added as nodes if they do not have LP and LV NBOs (e.g., in the Zeise’s salt, the C

atoms of the ethylene ligand; Figure 2e).

The graph topology resulting from the NBOs has a major drawback – it can be discon-

nected (Figure 2e) and, therefore, in a GNN, message passing cannot span the whole graph

regardless of the model depth. The disconnectedness arises from the Lewis structure gen-
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Table 1: Node and edge attributes of the u-NatQG graphs.

Nodes
Attribute Description
Z Atomic number
NH Number of H atoms attached to the node
qNat Natural atomic chargea

VNat Natural valence indexa,b

NV El Number of s, p, and d valence electrons; NV El = (Ns, Np, Nd)
c

NLP Number of lone pair (LP) NBOsd

ELP Energy of the highest-lying LP
OLP Electron occupancy of the highest-lying LP
SLP s, p, and d orbital symmetries of the highest-lying LP; SLP = (sLP , pLP , dLP )

e

∆ELP Energy gap between highest- and lowest-lying LP
NLV Number of lone vacancy (LV) NBOs
ELV Energy of the lowest-lying LV
OLV Electron occupancy of the lowest-lying LV
SLV s, p, and d orbital symmetries of the highest-lying LV; SLV = (sLV , pLV , dLV )

e

∆ELV Energy gap between lowest- and highest-lying LV
Edges

Attribute Description
BO Natural bond orderb

d Bond distance
TBN Bonding NBO (BN) type; i.e. 2-center or 3-center (one-hot encoded)
NBN Number of bonding NBOsf

BNE Energy of the highest-lying BNg

OBN Electron occupancy of the highest-lying BN
SBN s, p, and d orbital symmetries of the highest-lying BN; SBN = (sBN , pBN , dBN )e,g

∆EBN Energy gap between lowest- and highest-lying BNh

NBN* Number of non- and anti-bonding NBOs (BN*)i

EBN* Energy of the lowest-lying BN*g

OBN* Electron occupancy of the lowest-lying BN*
SBN* s, p, and d orbital symmetries of the lowest-lying BN*; SBN* = (sBN*, pBN*, dBN*)e,g

∆EBN* Energy gap between lowest- and highest-lying BN*h

aAtomic charges and valences from NBO analysis; bWiberg-based; cIn the natural electron configuration;
dThis and all other LP and LV attributes are set to zero when the node is not associated to these NBO

types, and the same approach is applied to the energy gap when there is a single LP or LV; ePercentage of

orbital character in NAO basis (hybridization); fEither BD or three-center (3C) NBOs; gThis and all other

BN and BN* attributes are set to the graph-average values for the edges build with the ΛBO ≥ 0.05

condition; hRestricted to NBOs of the same type; iCounting BD*, 3Cn, and 3C* orbitals.

erated in the NBO calculation, which can exclude some of the metal–ligand bonds yielding

isolated fragments (e.g. ethylene in the Zeise’s salt). This problem was solved by defining a

natural bond order threshold (ΛBO). After applying the ΛBO ≥ 0.05 bonding condition to

all possible metal–atom pairs, the Zeise’s salt u-NatQG graph became fully connected (Fig-

ure 2f). This ΛBO value was set after inspecting graph connectedness over the 60k TMCs
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included in the tmQMg dataset (vide infra).

After defining the topology, the u-NatQG graphs are informed with attribute vectors

expressing the NBO electronic structure (Figure 2g). At the node level, these attributes

include the natural atomic charge, valence index, and electron configuration, whereas the

edges are attributed with the natural bond order. In addition, both the nodes and the edges

encode features of the LP/LV and BD/BD* NBO orbitals, respectively, including orbital

type, number, energy, electron occupancy, and symmetry (i.e. spd hybridization). Table 1

provides a systematic list and further details of the u-NatQG attributes.

In principle, the combination of NBO- and ΛBO-based edges (eNBO and eΛ, respectively)

for enforcing the connectedness of u-NatQG (Figure 2f) would yield heterogeneous graphs

with attribute vectors of different dimensionality, challenging their exploitation in GNN

models. This issue is caused by the different amount of data available in each case — whereas

all orbital parameters are available to inform the eNBO edges, yielding a total of eighteen

dimensions (Table 1), for the eΛ edges only two dimensions can be defined (the bond order

and distance). This problem was solved by informing eΛ with the same eighteen dimensions

of eNBO, using the graph-averaged values to assign the unknown orbital parameters. It

should be noted that, in practice, the amount of eNBO edges is ca. ten times larger than

that of eΛ edges (vide infra).
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Directed graphs

An alternative way of expressing the NBO data as a molecular graph is by using the SOPA

analysis.82 This part of the NBO calculation yields the interactions between the donor (e.g.

LP) and acceptor (e.g. BD*) NBOs and, in addition to identifying the interacting orbitals,

it provides the stabilization energy, E(2), which measures the strength of the interactions.

The E(2) value is proportional to the square of the perturbation (orbital mixing, F ) of the

interacting NBOs and inversely proportional to the energy difference between them (∆E);

i.e.

E(2) =
−2F 2

∆E

Figure 3: Derivation of the Zeise’s salt d-NatQG graph. Abbreviations used for the NBO orbitals:
LP = lone pair, LV = lone vacancy, BD = bonding, BD* = antibonding.

10



The SOPA data was used to build the directed d-NatQG graphs, in which the interacting

node pairs (ni, nj) are connected with directed ni → nj edges accounting for ni-to-nj donor-

acceptor interactions.

Figure 3 shows the derivation of the d-NatQG graph of the Zeise’s salt. For the bonding

between platinum and ethylene, the SOPA yields a BDC=C → LVPt interaction for the π

→ d donation from the ligand to the metal center, and an LPPt → BD*C=C interaction

for the d → π* backdonation from the metal center to the ligand. In d-NatQG, these

interactions are expressed with a directed graph topology including Pt ⇄ C edges, in which

the relationship expressed on one direction, Pt ← C (BD-to-LV donation), is different from

that expressed on the opposite direction, Pt → C (LP-to-BD* backdonation). When an

atom pair is involved in multiple donor-acceptor interactions on either one direction or on

both, d-NatQG accounts only for the strongest (i.e. the one yielding the largest E(2) value).

In order to avoid a redundant excess of edges, the latter are only added to the graph if they

represent an interaction with E(2) > 1 kcal/mol.

Once the d-NatQG graph is built, it is informed with electronic structure information.

The node attribute vectors contain the same NBO data used in the u-NatQG graphs. In

contrast, the edge attributes are mostly extracted from the SOPA, including the orbital type,

energy, occupancy, and symmetry of the donor and acceptor NBOs. Further, the bond order

and the maximum and average values of E(2) are included. Table 2 provides a systematic

list and further details of the d-NatQG attributes.

In contrast with u-NatQG, the connectedness of the d-NatQG is guaranteed by the SOPA

analysis, without requiring the definition of a threshold. However, from a skeletal formula

perspective, d-NatQG is more exotic, with missing edges in positions where there are co-

valent bonds (e.g., in the Zeise’s salt, between the two carbon atoms of the ethylene lig-

and). In terms of explainability, this may make the d-NatQG graphs less intuitive though

it should be also noted that they express, with directionality, the fundamental interactions

commonly used by chemists to conceptualize the structure and bonding of TMCs, including
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π-backdonation.

Table 2: Node and edge attributes of the d-NatQG graphs.

Nodes
Attribute Description
Z, NH , qNat, VNat, NV El As described for u-NathQG in Table 1

Edges
Attribute Description
BO Natural bond order
d Bond distance
E(2)MAX SOPA stabilization energy for the strongest donor-acceptor interaction
E(2)Avg Average of the SOPA stabilization energiesa

TD Donor NBO type;b i.e. LP, BD, or 3C (one-hot encoded)
ED Energy of the donor NBO
OD Electron occupation of the donor NBO
SD s, p, and d orbital symmetry of the donor NBO; DSym = (Ds, Dp, Dd)
∆ED Energy gap between lowest- and highest-lying donor NBOc

TA Acceptor NBO type;b i.e. LV, BD*, 3Cn, or 3C* (one-hot encoded)
EA Energy of the acceptor NBO
OA Electron occupation of the acceptor NBO
SA s, p, and d orbital symmetry of the acceptor NBO; ASym = (As, Ap, Ad)
∆EA Energy gap between lowest- and highest-lying acceptor NBOc

aE(2)MAX when there is a single interaction; bThis and all other properties are for the NBOs yielding the

strongest donor-acceptor interaction for the node pair connected by the edge (i.e. largest E(2) value in the

SOPA); cRestricted to NBOs of the same type

In addition to the electronic structure attributes of Tables 1 and 2, both the u-NatQG

and d-NatQG graphs include information on chemical composition and geometry, as well as

whole-graph attributes. Chemical composition is encoded by including the atomic number

in the node attribute vectors. The graphs also include hydrogen atoms explicitly, as nodes,

which allows for including features that are relevant in the chemistry of TMCs; e.g. hydride

complexes and agostic interactions. For implicit representations, the number of hydrogen

atoms attached to each node is also available. At the geometric level, the edges were informed

with the interatomic bond distance. Further, a whole-graph attribute vector provides the

charge of the TMC, its molecular mass, and the total number of atoms and electrons. In

TMCs containing three-center bonding (3C), non-bonding (3Cn), and antibonding (3C*)

NBOs, the data of these orbitals was also used to define the topology and attributes of the

graphs. When BD and 3C orbitals overlapped at a given edge, the data of the latter was

12



used to build the graph. Neither of the two graph representations contain information about

the core and Rydberg NBOs.

In both u-NatQG and d-NatQG, the definition of the NBOs from a localized Lewis

structure can partially break the symmetry of the system (e.g. trans-Cl bonds become

non-equivalent in Figure 2b), which may have an impact on the predictions made by the

GNN models (vide infra). Further, the NatQG graphs encode the NBO orbitals implicitly,

embedding their defining parameters into the node and edge attribute vectors of a molecular

graph that, especially in the case of u-NatQG, can be directly related to the skeletal formula

of the represented TMC. An alternative approach, recently explored by Gomes et al.,84

consists in representing LP and BD orbitals with additional explicit nodes. The NatQG

graphs may also be used to develop a string representation with rich electronic structure

information, similar to the representation developed by Dietz.85 Further, these graphs could

also be useful in the context of the zero-order bond approach developed by Clark.86

Transition metal quantum mechanics graph dataset

In order to train and validate the deep learning models of this work, we computed the

transition metal quantum mechanics graph dataset (tmQMg). Figure 4 gives an overview on

the derivation and contents of this dataset. tmQMg provides the quantum geometries and

properties of 60,799 transition metal complexes (TMCs), including all thirty elements from

the 3d, 4d, and 5d series. In addition to this data, tmQMg provides the u- and d-NatQG

graphs (Figures 2 and 3) of all complexes, including the topology and attribute vectors

derived from the NBO and SOPA data (Tables 1 and 2). A baseline graph informed with

generic atomic and bond properties (vide infra) is also provided for each TMC.
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Figure 4: Derivation and content of the tmQMg dataset.

The TMCs of the tmQMg dataset were extracted from the Cambridge Structural Database

(CSD) by applying a series of filters on structure and composition, which yielded 3D-resolved

non-polymeric and non-disordered structures with a single metal center, containing C and

H, and also allowing for B, Si, N, P, As, O, S, Se, F, Cl, Br, and I. Co-crystallizing molecules

(e.g. solvent) were excluded, and filters on charge (q) and the number of electrons (Ne) and

atoms (Natoms) were also applied. The TMCs included in tmQMg have q ∈ {+1, 0, –1},

even Ne, and Natoms ≤ 85.

Figure 5 shows a random selection of ten different TMCs, one for each transition metal

group. From a composition perspective, and in addition to the metals, these complexes

contain nine different elements (C, H, O, S, N, P, F, Cl, and Br), whereas, from a struc-

tural perspective, they contain nineteen different ligands, including both monodentate and

chelating ligands, binding to the metal center in eight coordination modes (monodentate,

(κ,η2), η5, κ5, (κ2,η2), κ2, η6, and κ3) and three coordination numbers (4, 6, and 8). The

diversity of this small selection, which represents only 0.016% of the overall dataset, reflects

the complexity of the chemical space within tmQMg.

14



Figure 5: Randomly selected geometries from groups 3 to 7 (top, left-to-right) and 8 to 12 (bottom,
left-to-right). Following the same order, the metal centers of the complexes are Sc, Zr, V, W, Mn,
Ru, Ir, Pd, Cu, and Cd. The color code of the non-metal atoms is: grey (C), red (O), gold (S),
blue (N), orange (P), light green (F), dark green (Cl), brown (Br). Hydrogen atoms were removed
for clarity.

For all TMCs in tmQMg, the quantum data was obtained from three different DFT

calculations carried out for the closed-shell singlet state in this order:

1. Full geometry optimization at the PBE-D3BJ/def2-SVP level.87–89

2. Calculation of frequencies and thermochemistry at the PBE-D3BJ/def2-SVP level.87–89

3. Single-point energy and NBO calculation at the PBE0-D3BJ/def2-TZVP level.88–90

When any of these three calculations failed, the system was excluded from the dataset. The

overall success rate of the calculations was 88.7%. Calculation 1 yielded fully optimized

energy minima. Complexes with the same stoichiometry and energy (e.g. duplicates and

enantiomers) were excluded. In calculation 2, only geometries giving all-real frequencies

were included in the dataset. In addition to the geometries, the following quantum prop-

erties were extracted from the output of these two calculations: the double-ζ potential,

zero-point, internal, entropy, enthalpy, and free energies, heat capacity at constant volume,

isotropic polarizability, and lowest and highest harmonic vibrational frequencies. Calculation

3 yielded the NBO parameters used to build and attribute the u- and d-NatQG represen-

tations (Figures 2 and 3, and Tables 1 and 2), as well as the dipole moment, the triple-ζ
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potential and dispersion energies, the HOMO and LUMO energies, the HOMO-LUMO gap,

and the natural charge of the metal center. All these quantum properties are included in

the tmQMg dataset. The SI provides statistics on tmQMg, including molecular charge, size,

and composition, as well as pair plots showing the degree of correlation between the different

quantum properties (Figures S1-3).

Figure 6: Number of disconnected u-NatQG graphs vs. the Wiberg (orange) and NLMO (blue)
natural bond order thresholds (ΛBO).

Besides the optimization of the GNN models reported in this study (vide infra), the

NBO data available from tmQMg was also used to develop the NatQG representations.

Whereas the connectedness of the d-NatQG representation (Figure 3) was guaranteed by the

SOPA-based definition of its topology, u-NatQG (Figure 2) required a natural bond order

threshold (ΛBO) to define a connected topology around the metal center. Figure 6 shows

how the number of disconnected graphs decreases with the ΛBO threshold for the whole

tmQMg dataset. The Wiberg ΛBO reduced disconnectedness more rapidly than the NLMO;
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e.g. at ΛBO = 0.20, there were either 11,034 (Wiberg) or 19,493 (NLMO) disconnected

graphs. For this work, we used a Wiberg ΛBO ≥ 0.05 threshold to define the u-NatQG

topology, with which only 3.9 % of the graphs (2,370 TMCs) remained disconnected. Many

of these disconnected graphs represent group 11 and 12 TMCs with weakly bound molecular

fragments that, from a covalent bond perspective, may not be considered metal ligands.

ΛBO can thus be used as a parameter modulating the connectedness of the u-NatQG graphs

depending on the strength of the metal–ligand bonds. In the disconnected graphs, the

metal-free fragments can be easily identified as isolated subgraphs and be further processed

as needed (by e.g. connecting or excluding them). With ΛBO ≥ 0.05, the average ratio over

the entire dataset between NBO-based (eNBO) and ΛBO-based (eΛ) edges in the u-NatQG

graphs was eNBO/eΛ = 10.4.

The metal complexes included in tmQMg exist in the CSD and, therefore, they are

accessible through synthetic routes described in the literature. This feature may enhance the

reliability of generative models trained with tmQMg, though it may also introduce biases

(e.g. TMC tendency to form crystals of the quality required for structure determination

by diffraction techniques). Further, the tmQMg dataset can be used to benchmark deep

graph learning models for TMCs, including convolutional embedding.91 Another potential

application of tmQMg is the transformation of the NatQG graphs into vector and string

representations; e.g. autocorrelations92 and SELFIES,78 respectively.

The previous version of the dataset, tmQM,68 did not provide the graphs and most of its

quantum properties, including the geometry, were calculated with the semiempirical GFN2-

xTB method. The update provided by tmQMg adds the quantum geometries and proper-

ties computed at the DFT PBE-D3BJ/def2-SVP//PBE0-D3BJ/def2-TZVP level. The two

datasets can thus be combined to train ∆-ML93 models predicting xTB-to-DFT corrections.

The tmQMg data is openly available at https://github.com/hkneiding/tmqmg.
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Natural quantum graph neural networks

The u- and d-NatQG representations (Figures 2 and 3) were used to predict quantum prop-

erties, including the HOMO-LUMO gap, polarizability, and dipole moment, by adapting

the architectures of two different GNN models, both originally developed for applications

to chemistry: 1) the message passing neural network (MPNN) of Gilmer and co-workers,81

and 2) the multiplex molecular graph neural network (MXMNet) of Xie and co-workers.94

A random 80:10:10 split of the tmQMg dataset was used for training, validation, and test-

ing, respectively, including only connected graphs. The model hyperparameters, includ-

ing the number of message passing iterations and the dimensionality of the embeddings,

were optimized by combining a number of possible values. After considering parametric

and non-parametric methods on a per-metal basis for six different quantum properties (i.e.

HOMO-LUMO gap, polarizability, dipole moment, metal charge, HOMO energy, and LUMO

energy), 2,390 TMCs (3.9 % of tmQMg) were excluded as outliers using the isolation forest

algorithm.95 The SI provides further details on both the hyperparameters and the outlier

detection methods.

For the MPNN models, we used the gated graph flavor, which includes a gated recurrent

unit (GRU) to mitigate over-smoothing in message passing.81 Figure 7 shows the MPNN

architecture used in this study, which, after embedding the node and edge attributes of

the NatQG graphs, applies the GRU, and, in the readout layer, uses the set2set attention

mechanism for pooling. We also experimented with the addition of a concatenation operation

augmenting the set2set output with the whole-graph attribute vector before passing the final

embedding to the prediction layer (MPNN⊕G model).
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Figure 7: The MPNN architecture operating over the node (n), edge (e), and graph (G) attribute
vectors of the u- and d-NatQG graphs (Figures 2 and 3). ⊕ = concatenation.

The MXMNet architecture encodes molecules as a multiplex graph including local and

global representations in two separated layers. The local layer accounts mainly for covalent

interactions and includes geometric information in the edges. In contrast, the global layer

represents non-covalent interactions by connecting the atomic nodes within a cutoff distance

of 10 Å. Besides standard message passing within each layer, a cross-layer mapping is used

to exchange information between the two layers. Adding to the base implementation of

Xie,94 in which the graphs were built and informed with a molecular mechanics force field,

we developed an MXMNet model in which the NatQG graphs were used as the local layer.

The performance of the NatQG-based MPNN and MXMNet models on the test dataset

was assessed using the metrics collected in Table 3 and the correlation plots shown in Figure

8. In the prediction of the HOMO-LUMO gap, the u-NatQG MPNN achieved the highest

accuracy with a MAE of 6.02 mHa and r2 = 0.910. This accuracy, in the milli-Hartree scale,

appears to be remarkable given the complexity and diversity of the tmQMg dataset. The

HOMO-LUMO gap is a key quantum property of TMCs related to stability and conductivity,

which both have a strong impact on applications like catalysis and photovoltaic materials.

The performance of the MXMNet models was poorer though they gave an interesting result;

i.e. the u-NatQG and d-NatQG implementations achieved higher accuracies than the original
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Table 3: Mean absolute error (MAE) and r2 score of the GNN models for the prediction of the
HOMO-LUMO gap (in mHa), polarizability (in Bohr3), and dipole moment (in D) in the test
dataset. The GNN architectures were based on different graphs, including the u- and d-NatQG
(Figures 2 and 3), and graphs derived from a cutoff radius (CRG). The base MXMNet model refers
to the original implementation of Xie.94

HOMO-LUMO gap Polarizability Dipole moment
Architecture Graph MAE r2 MAE r2 MAE r2

MPNN
u-NatQG 6.02 0.910 5.00 0.995 0.819 0.879
d-NatQG 7.22 0.873 5.17 0.993 1.019 0.835

MPNN⊕G u-NatQG 6.04 0.910 4.94 0.995 0.895 0.858
d-NatQG 7.19 0.877 4.96 0.994 0.981 0.845

MXMNet
Base 9.36 0.778 4.83 0.994 0.943 0.805

u-NatQG 8.22 0.800 3.76 0.997 0.849 0.850
d-NatQG 9.07 0.795 3.98 0.996 0.838 0.863

SchNet CRG 12.6 0.693 6.81 0.991 1.45 0.729
EdgeUpdate CRG 10.2 0.785 5.67 0.993 1.13 0.696
DimeNet++ CRG 10.3 0.789 5.37 0.994 1.28 0.759
ALIGNN CRG 7.72 0.859 5.43 0.993 0.705 0.900

base model based on molecular mechanics, showing the value of using electronic structure

analysis data (hereby NBO) to define the topology and attributes of the graph.

In contrast with the HOMO-LUMO gap, MXMNet made more accurate predictions for

the polarizability and, based on the u-NatQG graph, yielded the lowest MAE of all models

tested, with a value of 3.76 Bohr3 (r2 = 0.997). With the best MPNN model, this MAE

was larger (4.94 Bohr3), though the r2 score remained high (0.995) due to the wide range

and spread of the polarizability in the tmQMg dataset, compared to other popular datasets

containing smaller organic molecules (e.g. QM996). Regarding the dipole moment, both

models yielded MAEs within the range of [ 0.819 – 1.019 ] D. An interesting result with

MXMNet is that the base and the NatQG models gave very similar MAEs, with the latter

being slightly smaller. This suggests that the partial loss of symmetry that may occur in

some systems upon localizing the NBOs does not affect to a large extent the prediction of

the dipole moment. Symmetry loss does not seem to have a strong impact on the MPNN

models either, which yielded the second lowest MAE for the dipole moment (0.819 D).
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Figure 8: Correlation plots between the true values (i.e. DFT-computed) and the values predicted
by the NatQG-based MPNN models.

GNN models based on cutoff radius graphs (CRG) derived from the atomic coordinates

of the tmQMg dataset were also considered. In particular, the performance of the SchNet,97

SchNet with edge updates (EdgeUpdate),98 DimeNet++,99 and ALIGNN100 GNNs was as-

sessed and compared to that of the MPNN and MXMNet. The advanced features of these

models include continuous-filter convolutions (SchNet and EdgeUpdate), directional message
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passing with spherical harmonics (DimeNet++), and line graphs (ALIGNN). For all these

four models, the CRG graphs were built with a topology based on a cutoff radius, informing

the nodes with the atomic number and the edges with the interatomic distances. ALIGNN

uses additional node attributes (e.g. group number and atomic volume) and geometric in-

formation (i.e. bond angles), which is also leveraged in DimeNet++. From the perspective

of explainability, and in contrast with NatQG, these models are more difficult to relate to

the chemical intuition around TMCs because the topology of the CRG graphs differs signif-

icantly from that of the skeletal formulas, and their attributes do not refer directly to the

electronic structure descriptors used to rationalize the properties of TMCs. The metrics of

Table 3 showed that, in general, the NatQG-based GNNs outperformed the CRG models

with the exception of the dipole moment, for which ALIGNN gave the lowest MAE and

largest r2 (0.705 D and 0.900, respectively).

Table 4: MAE and r2 score for the test dataset using the MPNN⊕G model (Figure 7) based on
the NatQG graphs and a baseline representation including only generic properties (i.e. Z, T, S, χ,
BO, and d). The units are mHa for all energies, cal/mol·K for the heat capacity and entropy, D for
the dipole moment, Bohr3 for the polarizability, and cm−1 for the largest vibrational frequency.

Baseline u-NatQG d-NatQG
Property MAE r2 MAE r2 MAE r2

HOMO-LUMO gap 8.33 0.835 6.04 0.910 7.19 0.877
Polarizability 5.87 0.993 4.94 0.995 4.96 0.994
Dipole moment 1.71 0.537 0.895 0.858 0.981 0.845
HOMO energy 13.1 0.734 3.21 0.991 3.79 0.987
LUMO energy 13.0 0.722 3.51 0.988 4.05 0.984

Electronic energya 18.8 1.000 6.61 1.000 8.01 1.000
Dispersion energya 1.72 0.993 1.45 0.995 1.44 0.995
Zero-point energya 0.50 1.000 0.33 1.000 0.40 1.000
Enthalpy energya 16.8 1.000 6.39 1.000 7.64 1.000
Heat capacityb 0.25 1.000 0.18 1.000 0.22 1.000
Entropy energy 2.34 0.994 1.95 0.996 2.07 0.995
Gibbs energya 19.7 1.000 6.38 1.000 7.37 1.000

Thermodynamic correctionsc 1.36 1.000 1.06 1.000 1.23 1.000
Largest vibrational freq. 4.53 0.997 3.98 0.990 7.52 0.990

aUsing linearly fitted atomic energy offsets; bAt constant volume (i.e. Cv);
cDifference between the Gibbs

and potential energies.
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Figure 9: MAE values for the test dataset using the MPNN⊕G model based on the baseline,
u-NatQG, and d-NatQG graphs. The units are mHa for all properties except the entropy and the
heat capacity at constant volume (Cv), which are in cal/mol·K, all in the same y-axis scale. E =
Energy, ZPE = Zero-point energy.

The performance of the GNN models was also benchmarked against a baseline. The re-

sults obtained with the NatQG MPNN models, which were among the most accurate (Table

3), were compared to those obtained upon replacing all NBO data in the nodes and edges

by generic properties. The (Z, T, S, χ) vector of properties, where Z = atomic number, T =

valence (node degree), S = covalent radius, and χ = Pauling electronegativity, was used to

attribute the nodes. These properties have been previously used to compute autocorrelation

functions for TMCs.92 The edges were attributed with the (BO, d) vector, where BO =

bond order and d = bond distance. Table 4 and Figure 9 show the results obtained with

this baseline representation, together with those of the u-NatQG and d-NatQG graphs. In

addition to the HOMO-LUMO gap, polarizability, and dipole moment, the following quan-

tum properties were also predicted: heat capacity, largest vibrational frequency, energies

(HOMO, LUMO, electronic, dispersion, zero-point, enthalpy, entropy, and Gibbs), and ther-

modynamic correction (i.e. the difference between the Gibbs and potential energies). The
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latter correction, which is predicted with high accuracy (MAE = 1.06 mHa with u-NatQG),

is relevant to the field of computational catalysis with TMCs, where it is often used to refine

the energies.

For all properties collected in Table 4, the NatQG MPNN models surpassed the accuracy

of the baseline, showing the value of using the NBO data for attributing the graph nodes

and edges. The only exception was the prediction of the largest vibrational frequency, for

which the baseline was more accurate than d-NatQG but less accurate than u-NatQG. For

some properties, including the zero-point and entropy energies, the baseline performed at a

level similar to NatQG.

Interestingly, for the HOMO-LUMO gap, we observed the following changes in the per-

formance of the model:

MAE = 8.96 (baseline – d)
∆MAE

G====⇒ 8.33 (baseline)
∆MAE

ES====⇒ 6.04 (u-NatQG) mHa

where baseline – d denotes the baseline representation without the bond distances. This

progression reflects the significant increase in accuracy upon adding geometric and electronic

structure information (G and ES, respectively), with the latter having a stronger impact, as

shown by ∆MAE
G = −0.63 versus ∆MAE

ES = −2.29 mHa. A similar progression was observed

for the polarizability and the dipole moment:

MAE = 6.43 (baseline – d)
∆MAE

G====⇒ 5.87 (baseline)
∆MAE

ES====⇒ 4.94 (u-NatQG) Bohr3

MAE = 1.98 (baseline – d)
∆MAE

G====⇒ 1.71 (baseline)
∆MAE

ES====⇒ 0.895 (u-NatQG) D

again with a stronger contribution of the electronic structure information, as shown by

∆MAE
G = −0.56 versus ∆MAE

ES = −0.93 Bohr3 for the polarizability, and ∆MAE
G = −0.27

versus ∆MAE
ES = −0.82 D for the dipole moment.
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Another factor contributing to these observations can be the smaller difference between

the input and the embedding dimensions, which is 90 for the u-NatQG representation and

123 for baseline – d.

In general, regardless of the property predicted, the models based on the undirected

graphs outperformed the directed, which are also more computationally demanding because

they contain more edges. The concatenation of the whole-graph attribute vector in the

last layer of the MPNN⊕G model improved the results obtained with d-NatQG (Table 3).

Further, for the training set, the best performance in the prediction of several properties

was obtained with the directed graphs, which thus seem to have a lower generalization

capacity (Tables S3-4). However, in most cases, the MAE and r2 values obtained for both

graph types were rather similar. The unusual topology of d-NatQG can exclude edges where

chemical bonds are present (e.g. Pt–C bonds in Figure 3), though it retains the fundamental

interactions within TMCs (e.g. d → π* backdonation). The remarkable performance of d-

NatQG in the GNN models shows the promise of directed graph representations expressing

donor-acceptor interactions.

Conclusions

The present work showed how the NBO analysis of TMCs can be used to define NatQG

graphs encoding both geometric and electronic structure information. The NatQG graphs

enabled the optimization of GNN models for the accurate prediction of the quantum prop-

erties of TMCs. These models will contribute to the development of new TMCs, which can

play a key role in several fields of high interest, including catalysis, nanomaterials, medicinal

chemistry, and renewable energies.

With the HyDGL program, the NatQG graphs can be easily built from NBO data, which

is used to define both the topology and the attribute vectors. The graphs can be made

either undirected (u-NatQG), like a conventional molecular graph, or directed (d-NatQG),

for expressing donor-acceptor interactions. Both flavors are infused with electronic structure
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information that can be directly related to the textbook concepts used to rationalize the

structure and reactivity of TMCs.

The NatQG graphs were used to optimize GNN models based on the MPNN and MXM-

Net architectures. These models predicted several quantum properties of TMCs with re-

markable accuracy, including the HOMO-LUMO gap and the polarizability, outperforming

other models based on different topologies (CRG graphs) and attributes (periodic table

properties). Interestingly, numerical experiments showed that the electronic structure infor-

mation boosted the models performance by an extent larger than the geometric information.

Despite its unusual connectivity, the d-NatQG representation performed at a level similar to

u-NatQG, showing the promise of directed donor-acceptor graphs in deep learning.

The results obtained with the NatQG GNNs will be a useful baseline for the development

of machine learning models for complex molecular systems. These models can be also applied

to the prediction of thermodynamic and kinetic parameters of chemical reactions catalyzed

by TMCs. Further, the tmQMg dataset will be a valuable benchmark for future studies

exploring deep graph learning for TMCs.

Supporting information

Further information on the statistics of the tmQM dataset and its outliers. Technical details

of the GNN models, the baseline representation, and the linear fitting of the atomic energies

used to predict energy targets. The error metrics obtained with the training dataset, the

Python libraries used to develop the HyDGL code, and the computational details of the

tmQMg dataset are also provided.
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Open data and code

The graphs reported in this study were generated with the HyDGL program, which is openly

available at https://github.com/hkneiding/HyDGL. The code has a modular structure that

can be easily modified to generate other graph types for any molecular system. The tmQMg

dataset is also openly available at the URL https://github.com/hkneiding/tmqmg, which pro-

vides access to the NatQG and baseline graphs, outliers, xyz geometries, and csv-formatted

properties and targets of all TMCs.
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