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Abstract

We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets

- 3-chymotrypsin-like protease, papain-like protease and adenosine ribose phosphatase - to long-

timescale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten

or twelve 10-microsecond simulations for each system, we accurately and reproducibly determine

ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding

sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of

conformational changes that occur at the main binding site of 3CLPro due to the presence of another

ligand at an allosteric binding site. We investigate the reliability and accuracy of long-timescale

trajectories. Due to the chaotic nature of molecular dynamics trajectories, individual trajectories

do not allow for accurate or reproducible elucidation of macroscopic expectation values. Upon

comparing the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10-

microsecond trajectories, we find that over 90% of trajectories have significantly different contact

frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we

determine the ligand binding free energies for each of the identified sites using the long-timescale

simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending

on the binding site and the system. We show that although this is the standard way such quantities
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are currently reported at long-timescale, individual simulation does not yield reliable free energy.

Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to

obtain statistically meaningful and reproducible results. Our findings here are generally applicable

to all molecular dynamics based applications and not just confined to free energy methods used in

this study. Finally, we compare the application of different free energy methods to these systems

and discuss their advantages and disadvantages.

1 Introduction

There is an urgent need for drugs which target SARS-CoV-2, the pathogen responsible for the current

coronavirus pandemic. In this regard, a concerted global effort has led to a rapid rise in the number of

SARS-CoV-2 protein structures available in the Protein Data Bank (PDB), rendering the virus increas-

ingly susceptible to rational, structure-based drug discovery. The typical timeline for the development

of a single drug is 10-15 years, with an associated cost of $2 billion1. In the face of the global COVID-19

pandemic, it is clear that the average development timescale of up to 15 years is wholly inadequate.

It is therefore of crucial humanitarian and societal importance to develop new in silico workflows that

accelerate the rate and enhance the quality of lead drug molecule design. Workflows which tie both

artificial intelligence (AI) and molecular dynamics (MD) based methods together are required as no

single methodology can achieve both the required accuracy and speed2–5. Whilst AI based methods can

rapidly sample significant regions of chemical space in a short time frame, MD based methods (which

are significantly lower in throughput) are able to predict ligand binding free energies to much higher

accuracy2. Furthermore, MD based methods have the potential to elucidate ligand binding kinetics and

processes. The information derived from these simulations can be used to inform drug molecule optimi-

sation for improved kinetic and thermodynamic binding properties. In turn, MD based methods form

a crucial part of modern drug discovery workflows. In the present work, we investigate the application

of molecular dynamics (MD) simulations to the robust and reproducible elucidation of ligand binding

mechanisms, sites and interactions.

Molecular dynamics methods which aim to simulate the spontaneous process of protein-ligand bind-

ing have been in development for the last decade6–14. Over this period, significant advancements have

been made due to increased access to high-performance computing resources (in particular GPU acceler-

ated hardware), improvements in computational hardware15,16, and developments in MD algorithms17,18.

Thus far, work in the field has predominantly focused on determining the mechanism of ligand binding to

crystallographically determined sites6,7,9–12. The idea behind these efforts is that by observing the spon-
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taneous process of binding to these sites, key metastable states and associated protein ligand contacts

can be identified. It is hoped that these interactions can then be modulated to optimise the kinetic and

thermodynamic properties of drug binding6,7,9–12. Some of these studies have also led to the elucidation

of non-experimentally determined sites, which may act as allosteric sites7,8 for the modulation of protein

activity.

A central problem that arises in these studies is that they utilise protocols which do not systematically

account for the chaotic nature of molecular dynamics simulation19. The extreme sensitivity of such

simulations to their initial conditions causes the many one-off results reported to be inherently non-

reproducible20–23. Addressing this issue forms the central focus of this work. The question which we

address is whether it is possible to develop reliable methods that can accurately and reproducibly identify

the full range of binding sites and binding modes that are accessible to a ligand. Such a method will

permit us to go beyond what is essentially anecdotal evidence, and to report that findings are statistically

reliable and of scientific value. We would like to remind readers that it is common to work with fixed

epistemic parameters in molecular dynamics. Although a full uncertainty quantification analysis would

require one to investigate their role in determining the uncertainties in quantities of interest, we have

previously shown that the aleatoric uncertainty in MD simulations typically overwhelms that from the

epistemic sources, and that the latter’s uncertainty is damped in the output quantities of interest24.

Therefore, our focus in this work is only on the aleatoric uncertainty.

In general, spontaneous ligand binding methods work by initiating a molecular dynamics protein-

ligand system from a configuration where the ligand is placed at some distance from the surface of the

protein. During the simulation, the ligand explores the surface of the protein and binds to potentially

druggable sites which may be orthosteric, allosteric or even cryptic in nature8. By analysing the tra-

jectories using methods such as Markov state model (MSM) analysis25,26, thermodynamic and kinetic

observables which are of key importance to the process of drug discovery can be extracted from the data.

These include binding free energies27, dissociation constants (Kd)27 and on and off rates of binding (Kon

and Koff )28,29.

When conducting these studies, the question arises as to whether the trajectory has sufficiently

sampled phase space such that the probability distribution of the trajectory has converged to the equi-

librium probability distribution of the protein-ligand system. Only this distribution would allow the

true expectation values of the observables to be obtained19. To sample the phase space, one of two

distinct approaches is usually followed. In the first, which we term the “long-timescale” regime, authors

report several microsecond timescale simulations7–9,27,30 and from these, compute the observables of
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interest. These observables include 3-dimensional ligand occupancy maps, ligand binding free energies,

along with ligand association mechanisms and pathways. In the second regime, termed “adaptive-

sampling” 11–13,29,31,32, many simulations of shorter timescale are executed, and new simulations are

adaptively initiated from specific simulation snapshots in order to “more thoroughly” explore regions of

phase space that are of interest. Incidentally, many studies from the second regime report aggregate

simulation times that fall in the microsecond timescale; this is misleading as performing a single simu-

lation of that duration is not the same as we will discuss in detail in the current study. We note that

some studies also combine the two techniques, using adaptive sampling to initiate new, “short” simula-

tions from long-timescale simulations that are stuck within non-productive kinetic traps28. Generally,

this approach is taken in order to converge transition probabilities between metastable states that are

identified during Markov state modelling33,34.

Current practices in the field, however, do not systematically consider the aleatoric uncertainty as-

sociated to microsecond-timescale simulations. Molecular dynamics trajectories are intrinsically chaotic

in nature, meaning that they exhibit extreme sensitivity to initial conditions19–24,35–38. This causes re-

sults derived from individual simulations to be non-reproducible. Indeed, within accessible timescales,

the oft-made assumption of ergodicity according to which an ensemble average may be replaced by a

time-average, does not hold19.

We would like to point out here that there are several accelerated sampling protocols that involve

performing “ensembles” of simulations. These include methods that do not employ any external force

or heating, and just enhance sampling by performing multiple independent MD simulations concur-

rently with different starting conditions. Examples include ensemble dynamics39–45, Markov state model

(MSM)25,26,33,34,43,45–48, weighted ensemble (WE)49–58 and multilevel splitting (MS)59–63 methods. Al-

though these methods involve performing “replicas” and generating “ensembles”, the fundamental ques-

tion is whether we get the same answer (within error bars) on repeating the entire protocol using one

of the above methods. Given that the dynamics is chaotic, it is expected that this is not the case and

ensembles must be used as each execution of such a protocol would have a different initial condition19,24.

One example are replica exchange methods64,65 that also involve performing multiple MD simulations in

parallel (so called “replicas”). We have shown in previous work that on repeating a replica exchange cal-

culation multiple times, we indeed observe variation in the outcome and hence it is necessary to perform

ensembles of the entire protocol (which itself contains “replicas”) to perform a systematic uncertainty

quantification (UQ)21,66. Similar studies are required for other methods involving “ensembles” in order

to properly assess UQ in those cases.
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The purpose of the present paper is to systematically assess the distribution of properties obtained in

long-timescale simulations. By performing ensembles of 10 to 12 ten-microsecond unbiased simulations,

we are able to evaluate the utility of running individual long-timescale simulations, investigate their

reproducibility and compare the results obtained from them to an “adaptive-sampling” scheme which

consists of 9 microseconds of aggregate simulation time. This is of interest as the wall time required to

execute the long-timescale runs is significantly longer than the wall time required for the entire adaptive

sampling protocol (differences are on the order of weeks).

In our study, we apply these statistically robust techniques to three crucial SARS-CoV-2 drug tar-

gets: adenosine ribose phosphatase (ADRP)67, papain-like protease (PLpro)68 and 3-chymotrypsin-like

protease (3CLpro)69. Each of these are globular, non-structural proteins encoded by SARS-CoV-2 which

play key roles in the lifecycle of the virus and serve as important potential targets for SARS-CoV-2.

Our findings here shed light on potentially druggable sites on the surface of the proteins, elucidate rel-

ative binding free energies between each of the sites, and demonstrate binding mechanisms which may

explicitly inform future efforts in SARS-CoV-2 drug discovery. We also compare different free energy

protocols and discuss the applicability of each in different scenarios. In addition to these methodological

developments, we report new scientific findings on the allosteric effects observed in 3CLPro. We discover

conformational changes occurring at the active site of 3CLPro caused by the binding of a ligand at an

experimentally known allosteric binding site. We demonstrate how these changes affect the binding of

ligands at the main (active) site by distorting the binding pose. We also show how one-off simulations

can easily lead us to draw false conclusions. Only ensemble simulations can provide statistically robust

results.

2 Theory

The present study approaches the subject of spontaneous protein-ligand binding simulations from the

perspective of chaos theory and uncertainty quantification. In this section, we describe how the chaotic

nature of molecular dynamics simulations causes individual simulations to be non-reproducible, no

matter their length. We also describe how running ensembles of simulations remedies this by allowing

for expectation values to be subjected to rigorous uncertainty quantification and convergence analysis.

By presenting this theory, we strive to make clear that running an ensemble of simulations that sum

to a certain time is not equivalent to simply running a single simulation of the same aggregate time.

The novel point which we explicitly demonstrate is that, contrary to the current consensus, the level

of certainty of a simulation derived expectation value does not increase with simulation time. This
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necessitates the use of ensembles when reporting macroscopic expectation values for all long-timescale

simulations. Not only is such a prescription required by the tenets of statistical mechanics, it is also

essential in order to quantify the uncertainty of the calculated properties.

2.1 MD simulation and equilibrium

In statistical mechanics, the value of an observable (G) of a dynamical system is derived by calculating

the expectation value of the observable 〈G〉t over the trajectory that the dynamical system takes through

phase space

〈G〉t =

∫
G(x)ρt(x)dµ (1)

The ergodic theorem, often used to justify the accuracy of “long-timescale" molecular dynamics simu-

lations, states that in the long-time limit, the time average of a dynamical observable will approach its

ensemble average. Namely,

lim
t→∞
〈G〉t = 〈G〉eq = lim

t→∞

∫
G(x)ρt(x)dµ =

∫
G(x)ρeq(x)dµ (2)

where ρt and ρeq are the 6N+1 dimensional time dependent and equilibrium probability distributions of

the dynamical system.This implies that ρt has asymptotically approached ρeq (where the evolution of ρt

is determined by the Liouville equation19).

Problematically for those working in the field of MD simulation, this assumption only holds true

for timescales that are on the order of a Poincaré recurrence time, which is longer than the age of the

universe23. Therefore, because for any realistically obtainable single trajectory of a dynamical system

ρt does not asymptotically approach ρeq, the value of a given observable obtained from an individual

molecular dynamics trajectory cannot be equated to the true value of the observable that would arise if

phase space were ergodically sampled. Furthermore, the equality also requires that the dynamical system

is mixing. In the ergodic hierarchy, mixing is a stronger property than ergodicity, and is dependent on

the system being chaotic19.

2.2 Uncertainty quantification

Uncertainty quantification (UQ) is a field of endeavour that aims to analyse the interplay between

simulation inputs and outputs for the purpose of determining the uncertainty associated to obtained

results23,70. In the present study, we are particularly interested in quantifying the aleatoric output un-

certainty that is controlled by the initial random velocity seed. A series of our studies have presented
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robust evidence that simulation outcomes are strongly controlled by the initial random seed, and that

averaging over a set of simulations all starting with different random seeds consistently reduces the un-

certainty of obtained results24,35. Indeed, this aleatoric uncertainty completely dominates the epistemic

uncertainty arising from the way in which the model is parameterised and set up24. A crucial feature

of performing ensembles of simulations, which allows us to conduct uncertainty quantification, is that

the distribution of properties of interest can be obtained. Here, we apply UQ to multiple properties of

spontaneous ligand-protein binding simulations, namely, the protein-ligand residue contact frequency

distribution and the computed binding free energy of the ligand with a protein target.

2.3 SARS-CoV-2 protein-ligand systems

Three important SARS-CoV-2 targets form the focus of this work: 3CLpro, PLpro and ADRP. 3-

chymotrypsin-like protease (3CLpro, also known as the main protease, or non-structural protein 5

(nsp5)), and papain-like-protease (PLpro, the protease domain of nsp3) are both proteolytic enzymes of

SARS-CoV-2 which are responsible for cleaving the viral poly-protein chain (encoded by SARS-CoV-2

RNA) into non-structural proteins that are required for the process of viral replication68,69. Adenosine

ribose phosphatase (ADRP) is a domain of Nsp3 that is capable of interfering with the host immune

response by removing ADP-ribose from ADP ribosylated proteins and RNA67. Thus, each of these

protein targets are of considerable interest for SARS-CoV-2 drug design.

In a recent study by our group38, 14 compounds of interest, each of which bind to one of three sites

(the substrate binding site, allosteric site I, and allosteric site II) on the surface of 3CLpro, were identified

from a previously conducted high-throughput crystallographic screen of repurposed drug molecules71.

Based on the results derived in that study, we selected 3 ligands of interest, MUT056399 (RQN), AT7519

(LZE) and pelitinib (93J) for the current study covering all three binding sites and a wide range of

EC50 values (Table 1). Furthermore, by building the system containing both RQN (which binds to the

substrate binding site)71 and LZE (which binds to allosteric site 2)71, we aim to capture whether or not

the binding of RQN is affected by the binding of LZE, and if so then determine the allosteric mechanism

involved in the process. For the PLpro system we decided to focus on the ligand GRL0617 as it showed

strong antiviral activity using NMR data and a promising value of EC5068. Tofacitinib, which is a FDA

approved pharmaceutical that is used to treat rheumatoid arthritis and ulcerative colitis72,73 was chosen

as the ligand for the ADRP system.

7



Table 1: Protein targets and their corresponding ligands. aPDBe ligand codes. b6W02 is the structure
of ADRP bound to ADPR, not to tofacitinib.

Target Compound PDBea Exp. Binding PDB EC50
name name site ID (µM)
ADRP Tofacitinib MI1 N/A 6W02b N/A
PL-Pro GRL-0617 TTT USP 7CJM 21.00
3CL-Pro MUT056399 RQN SB 7AP6 38.24

Pelitinib 93J AS I 7AXM 1.25
AT7519 LZE AS II 7AGA 25.16

3 Methods

We use ensembles of replica simulations (which here differ only in their initial particle velocities, drawn

randomly from a Maxwell-Boltzmann distribution) in order to converge the statistics of the observable

of interest. Whilst previous studies by our group have investigated the necessity of ensembles for

accurate and precise ligand binding free energy calculations20,22,74–76, here we aim to demonstrate that

ensembles of MD simulations are equally essential for the accurate determination of ligand binding sites

and ligand-protein interaction mechanisms. To do this, we conduct a thorough comparative analysis of

two alternative ensemble protocols: the long-timescale protocol, and the splitting protocol (an adaptive

sampling method). These protocols are applied with a key goal in mind: to elucidate novel ligand

binding sites and mechanisms for the three aforementioned proteins that are essential to the life cycle of

SARS-CoV-2: ADRP, 3CL-Pro, and PL-Pro. We also employ different free energy protocols in order to

determine the pros and cons of each method and discuss their domains of applicability and limitations.

3.1 Protein-ligand systems

All three protein systems were selected due to their key-role in the life-cycle of the SARS-CoV-2 virus

(as discussed in §2). The protein structures were initially sourced from PDBs (see Table 1). All

mutations in the initial crystallographic structures were back-mutated using the “Rotamers” tool in

UCSF Chimera77,78. Following this, ligands and other unwanted molecules were removed from the

structures. The 3-dimensional conformers of the selected ligands were sourced from PubChem (https:

//pubchem.ncbi.nlm.nih.gov) and inserted into the system. Five protein-ligand systems were built

in total. All systems are detailed in Table 1 and each of the proteins and ligands are shown visually in

Figure 1. For each of our protocols and systems, the ligand was initially placed 20Å away from the surface

of the protein. A distance of 20Å was chosen to minimise sampling bias that would arise from the initial

position of the ligand due to long-range protein-ligand interactions. Thus, if the ligand was initially
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Figure 1: Structures of protein targets and corresponding ligands. ADRP (PDBID: 6W02) is shown
in cyan, PLpro (PDBID: 7CJM) in orange and 3CLpro (PDBID’s: 7AP6, 7AXM, 7AGA) in purple.

placed 3Å from the binding site, it would immediately form interactions with the protein in that region

and therefore most likely bind to that site. By distancing the ligand we ensure that it stochastically

diffuses around the protein before establishing its initial contact. Furthermore, the choice of separating

the ligand and the protein by a distance of 20Å is compatible with standard practice in the field, which

is to distance the ligand between 20 and 30Å away from the surface of the protein6,7,10,11. Following this,

each system was solvated using the TIP3P water model and charge-neutralised by inserting sodium or

chloride ions79.

3.2 Simulations

In this sub-section, we describe the two simulation approaches which we directly compare within this

study: The long-timescale and splitting protocols.

3.2.1 Long timescale protocol

In the long-timescale protocol (Fig. 2B), we perform ten or twelve replica simulations of 10 microsec-

onds each. Each simulation is initiated from a common configuration in which the ligand is placed 20

Ångstroms from the surface of the protein. A simulation length of 10 microseconds is chosen on the basis
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Figure 2: Schematic depiction of the “splitting” and “long-timescale” protocols. (A) Within the split-
ting protocol, ensembles of 20 replica trajectories of 200 nanoseconds are initiated from a common
configuration in which the ligand is placed 20Å from the surface of the protein. For each replica, the
initial particle velocities are drawn randomly from a Maxwell-Boltzmann distribution. Trajectories are
analysed using RMSD heatmaps, and those with the most stable poses in the final frame are chosen
as configurations from which to initiate new sets of replicas, which we term “subreplicas". Each set of
“subreplicas” contains 10 subreplicas of 100 nanoseconds each. (B) During the long-timescale protocol,
10 or 12 replicas of 10 microseconds each are initiated from a common configuration in which the ligand
is placed 20Å from the surface of the protein. For each replica, the initial particle velocities are drawn
randomly from a Maxwell-Boltzmann distribution.
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that it is on the order of simulation times (microseconds to tens of microseconds) that have been utilised

in multiple previous studies to derive information on the nature of ligand-protein interactions8,9,27 This

protocol allows us to address two crucial aims within our study. First, we intend to identify whether

a single 10 microsecond run can reliably reproduce the full range of binding sites and binding modes

sampled by the aggregate of the “splitting” protocol (which has a length of 9 microseconds). And second,

we aim to demonstrate the variability between the 10 microsecond members of the ensemble in order to

examine whether a single “long-timescale” (ten microsecond) trajectory is capable of generating repro-

ducible and therefore reliable results. Indeed, as we show, each 10-microsecond run exhibits different

statistics due to the chaotic nature of MD trajectories. A few recent papers from the D. E. Shaw group

implicitly recognise such variability in MD simulations at the microsecond timescale80,81. However, this

has not been studied systematically hitherto, nor has the importance of ensembles of simulations at

long-timescale been discussed in the literature as we do in this study.

3.2.2 Splitting protocol

During the splitting protocol (Fig. 2A), 20 replica trajectories of 200 nanoseconds each are initiated

from a common configuration in which the ligand is placed 20 Ångstroms from the surface of the

protein. The initial particle velocities of each ensemble member are drawn randomly from a Maxwell-

Boltzmann distribution. Trajectories are analysed using RMSD heatmaps, and the 5 replicas with the

most kinetically stable poses in the final frame are chosen as configurations from which to initiate new

sets of replicas, which we term “subreplicas”. We quantify “kinetic stability" by computing the ligand

RMSD relative to the final frame of the simulation and select the five replicas which have an RMSD

of < 5 Ångstroms for the longest duration of time relative to the final frame. Each set of “subreplicas”

contains 10 subreplicas of 100 nanoseconds each. The aggregate simulation time across the length of

this protocol is 9 microseconds. Within the protocol, 200 nanoseconds and 100 nanoseconds were chosen

as the simulation times as these are representative of the simulation timescale executed by those who

have utilized ensemble based adaptive sampling protocols. Examples of this include the seminal study

in the field by Butch et al. where 495 trajectories of 100 nanoseconds each were executed6, amongst

other papers which run on similar timescales10,11. The purpose of the splitting method is to explore and

identify as many binding sites as are feasible to which the ligand of interest may bind on the protein,

whilst reducing the amount of wall time required to do so.
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3.2.3 Simulation details

NAMD 279,82 and OpenMM83 were used to run our simulations. All splitting protocol simulations were

executed on Scafell Pike (hartree.stfc.ac.uk) whose compute nodes are comprised of Bullsequana

X1000 (Intel Xeon processors and NVIDIA Tesla V100 accelerators). Long-timescale runs for ADRP

were also executed on Scafell Pike using OpenMM. All other long timescale simulations were executed

using OpenMM on Summit (https://www.olcf.ornl.gov/summit) where compute nodes consist IBM

Power9 processors and NVIDIA Tesla V100 accelerators. Force fields and modifiable simulation param-

eters were kept constant across MD engines and HPC platforms. All ligands (Table 1 and Fig. 1) were

parameterised in AmberTools using AM1-BCC charge assignments. The Amber FF14SB force field was

used to parameterise the protein, and TIP3P water molecules were used to solvate the system. During

equilibration, we conducted 1000 steps of energy minimisation, and then in the NVT ensemble, applied

harmonic constraints to protein and ligand atoms, whilst heating the system from 60K to 310K (an

increase of 1K every 2ps). We then ran in the NVT ensemble at 310K for 300ps with no constraints.

Following this, we performed equilibration in the NPT ensemble, using a Monte-Carlo barostat with a

pressure of 1.01325 bar and frequency of 50fs. We reduced the strength of all harmonic constraints by a

half every 0.1 ps, 10 times. Subsequently, constraints were set to 0. Finally, the system was equilibrated

without constraints at 310K in the NPT ensemble for 1ns. For all production and equilibration simu-

lations, a Langevin thermostat was employed with a 2fs timestep together with a friction coefficient of

1/picosecond to simulate the dynamics of the system.

3.3 Ligand-protein contact frequency analysis

Ligand - protein residue contact frequencies are computed using a series of custom python scripts. The

original scripts were written for the “getcontacts” tool by Dror et al84. A contact between the ligand

and the protein is defined as a van der Waals interaction, where the distance (|AB|) between two non-

hydrogen atoms, A (belonging to the ligand) and B (belonging to the protein), satisfies the equation:

|AB| < RvdW (A) +RvdW (B) + 0.5 , where RvdW is the van der Waals radius of the atom.

Upon computing the percentage of frames in which contacts are formed between the ligand and

each protein residue for all of our trajectories, we obtain a two-dimensional matrix containing m × n

elements where m is the number of trajectories executed and n is the number of residues in the protein.

An element (m, n) of the matrix therefore corresponds to the contact frequency of the ligand with

residue n in trajectory m. All ligand-residue contact frequency distributions are computed from these
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matrices using Python. These distributions provide meaningful and easily interpretable low dimensional

representations of phase space sampling.

3.4 Binding free energy calculations

To determine the relative binding free energy of a specific ligand for each of its identified binding sites, we

use two protocols: ESMACS22,74,75, and the so-called “direct” binding free energy calculation method27,85.

By running the direct protocol, we also derive insights into the reproducibility of expectation values that

are computed from “converged” simulations that are multiple microseconds in length.

3.4.1 Enhanced sampling of molecular dynamics with approximation of continuum solvent

(ESMACS)

Enhanced sampling of molecular dynamics with approximation of continuum solvent (ESMACS) cal-

culations are fundamentally based on the Molecular Mechanics Poisson-Boltzmann/ Generalised-Born

Surface Area (MMPB/GBSA) binding free energy calculation method86. MMPB/GBSA calculations

were conducted using AmberTools 2087. For all MMPB/GBSA calculations, the 1-traj protocol was

used, allowing the MMPB/GBSA ligand binding free energy (∆GMMPB/GBSA) to be calculated from a

single trajectory of the protein-ligand complex. Within the 1-traj protocol ∆GMMPB/GBSA is computed

using the equation:

∆GMMPB/GBSA = 〈GPL −GP −GL〉PL,

where GPL, GP and GL correspond to the free energy contributions of the complex, protein, and ligand

respectively. Angular brackets denote that ∆GMMPB/GBSA is computed as the average over all input

snapshots, while the subscript “PL” denotes that the snapshots are taken from a single simulation of the

protein-ligand complex. GPL, GP and GL are calculated using the following equation:

G = Ebnd + Eele + EvdW +GPol +Gnp,

where Ebnd, Eele and EvdW are the bonded, electrostatic and van der Waals terms, respectively. GPol is

the polar solvation free energy and Gnpis the non-polar solvation free energy.

For each binding site identified during our long timescale and splitting protocols, we ran an ensemble

of 25 4ns trajectories. Since the predominant ligand binding sites and poses were identified as the final

frames from which subreplicas were initiated in the splitting protocol, we used these configurations as
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the starting structure for ESMACS calculations performed for the ADRP system.

Our choice of running 25 simulations of 4 nanoseconds each is in accordance with previous findings

by our group showing that 25 replicas of 4 ns are sufficient to obtain converged values of ∆GESMACS
22.

These trajectories were post-processed in MMPBSA.py to produce 25 binding free energy estimates, one

for each replica within the ensemble. The reported ∆GESMACS is the mean of the sampling distribution

of means for this sample of 25 free energy estimated obtained using bootstrapping. The associated error

bars are the corresponding standard errors.

3.4.2 “Direct” binding free energy calculations

The “direct” binding free energy calculation method was originally developed by De Jong et al.85 and

later applied to 10 microsecond trajectories by Pan et al. in 201727. We would like to point out that the

method is justified on the basis that a sufficiently long single trajectory can be averaged to produce a

meaningful macroscopic free energy. However, we will demonstrate that this assumption is not valid, and

hence free energies computed through this method using a single trajectory are not reliable. To calculate

the binding free energy, we use the following equations which were derived via statistical mechanics by

De Jong et al.85

KA =
Pb
Pu
vcoNAv ;

∆Gb = −kBT lnKA .

Here, Pb and Pu are the fraction of simulation time in which the ligand is bound and unbound to

the binding site of interest respectively, v is the volume of the simulation box (L), co is the standard-

state concentration (1 mol L−1), NAv is Avogadro’s number, kB is Boltzmann’s constant and T is the

temperature (K). We define the ligand to be in the bound state when the first two closest distances

between the heavy atoms of the ligand and the side chain heavy atoms of the binding site residues is

<5 Å. All other frames are defined as unbound.

3.5 The Kolmogorov–Smirnov test

To compare the ligand-residue contact frequency distributions, we perform the pairwise Kolmogorov–Smirnov

(KS) test. The test compares the underlying continuous distributions F (x) and G(x) of two indepen-

dent samples (in this case, two ligand-residue contact frequency distributions, each derived from separate

MD trajectories). Since the test is non-parametric, it is particularly suited to the comparison of ligand-

residue contact frequency distributions as they have multiple peaks and are not normally distributed.
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To test the statistical certainty of two distributions being different from one another, we use the two

sided p-test. For this test, the null hypothesis is that both of the distributions are sampled from the

same underlying distribution. All KS tests are computed using the SciPy package in Python88.

4 Results and Discussion

This section is divided into two subsections. In the first subsection, we discuss aspects of our results

that are important from the point of view of developing new scientific methods that yield statistically

robust and reliable outcomes. We report our findings on the effect of stochasticity in MD simulations at

“long” timescales. We show how this intrinsic characteristic of MD can be used to our advantage in order

to enhance the sampling of phase space through introduction of biases. Further, we determine binding

affinities using two different methods and compare them to discuss the advantages and disadvantages

of each method and highlight scenarios where a particular method should be preferred. In the second

subsection, we discuss the important scientific findings of our study. We describe the allosteric mecha-

nism through which LZE binding affects the binding of RQN and show how the binding poses/sites are

affected by this.

4.1 Development of Scientific Methods

4.1.1 Aleatoric uncertainty in “long” MD simulations

We have shown that classical molecular dynamics simulations are extremely sensitive to their initial

conditions given their chaotic nature due to which two independent MD trajectories diverge exponen-

tially with time19. This has been exhibited in several published studies for short simulations (up to

a few nanoseconds) including ours18,20,35. Unprecedentedly, in this study we provide evidence for such

divergence between independent simulations extending up to 10 microseconds. Our results conclusively

show that MD trajectories lead to very distinct regions of a given phase space even when they are

considered “long”. Thus, results based on one-off “long” simulations are as unreliable as one-off “short”

simulations. Indeed, it is essential to perform ensembles in all cases to quantify the uncertainty and

ensure reproducibility of results. This is due to the mixing nature of the dynamics which is a necessary

and sufficient condition to reach equilibrium19,23.

Table 2 provides the number of binding sites sampled by the entire ensemble of 10 or 12 replicas

for each system (ten for ADRP-tofacitinib complex and twelve for all other systems) in column 2. In

the third column, it also includes the number of replicas that visit each binding site for each system.

It is evident that not all sites are sampled in all simulations. There is substantial variation in the
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Table 2: Sampling frequency of the different binding sites across all “long” independent replicas. The
middle column shows the number of different binding sites sampled across all replicas for a given system.
The last column shows an ordered set of the number of replicas visiting a given binding site for all sites
in the middle column. The number in bold font corresponds to the experimental binding site. Note that
this only captures whether a replica samples a given binding site at all or not. It does not take into
account the amount of time spent at a given binding site by any replica. The total number of replicas
is 10 for the ADRP system whereas 12 for all others.

System # of binding sites # of replicas visiting each site
ADRP-tofacitinib 4 3,4,9,6

PLPro-GRL 15 1,1,1,1,1,1,1,1,2,1,1,1,1,1,1
3CLPro-93J 13 1,8,1,2,1,1,1,3,3,1,1,1,1
3CLPro-RQN 9 7,2,1,10,2,1,1,1,1

3CLPro-RQN (with LZE) 12 6,4,2,2,3,2,4,3,1,2,1,1
3CLPro-LZE (with RQN) 8 6,6,5,3,4,3,4,1

binding sites sampled both across replicas for each system as well as across all systems studied. For

instance, in the case of the ADRP-tofacitinib system, four different binding sites are sampled by 3, 4,

9 and 6 replicas respectively. Comparing this behaviour with that of the other four systems studied

(all relatively bigger in size), we can clearly see that they differ in that the number of sites observed

is much higher with the number of replicas visiting each site being smaller. Taking the example of the

PLPro-GRL system, there are 15 different binding sites observed with each only sampled by a single

replica for all but one site. Furthermore, 9 out of 12 replicas exclusively sample only a single binding

site. This behaviour is in contradiction to what we see for the ADRP-tofacitinib system exhibiting the

extent of variation in sampling that may be observed across different systems using an ensemble of long

independent simulations. The sampling behaviours of the other three systems fall in between the two

extremes discussed above. It should be noted here that, in the above analyses, a replica is considered to

have sampled a given binding site only if its ligand fractional occupancy is ≥ 0.03 around that site. In

other words, a replica is assumed to have sampled only those binding sites that appear in the volume

occupancy maps (and have non-negligible peaks in the corresponding contact frequency distributions)

displayed in Figures 3 and S1-S4. It is possible that a replica has visited other binding sites too for

a very short period of time but such transient events are neglected in our analyses as such a binding

process cannot be considered stable.

There is also a non-negligible variation in sampling across replicas for each system studied. Taking

the ADRP-tofacitinib system as an example, as already noted, four different binding sites (denoted

as A, B, C and D) have been sampled collectively by the ensemble of ten 10 µs long replicas. The

crystallographic site (C) is sampled by 9 out of 10 replicas whereas all other sites are only located by a
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Figure 3: Tofacitinib (ligand) - ADRP (protein) residue contact frequency distribution plots for each
“long” replica are shown adjacent to their respective ligand occupancy maps. The ligand-residue contact
frequencies correspond to the fraction of frames in which a hydrophobic contact is formed between the
ligand and a given protein residue. Occupancy maps of tofacitinib around the ADRP protein represent
the isovalue surfaces (wireframe representation) rendered at the fractional occupancy of 0.03 across all
frames of the simulation trajectory. In other words, they represent volumes of the simulation box where
the ligand is likely to be found with 97% probability, that is in 97% of all trajectory frames.
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Table 3: Mean and range of KS statistics values across all replicas for all systems studied. The number
of KS values ≥ 0.2 (an arbitrary threshold) as well as the number of p-values ≥ 0.05 (in percent terms).

System Mean Range KS ≥ 0.2 p-value ≥ 0.05

ADRP-tofacitinib 0.26 0.11-0.54 82.2 6.7
PLPro-GRL 0.32 0.13-0.59 95.4 0
3CLPro-93J 0.31 0.15-0.61 97.0 0
3CLPro-RQN 0.26 0.11-0.52 78.8 1.5

3CLPro-RQN (with LZE) 0.33 0.10-0.66 86.4 1.5
3CLPro-LZE (with RQN) 0.23 0.12-0.50 75.8 0

smaller number of replicas. There are two replicas (IDs 8 and 10) that exclusively sample site C, whereas

two other replicas (IDs 2 and 5) sample all four sites. The remaining six replicas sample different subsets

of the four binding sites in different combinations and proportions. It should also be noted that the

sampling of the ligand around site C is quite different across each of the 9 replicas as quantified in the

following paragraphs. Similar behaviour applies to all other systems studied.

In order to provide a visual representation of the sampling variation discussed above, we have cal-

culated the contact frequency distributions for individual replicas (refer to section 3 for details). Figure

3 displays contact frequency distributions of the ADRP-tofacitinib complex for each of the ten long (10

µs duration) simulations along with corresponding volume occupancy maps. It can be clearly seen that

the signature frequencies of site C are visible in the contact frequency plots of all but one replica (only

replica ID 9 does not sample the crystallographic site). Replica IDs 8 and 10 exclusively sample site C

and hence display identical peak distributions whereas other replicas have different peak distributions

due to overlapping frequencies from other binding sites samples. Similarly, replica ID 9 predominately

samples site A, clearly showing the corresponding signature frequencies. Another replica that has a non-

negligible peak at site A frequencies is replica ID 2 as is also confirmed by the corresponding volume

occupancy maps. It should be noted that the magnitude (peak heights) of these signature frequencies for

different binding sites are different across replicas. Similar figures with contact frequency distributions

of the other systems studied have been included in the Supporting Information (Figures S1-S4) which

all convey the same message as above.

Quantification of Aleatoric Variability

In order to derive robust insights, it is essential that we quantify the extent of variability between the

long replicas so as to determine their reproducibility. To achieve this, we compute pairwise Kolmogorov-

Smirnov (KS) test statistics for each pair of the long replicas. The pairwise KS statistic has a range
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of 0 to 1, where 0 indicates that the two sample distributions being compared are sampled from an

identical underlying distribution, and 1 indicates the converse case. Figure 4A exhibits a matrix of

pairwise KS statistics for 45 possible pairs of replica trajectories for the ADRP-Tofacitinib complex.

The resultant values fall between a wide range of 0.11 to 0.54. However, 40 of them are ≥ 0.15 and 37

are ≥ 0.2. The mean value of the KS statistic for all 45 pairs is 0.26. Figure 4B displays a matrix of

corresponding p-values from pairwise KS statistics. A p-value of < 0.05 signifies that the null hypothesis

(that the two underlying distributions are identical) can be rejected with 95% confidence. This, in turn,

means that there is a 95% chance that the two samples compared are drawn from different underlying

distributions. We obtain a p-value of ≥ 0.05 for only 3 out of the 45 pairs of replicas (∼ 6.67%). Thus,

42 pairs (∼ 93.33%) indeed sample very different regions of phase space. Figures similar to 4 for all

other systems have been included in the Supporting Information (Figures S5-S9). In addition, Table 3

contains relevant statistics (as discussed above for the ADRP system) for all systems. All these figures

and data show that the variability across replicas is prominent in all systems studied without exception

even at the microsecond timescale.

Figure 5 displays the cumulative density functions (CDFs) of ligand-residue contacts for all ten

replicas of the ADRP system. Constructs known as p-boxes (regions between two extreme CDFs)

are often used to visualise how the distribution of outcomes is controlled by aleatoric and epistemic

uncertainty89. It is clear from Figure 5 that the p-box generated by ten “long” independent replicas has

a wide range - another representation of the extensive variation of sampling across replicas. Figures

displaying the CDFs of ligand-residue contacts and corresponding p-boxes for all other systems have

been included in the Supporting Information (Figures S10-S14) with identical observations.

The above findings establish beyond doubt the non-reproducibility of long trajectories. They confirm

that it is far-fetched to draw final conclusions on the true nature of a system from an individual MD

simulation, regardless of its temporal duration19. Indeed, this is a direct reflection of the chaotic nature of

molecular dynamics simulation and, from a theoretical standpoint, shows that individual 10 microsecond

trajectories can never be used to determine equilibrium behaviour. In fact, equilibrium is meaningful

only for ensembles of trajectories which manifest the required dynamical instability. While individual

trajectories are time reversible, the approach to equilibrium is a probabilistic property of ensembles

which requires the dynamics to be chaotic19.
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Figure 4: Heatmaps depicting pairwise Kolmogorov-Smirnov (KS) statistics for all pairs of 10 microsec-
ond replicas for ADRP-tofacitinib complex: (A) Pairwise KS-statistics for each pair of long replicas, (B)
Two-tailed p-values corresponding to each KS-statistic result. Values of < 0.05 allow the null hypothesis
(that the underlying distributions are identical) to be rejected with 95% confidence.
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Figure 5: Cumulative density functions (CDFs) of the contact frequency distributions for all “long”
replicas (dashed lines) as well as concatenated splitting protocol trajectories (solid line) for ADRP-
tofacitinib system. The width of the p-box so generated indicates the extent of variability across “long”
replicas compared against the splitting protocol.

Variability in Free Energy Estimates

Free energy is a thermodynamic observable of importance for protein-ligand complexes in the drug

discovery context. Therefore, we also look at the extent of variation in free energy estimates obtained

using independent “long” replicas of MD simulations. We used ∆Gdirect as a measure of absolute binding

free energy which was originally developed by De Jong et al.85, and later applied to 10 microsecond

trajectories by Pan et al. in 201727 (details in section 3). In Pan et al.’s study, the authors reported

“converged” ∆Gdirect values from individual trajectories, where binding free energies were considered

converged if the difference between the estimated binding affinity and its final value as a function of

simulation time was in the range of ± 0.5 kcal/mol. Furthermore, the error associated to these binding

free energies was computed by calculating the variation of ∆G over blocks of 2 µs of simulation time. In

the present work, we demonstrate that ∆Gdirect varies substantially between separate independent long

timescale replicas, and hence once again individual “long” simulations do not provide reliable binding

free energy estimates. The salient point here is that, contrary to received wisdom in the literature on

molecular dynamics, averaging over an individual long timescale simulation is not equivalent to averaging

over an ensemble of simulations. Indeed, thermodynamic quantities arise from ensemble averaging in

statistical mechanics and unless one averages over a timescale of the order of a Poincaré recurrence, a

one-off MD trajectory will produce the wrong results19. Compounding this, a one-off simulation does

not provide the means to compute precise results or conduct meaningful uncertainty quantification.
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Figure 6: Running averages of ∆Gdirect for tofacitinib binding to ADRP at all of the identified ADRP
binding sites (top two panels) and for the experimental binding sites of 3CLPro systems (bottom two
panels) for all ten or twelve 10µs trajectories. The horizontal black dashed lines in the plots of 3CLPro
systems correspond to the respective experimental binding affinities.
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Table 4: Mean and spread (that is difference between extreme values) of ∆Gdirect across all replicas for
the binding site that is visited by the most number of replicas for each system studied. Note that such
a binding site is not always the experimentally determined one. Error bars are the standard errors. All
values are in kcal/mol.

System Mean Spread (# of replicas)
ADRP-tofacitinib -4.03(0.20) 1.83(9)

PLPro-GRL -3.47(0.27) 0.77 (2)
3CLPro-93J -4.74(0.74) 7.26 (8)
3CLPro-RQN -3.32(0.23) 2.64 (10)

3CLPro-RQN (with LZE) -3.95(0.32) 2.16 (6)
3CLPro-LZE (with RQN) -3.63(0.55) 3.80 (6)

Figure 6 shows the running averages of ∆Gdirect for all four binding sites of the ADRP system

(top two rows) as well as for crystallographic sites of all 3CLPro systems (bottom two rows) from all

replicas that sample them. The inter-replica variation is clearly visible from these plots for all systems.

This variability shows that results obtained from individual “long” trajectories are not reproducible or

precise. Furthermore, it is not able to reliably predict binding free energies with chemical accuracy (±

1 kcal/mol). Figures displaying running averages of ∆Gdirect for all binding sites of all systems studied

have been included in the Supporting Information (Figures S15-S19). All of them show behaviour similar

to that discussed above in terms of ∆G variability. Table 4 includes the mean ∆Gdirect values along

with error bars for the most frequently visited binding site (which is not the experimental binding site

for PLPro-GRL and 3CLPro-RQN (with LZE)) across all replicas for each system. It also provides

the spread (that is, the difference between the two extreme values) for each such binding site which is

around 2-3 kcal/mol for most cases but can be as high as 7 kcal/mol (for instance 3CLPro-93J). Another

point worth noting from Figures 6 and S15-S19 is that the first binding event occurs at varying time

durations across ensemble members as captured by the different onset simulation times of the running

average plots. This confirms that the dynamical behaviour has substantial variability at the microsecond

timescale for molecular dynamics, just as it does for shorter time scales.

To obtain meaningful estimates of ∆Gdirect we must take into account the results from all members

of an ensemble. To do this, we employ bootstrapping to obtain sampling distributions of the mean for

∆Gdirect by resampling 5000 times with replacement. The original sample used for such analysis is the

ensemble of ∆Gdirect values from all replicas that sample a given binding site. The probability density

functions of the sampling distributions of means so obtained are displayed in Figure 7 for a selection of

systems studied. The corresponding underlying distributions, that is the frequency distributions of the

original sample of ∆Gdirect values used to perform bootstrapping, are shown in Figure 8. As we have
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Figure 7: Probability density functions of sampling distributions of mean direct free energies
(〈∆Gdirect〉) obtained with bootstrapping (5000 resamples) for four of the systems studied at their
respective crystallographic binding sites. Bar plots display density histograms whereas solid lines repre-
sent the respective kernel density estimations. The original sample used for bootstrapping in each case
is the set of final ∆Gdirect values from all replicas that sample the respective binding sites. Sample sizes
are shown in the text boxes within each plot. Given the small sample size, not all distributions shown
here are Gaussian. The x-axis is expressed in kcal/mol.
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shown in previous studies for relatively short duration MD trajectories, it is possible that the underlying

free energy distributions may be non-Gaussian whereas the corresponding bootstrapped distributions

approach the Gaussian functional form with increasing sample size as a consequence of the central

limit theorem18,23,24,35,90–93. Figures 8 and 7 provide evidence of similar behaviour in case of “long”

MD simulations as well, although given the small sample sizes (as shown in inset) not all bootstrapped

distributions are Gaussian either. To be sure, an ensemble of size ≤ 10 is far too small to draw definitive

conclusions on the true form of the underlying distribution. To ensure convergence of ∆Gdirect, it would

be necessary to determine the change in the bootstrapped value of ∆Gdirect as a function of the number

of replicas. Upon convergence, the estimate for the binding free energy could be classified as reliable

and reproducible.

The crucial idea here is that to even begin to generate reproducible estimates for ∆Gdirect, running

ensembles of simulations, irrespective of their length, is an imperative. Interestingly, the non-normal

nature of free energy distributions implies more frequent occurrence of outliers than would be expected

with normal distributions that necessitates relatively more data in order to obtain reliable estimates.

Since the variability that exists across replicas within an ensemble of simulations is caused by the

intrinsically chaotic nature of MD simulations, these principles will apply to the calculation of any MD

derived macroscopic expectation value.

4.1.2 Biased versus Unbiased Sampling

In the previous section, we have described results from unbiased MD simulations and shown that the

sampling may vary substantially on repeating a simulation. In this section, we include results from the

biased simulation protocol named the “splitting protocol” which involves biasing the sampling of phase

space towards sites of interest (described in detail in section 3). It should be noted that, in principle,

such splitting steps can be continued further until the desired level of sampling has been achieved (for

instance, if there is a substantial variation in the binding poses across sub-replicas that need to be

explored further, and so on).

In the case of ADRP-tofacitinib, a highly multi-modal distribution is observed across the initial

20 200ns replicas with multiple binding sites explored as shown in Figure 9. It can be seen that all

four binding sites are identified while each replica possesses a unique distribution of tofacitanib-residue

contact frequencies. Identical figures for all other systems studied have been included in the Supporting

Information (Figures S20-S24) with similar conclusions. For the ADRP system, the subreplicas were

initiated from the final frame of replicas 1, 9, 14, 15 and 20, where the ligand was positioned at binding
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Figure 8: Frequency distributions of ∆Gdirect values (using 5 bins) for four of the systems studied at
their respective crystallographic binding sites obtained from independent “long” MD trajectories. The
number of replicas sampling the binding site in each case is shown in the text box on the respective
plots. The data suggest that there may be non-Gaussian behaviour in the underlying distribution. The
x-axis is expressed in kcal/mol.

26



Figure 9: Ligand-residue contact frequencies for the initial twenty 200 nanosecond trajectories under
splittling protocol for ADRP-Tofacitinib complex.

Figure 10: Structures of ADRP-tofacitinib complexes from which sub-replicas are initiated. Each
annotation corresponds to a binding site identified by the splitting protocol.

sites A, B, C and D as shown in Figure 10.

As noted earlier, site C is the crystallographically defined site of ADP ribose and has the most

negative binding affinity for tofacitinib. This relatively high thermodynamic stability at site C is also

reflected in the occupancy maps and ligand-residue contact frequency distribution plots of sub-replicas

initiated from the end frame of replica 20 as shown in Figure 11. The ligand possesses a well-defined

pose across all replicas when initiated from site C (sub-replicas of replica 20). This is contrary to the

behaviour seen when initiating sub-replicas from the ligand located in other binding sites where the

ligand explores multiple sites over each set of sub-replicas as also evident from Figure 11. Overall, this

provides evidence that tofacitinib would act to competitively inhibit the protein.

The important thing to note here is that the aleatoric nature of MD has been utilised to our advantage

to substantially accelerate the exploration of phase space by introducing appropriate bias to the sampling
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Table 5: Mean and range of KS statistics values comparing splitting protocol with each long replica for
all systems studied. The number of KS values ≥ 0.2 (an arbitrary threshold) is given in percent terms.

System Mean Range KS ≥ 0.2

ADRP-tofacitinib 0.31 0.25-0.36 100
PLPro-GRL 0.30 0.21-0.47 100
3CLPro-93J 0.32 0.21-0.48 100
3CLPro-RQN 0.21 0.14-0.39 58.3

3CLPro-RQN (with LZE) 0.42 0.13-0.6 83.3
3CLPro-LZE (with RQN) 0.26 0.18-0.44 83.3

compared to a single simulation of the duration given by the aggregate time of all runs under the splitting

protocol in a much shorter wall-clock time. In the following paragraphs, we further substantiate this

point by comparing the results from biased and unbiased sampling.

First of all, we compare the contact frequency distribution of the aggregated (biased) sampling using

the splitting protocol (9 µs) with those from all the individual unbiased sampling from the 10 long

simulations (10 µs each). Figure 12 displays such comparisons for ADRP-tofacitinib complex (refer

to Figures S25-S29 in the Supporting Information for all other systems). It is evident that each 10

microsecond replica samples a mere subset of possible binding sites explored across the 9 microseconds

of the splitting protocol. The only exception to this general observation are the contacts of the ligand

with residues 140-160 that are exclusively observed in long simulations. We will discuss this exception

below. The significant difference in sampling between the splitting protocol and each individual long

replica is quantified with two-sample KS statistics as shown in Figure 13 for ADRP system (and Figure

S30-S34 for all other systems). For ADRP system, KS statistics varies between 0.25 and 0.36 with an

average of 0.31 and the corresponding averaged p-value is 1.37 × 10−5. Table 5 shows mean and range

of KS statistics values for other systems. They fall in a similar range going as high as 0.6 and as low as

0.13 in some cases.

Figure 5 displays a p-box for the contact frequency distributions for the splitting protocol as well

as all long replicas separately for ADRP system (and Figures S10-S14 for other systems). It clearly

shows the bounds on the cumulative probability of the ligand contacting a given residue across the full

set of simulations furnishes a clear visualisation of the aleatoric uncertainty that is associated with the

ligand-residue contact frequency across all simulations.

On carefully observing Figure 12, it can be noted that when considering all long trajectories in ag-

gregate, we are able to recover all ligand-protein interactions which are identified across the splitting

protocol. To see this more clearly, we plotted the ligand-residue contact frequency distributions for
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Figure 11: ADRP-tofacitinib complex with splitting protocol: (A) Distribution of ligand-residue con-
tact frequencies for each set of sub-replicas, (B) Volume occupancy maps of the ligand around protein
rendered at an isovalue of fractional occupancy 0.03. For each set of subreplicas, the wireframe isosurface
represents the area of the simulation box where the ligand is likely to be found with 97% probability.
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Figure 12: Contact frequency distributions of all “long” (10 µs) replicas (dashed lines) compared to
that of the splitting protocol (9 µs) (solid blue line) for ADRP-tofacitinib complex.

aggregated sampling time from both the splitting protocol (9 µs in total) as well as unbiased sampling

(100 µs in total) for ADRP system in Figure 14. Here we see that the concatenated trajectory repro-

duces all modalities which occur across the splitting protocol, albeit with different statistical weights.

Incidentally, if our aim is to simply explore all possible binding sites and dominant poses within those

sites, the unbiased long timescale protocol is far less efficient than the splitting protocol which achieves

this aim in an aggregate of 1 day and 7 hours of wall clock time rather than 43 days 2 hours of wall

clock time required with the former. However, care must be taken when thermodynamic quantities need

to be evaluated/predicted using the splitting protocol as the biased sampling leads to biased weights of

the microstates sampled that may affect the averages obtained.

Nevertheless, there are advantages to performing an ensemble of long simulations rather than the

splitting protocol. Namely, there are key poses and contacts identified during the long timescale protocol

which are highly unlikely to be observed by the shorter timescale splitting protocol. In Figure 15, we see

three tofacitinib-ADRP contacts which were observed during the long timescale protocol, but not during

the splitting protocol. These contacts occur with residues ASN37, LEU53 and VAL36. Upon inspection,

we find that all three residues are buried deep within site C (the crystallographically determined binding

site). This indicates that a long duration of wall time is typically required in order to explore these

“rare” poses as access is required to more buried regions of the ADRP active site.

Until now, we have discussed the variation across long timescale MD trajectories and emphasised

that ensemble simulations are necessary for UQ irrespective of the duration of simulation. However, as
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Figure 13: Two-sample KS statistics comparing the contact frequency distributions of the concatenated
splitting protocol to those of each “long” replica for ADRP-tofacitinib complex.

Figure 14: Contact frequency distribution of the concatenated “long-timescale” protocol (100 µs)
compared to the contact frequency distribution of the splitting protocol (9 µs) for the ADRP-tofacitinib
system.
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Figure 15: Tofacitinib-residue contacts identified only in the long-timescale protocol: (A) Tofacitinib-
Residue contact frequency distribution plots of all ten 10 microsecond replicas, overlaid onto a single
graph. Annotations clarify peaks which are unique to the long timescale protocol, namely, ASN 37,
LEU 53 and VAL 36; (B) Ribbon representations of ADRP structures, with the location of each residue
of interest annotated. Residues of interest have a ‘liquorice’ representation; (C) Surface representation
of ADRP with the crystallographically defined pose of AMP in the binding site. The region defined
by high-frequency residues is highlighted in orange; (D) Ribbon representation of ADRP with the
crystallographically defined pose of AMP in the binding site. The region defined by high-frequency
residues is highlighted in orange. The residues unique to the long-timescale protocol (ASN 37, LEU 53
and VAL 36) are highlighted in red.
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already discussed in section 1, several accelerated sampling protocols (including the splitting protocol

employed in this study) that are based on performing “ensembles” are also expected to exhibit similar

variation and would require performing ensembles for UQ. We have already shown this for replica

exchange methods in some of our previous works21,66. Nevertheless, this aspect has not been addressed

adequately in the literature for other accelerated sampling protocols as the reported errors for such

methods are all derived from the data generated from a single execution of the protocol, but never from

ensembles comprising multiple instances. One reason of this shortcoming might be the computational

cost associated with all these methods. We hope to return with a subsequent study where we will discuss

this issue systematically.

4.1.3 Free Energy Methods: Direct versus ESMACS

In this section, we have compared free energies obtained from different free energy protocols. We have

already seen ∆Gdirect results for the different systems in previous sections. Now, we directly compare

them to ∆GESMACS results obtained through the ESMACS protocol for ADRP-tofacitinib system. The

standard ESMACS protocol (denoted as “ESMACS-s” and involves performing an ensemble typically of

25 MD simulations of 4 ns duration starting from a chosen conformation) has been extensively applied

to a diverse range of protein-ligand systems and shown to rank ligands with very high precision22,74,75.

In this study, we chose the most stable binding pose (the one with the least RMSD) from the different

sub-replicas of the splitting protocol at each binding site as the starting structure for our standard

ESMACS calculations. Table 6 and Figure 16 shows a comparison of ∆Gdirect and ∆GESMACS−s. We

find that both methods achieve strongly correlated results with a correlation coefficient of 0.87 which

indicates a very similar estimate of relative binding affinity for the ligand at each of the binding sites.

However, it should be noted that ESMACS is not an accurate method and hence the absolute ∆G values

from the two methods cannot be compared directly. These results clearly indicate that tofacitinib acts

as a competitive inhibitor for ADRP by binding to the crystallographically resolved site.

The direct method involves a much larger amount of sampling as compared to ESMACS-s that

involves performing short MD simulations of only a few nanoseconds duration. It is, however, notable

that ESMACS-s is still able to obtain almost identical ranking of ligand-protein complexes with such little

sampling which makes it a much more efficient method when accuracy is not necessary. Nevertheless,

it is well known that ESMACS-s results depend heavily on the initial binding pose/structure of the

ligand-protein complex being studied due to the short duration of simulations; this can be a drawback

in some cases where the initial structure is not known correctly. For instance, when performing “long”
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Table 6: Free energies obtained using different protocols. “ESMACS-s” and “ESMACS-l” correspond
to free energies obtained using the standard ESMACS protocol (initiated from a chosen conformation)
and those using bound conformations extracted from “long” trajectories, respectively. Error bars are
included in brackets and denote the standard errors across all replicas that sample a given binding site.
All values are in kcal/mol.

Binding site Direct ESMACS-s ESMACS-l
A -2.45(0.35) -12.94(0.17) -16.21(0.47)
B -2.40(0.17) -17.11(0.10) -20.34(0.45)
C -4.03(0.20) -27.32(0.16) -36.97(1.02)
D -2.08(0.08) -17.97(0.43) -19.18(0.71)

simulations, a large number of binding poses are observed and it is hard to identify the most stable

one in the absence of available experimental information. In such cases, ESMACS-s is not so useful

as resultant ∆G values may vary substantially. As an example, we randomly picked out two different

binding poses of 93J sampled within the long trajectories of 3CLPro-93J system at three binding sites

(A, B and H1) and performed ESMACS-s calculations using each of them as the starting structures.

The differences in ∆GESMACS−s values obtained starting from the two different binding poses at each

93J binding site are 11.44 kcal/mol, 4.93 kcal/mol and 6.61 kcal/mol respectively which are quite large

and can result in very different rankings.

On the other hand, due to substantially more sampling, the direct free energy method is expected

to overcome this drawback. In this study, we have performed ESMACS calculations using all “bound”

conformations (as defined so during ∆Gdirect calculation) extracted from all “long” trajectories such

that the ensemble averaging is performed across all replicas that sample a given binding site (denoted

as “ESMACS-l”). Free energies so obtained are expected to be free from the dependence on starting

structures and better correlated with ∆Gdirect. This is evident in Figure 16 where ∆GESMACS−s as

well as ∆GESMACS−l are compared against ∆Gdirect. ∆GESMACS−l are consistently more negative than

∆GESMACS−s and have a higher correlation coefficient of 0.95. This is because all the different binding

poses sampled during the long duration of simulations have been taken into account with appropriate

weights.

4.2 Elucidation of an Allosteric Mechanism

Ligand RQN binds to the active binding site of the 3CLPro target protein whereas LZE binds to the

allosteric binding site II71. In this study, we have performed simulations that contain both RQN and

LZE ligands binding to the 3CLPro target at the same time. Therefore, we discuss the observed effect

of the presence of LZE on the binding of RQN ligand by comparing the results from this system with
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Figure 16: ∆G values obtained from different free energy protocols: ∆Gdirect compared against
∆GESMACS using both the standard ESMACS protocol as well as that using bound conformations
extracted from “long” trajectories. “corr” denotes the Pearson’s correlation coefficient. Dashed lines
denote the best fit lines for each plot. All values are in kcal/mol.
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those from the system containing only RQN. First of all, the presence of LZE does not affect the value

of ∆Gdirect for RQN binding with 3CLPro. The respective values in the presence and absence of LZE

are −3.04 ± 0.39 kcal/mol and −3.32 ± 0.23 which are statistically the same. However, the important

thing to note here is that the respective spreads (difference between extremes) in ∆G values for these

systems are 1.54 kcal/mol (ranging from -3.97 to -2.43 kcal/mol) and 2.64 kcal/mol (ranging from -4.56

to -1.92 kcal/mol) which are both much larger than the difference between their mean ∆G values. This

indicates the importance of performing ensembles in order to obtain statistically robust and reliable

conclusions. For instance, taking the opposite extremes of ∆Gdirect values for both systems, we could

have obtained differences of either -2.05 kcal/mol or 2.13 kcal/mol in the presence and absence of LZE,

respectively, leading to diametrically opposite conclusions on its effect on the binding of RQN. But on

performing ensemble simulations, we are able to state with confidence that no statistically significant

effect has been observed.

Qualitatively, another important effect that has been observed is the emergence of a new binding

site for RQN (denoted as C2), very close to the experimentally observed binding site (denoted as C),

when binding to 3CLPro active site in the presence of LZE. Experimentally, it has been shown that

the binding of LZE at allosteric site II displaces the loop 153-155 such that Cα atom of TYR154 moves

2.8 Å, accompanied by a conformational change of ASP15371. This loop is connected to loop 167-172

through a β-sheet strand 156-166 which is expected to cause a shift in the former as well. Figure 17

displays binding sites C (red) and C2 (blue) for RQN in the form of observed volume occupancy maps

Binding sites C and C2 have loops 167-172 and 186-191 in common (shown in green). Loops 40-43

and 141-145 (shown in orange) are exclusive to site C, whereas loop 182-185 and residues 134-135 are

exclusive to site C2. Therefore, the binding of LZE at allosteric site II brings about conformational

changes to the active site and creates enough space to let RQN bind at a slightly different location,

very close to the original site. It appears that such a change does not have any substantial impact on

the binding interactions of RQN with the residues of site C, thereby not affecting its binding affinity.

However, its sampling frequency is certainly affected such that, in the absence of LZE, it is sampled by

10 out of 12 “long” replicas, whereas in its presence, it is sampled only by 3 out of 12 “long” replicas. On

the other hand, site C2 is sampled in 2 out of 12 “long” replicas (exclusively in the presence of LZE).

A similar effect has been observed in case of LZE with RQN present such that a new close-by binding

site (denoted as B2) is sampled along with the crystallographically determined binding site (denoted as

B1). Table 2 and Figure 6 include both such binding sites (for both RQN and LZE in presence of each

other) as experimental binding sites and display results accordingly.
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Figure 17: Effect of the presence of LZE on the binding of RQN. The experimental binding site (red)
as well as the alternate binding site observed (blue) are shown in terms of volume occupancy maps using
wideframe isosurfaces at isovalue 0.3. The crystallographically determined binding pose has also been
shown in the “bonds” representation. Loops 167-172 and 186-191 (shown in green) are common to both
binding sites. Loops 40-43 and 141-145 (shown in orange) are exclusive to the experimental binding site,
whereas loop 182-185 and residues 134-135 are exclusive to the alternative site observed.
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5 Conclusions

The current consensus in the field of molecular dynamics simulation is that increasing the length of a sin-

gle simulation leads to improvement in the accuracy and precision of calculated expectation values94–96.

On the basis of chaos theory, and the fact that the ergodic theorem cannot hold for molecular dynam-

ics simulations on accessible timescales, we probed this assumption and provided direct evidence that

individual trajectories do not suffice for deriving precise, reproducible and accurate results. We showed

on the contrary that ensembles are essential for the calculation of statistically robust results, regardless

of the length of simulation. On comparing the protein-ligand contact frequency distributions from ten

or twelve independent 10 µs trajectories, 90% or more pairs of trajectories had significantly different

distributions of ligand-protein residue interactions. We would like to emphasise that the principles and

findings of this study are not just confined to ligand-protein systems and free energy calculations, but

are more widely applicable to molecular dynamics in general and hence should be accounted for in all

MD based applications regardless of the particular domain of interest23.

To investigate the effect of this uncertainty on the value of a one dimensional macroscopic observable,

we analysed the same set of trajectories in order to determine ligand binding free energies and their

associated statistical distributions. The specific method which we used for ligand binding free energy

calculations was taken from Pan et al.27. In their paper, the authors reported strong correlation to

FEP calculations but poor correlation to experiment, stating this poor correlation may be attributable

to force field inaccuracies. In the present study, we demonstrated that separate trajectories lead to the

computation of completely different results, differing by up to 7.26 kcal/mol. Our study conclusively

demonstrates that binding free energies from individual simulations are inherently non-precise, non-

reproducible and do not yield chemical accuracy (± 1 kcal/mol ). Clearly, long-timescale trajectories

probe an insufficient number of microstates to effectively sample the phase space. In turn, the lack

of agreement with experiment should not necessarily be attributed to force-field inaccuracies. This

is a paramount example of the importance of taking aleatoric uncertainty fully into account. This

principle holds for the expectation value of any other dynamical observable obtained via “long-timescale”

simulation since it depends on the nature of the probability distribution (or invariant measure) which

is intrinsic to the system of interest.

In addition, by executing both the long-timescale and splitting protocols we have provided insight

into the utility of adaptive sampling protocols. With respect to the length of simulations, it is clear that

the merit of running a long simulation changes as a function of the timescale of events of interest. In the
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case of the systems studied here, no long timescale events (e.g. large-scale domain rearrangements) need

to occur for ligand binding to be possible. As a result, a simple adaptive sampling protocol was able

to successfully identify all of the sites identified by the long timescale protocol albeit with significantly

less wall time required (1 day 7 hours for adaptive sampling as compared to 43 days 2 hours for 10

microseconds of simulation for the ADRP system).

Beyond these implications, the findings in this work also show how ensemble based computational

protocols can be used to inform the process of drug discovery. For instance, with respect to ADRP, 4

binding sites that tofacitinib can bind to were identified within both the long-timescale and splitting

protocols. From our binding free energy analysis, we identified that tofacitinib binds to the crystallo-

graphically determined binding site with the greatest affinity out of each of ADRP the binding sites.

This indicates that, in practice, tofacitinib would act as a competitive inhibitor of ADRP. Similarly,

various binding sites of interest were identified for other ligand-protein complexes studied with similar

conclusions made. In addition, the discovery of non-crystallographically resolved binding sites is of great

interest for a future study which would aim to elucidate whether any of these binding sites can propagate

allosteric effects to the substrate binding site. This would provide a novel mechanism by which to target

the protein and induce anti-viral effects. Finally, we compared the “direct” free energy method with

ESMACS and discussed various scenarios where each method has an advantage or limitation. ESMACS

is very efficient in ranking ligands based on their binding interactions with much less computational cost

as compared to the direct binding affinity method. However, it is subject to the availability of a stable

binding pose as the starting structure, in the absence of which long simulations do a better job. We

hope that this will help others working in this domain to choose an appropriate free energy method for

their purposes.

Finally, the use of ensemble methods enabled us to discover the allosteric mechanism through which

the binding of a ligand at the substrate binding site of 3CLPro is affected by binding of another ligand

at an experimentally known allosteric binding site. We showed that the two binding sites are connected

via a β-sheet strand that causes distortion to the cavity of the substrate binding site relative to its

conformation in the absence of such an allosteric effect.
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