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Abstract 

Predicting the taste of molecules is of critical importance in the food and beverages, flavor, and 

pharmaceutical industries for the design and screening of new tastants. In this work, we have 

built deep learning models to classify sweet, bitter, and umami molecules— the three basic 

tastes whose sensation is mediated by G protein-coupled receptors. An extensive dataset 

containing 1938 bitter, 2079 sweet, and 98 umami tastants was curated from existing 

literature. We analyzed the chemical characteristics of the molecules, with special focus on the 

presence of different functional groups. A deep neural network model based on molecular 

descriptors and a graph neural network model were trained for taste prediction. The class 

imbalance due to fewer umami molecules was tackled using special sampling techniques, such 

that the classwise metrics for all the three taste classes are optimized. Both models show 

comparable performance during evaluation, but the graph-based model can learn task-specific 

representations from the molecular structure without requiring handcrafted features. We 

further explain the deep neural network predictions using Shapley additive explanations and 

connect them to the physics of tastant-receptor binding. This study develops an in-silico 
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approach to classify molecules based on their taste by leveraging the recent progress in deep 

learning, which can serve as a powerful tool for tastant design. 

Keywords: Tastant, Sweet, Bitter, Umami, Multiclass Classification, Deep Learning, Graph 

Neural Network, SHAP 

 

1 Introduction 

Taste is a sensory modality that governs the interaction of humans with the food they eat. The 

gustatory system, which is responsible for the sense of taste, differentiates healthy nutrients 

from harmful toxins, ensuring survival and a high quality of life. The interplay of five basic tastes 

– sweet, bitter, sour, salty, and umami, constitutes our taste experience [1]. The brain 

associates each taste with an underlying chemical characteristic. Sweetness and umaminess 

indicate the presence of carbohydrates and proteins, respectively, while sourness is linked with 

acids, often due to food spoilage. The unpleasant bitter sensation informs us to avoid the 

ingestion of rotten food and toxic substances, although safe edibles like cocoa and coffee can 

be bitter too. Saltiness relates to the minerals like sodium that are essential for regulating body 

fluids. In combination with olfaction (sense of smell) and somatosensation (sense of touch, 

temperature, and pain), gustation determines our overall perception of flavors [2]. 

Taste prediction and the design of tastants play a crucial role in food and beverages, flavor, and 

pharmaceutical industries. For example, the search for safe artificial low-calorie sweeteners 

with similar chemosensory profile as sucrose is still an open research problem. The demands for 

the specialized flavors in the consumer product landscape is evolving rapidly to keep up with 



the latest trends, and medicinal chemists are constantly looking for taste modulators to 

combine with oral drug formulations. Although taste perception shows variability among 

individuals and demographics due to genetic [3], cultural [4], and medical [5] factors, specific 

biological mechanisms, which are common to all humans, exist for perceiving each of the basic 

taste qualities. Thus, rational approaches can be conceived to design and screen tastants based 

on their chemistry and interactions with the gustatory system. 

Thousands of small protuberances called papillae cover the tongue, each of which contains 

hundreds of taste buds [6]. Each of the taste bud comprises of 50-100 taste cells having 

specialized sensing receptors. Tastants stimulate the receptor cells, leading to signal 

transmission to the gustatory cortex in the brain. Sweet, bitter, and umami receptors belong to 

the family of G protein-coupled receptors (GPCRs) [7]. GPCRs are present on cell surfaces and 

interact with molecules present outside the cell. They perform critical physiological functions 

including taste and smell sensing, vision, behavior regulation, immune system regulation, and 

neurotransmission. The molecule/ligand binding to a GPCR induces a conformational change in 

it, which in turn activates the associated G protein and downstream signaling pathways [8]. The 

most common GPCR classification scheme is the A-F system in which the receptors are grouped 

into six classes based on their similarity of sequence and functions [9], although other schemes 

exist too. Sweetness and umaminess are recognized by the heterodimeric complexes 

T1R1/T1R3 and T1R1/T1R2, respectively, which belong to the class C GPCRs, while 25 class A 

GPCRs called T2Rs mediate the bitter sensation. Sour and salty tastes are detected by transient 

receptor potential ion channels in the taste cells [10, 11]. 



For structure-based computational design and screening of sweet, bitter, and umami 

molecules, elucidation of tastant-GPCR interactions and the subsequent conformational 

dynamics of the receptor complex play a critical role. The GPCRs consist of seven 

transmembrane helices, connected by three intracellular and three extracellular loops, with an 

extracellular N-terminus and intracellular T-terminus. Class C GPCRs are made up of the 

extracellular Venus flytrap domain (VFD), the seven seven-helix transmembrane domain (TMD), 

and the connecting cystine-rich domain (CRD) between the two [12, 13]. However, 

experimental structures of taste receptors are still elusive despite considerable progress in 

structure determination of GPCRs. To overcome this problem, in silico techniques like homology 

modeling, molecular docking, and molecular dynamics have been applied as surrogates to 

facilitate virtual screening of tastants [14]. But the absence of accurate receptor structures 

decreases the reliability of the results, and the computational cost prohibits high-throughput 

screening of large databases. Moreover, no simple correlation can be established between the 

tastant-receptor binding affinity and the taste quality or intensity, further complicating the task. 

Ligand-based structure-property relationship models offer an exciting alternative to rigorous 

molecular modeling techniques. Recent advances in computing capabilities and machine 

learning (ML) algorithms, and availability of curated datasets, make it possible to map 

molecular features to taste qualities with high accuracy. Initial studies mostly focused on 

building sweet/non-sweet and bitter/non-bitter classification models using standard molecular 

descriptors from cheminformatics tools, wherein tastant databases constituted the positive set 

and random molecules were selected to create the negative set [15, 16, 17, 18, 19]. Later, 

efforts were made to create the bitter/sweet classifiers entirely using tastant molecules, 



eliminating the need for the randomly selected negative set [20, 21]. A few studies also 

reported predictive models to quantify the taste intensity of molecules using properties like 

relative sweetness with respect to sucrose [22, 23]. A comprehensive discussion on databases 

and ML approaches related to tastants can be found in the recent review by Malavolta, 

Pallante, and co-workers [24]. An integrated data and structure-based modeling framework, 

combining structure-property relationship, sweet/bitter classification, and molecular docking, 

was also proposed to screen potential sweeteners [25]. 

Existing studies on computational taste prediction mostly considers sweet and bitter tastants 

only. However, the approaches can, in principle, be extended to predict multiple taste qualities 

simultaneously. The primary hurdle is the lack of large, curated datasets that can be exploited 

to build predictive models. For example, not many umami molecules are known, although their 

perception mechanism is like sweet and bitter molecules (via GPCRs). The exceptional progress 

in molecular ML in recent years, especially deep learning (DL) and graph-based models, offers a 

range of tools to make better predictions using existing and limited data [26, 27]. Nonetheless, 

the enigmatic power of DL algorithms limits the interpretability and explainability of models, 

which leads to skepticism about deployment for industrial use. 

In this work, we develop multiclass classifiers for differentiating between bitter, sweet, and 

umami molecules. We apply deep neural network (DNN), also known as multilayer perceptron, 

and graph neural network (GNN) models on an extensive dataset curated from multiple sources 

in literature. GNNs are especially attractive because molecules can be easily represented as 

graphs, with atoms as nodes and bonds as edges [28]. Additionally, GNNs can work without 

including expert handcrafted features that require domain knowledge. We further try to make 



sense of the results from our DL models using state-of-the-art explainability methods. An 

analysis of the functional groups in the tastants is presented as well, with an aim to relate the 

taste quality with chemistry. Our work widens the scope and advances the applicability of in 

silico taste prediction using data-driven techniques by inheriting latest developments in DL, 

coupled with insights from chemistry. 

 

2 Methods 

2.1 Dataset 

A collection of bitter, sweet, and umami molecules was curated using information from the 

ChemTastesDB database [29], and the datasets made available by Tuwani and co-workers [21]. 

Both the datasets include tastants from multiple repositories and earlier works on data-based 

modeling, the details of which can be found in the respective papers [18, 25]. ChemTastesDB 

has 2944 verified tastants, both organic and inorganic, belonging to nine classes, including the 

five basic tastes and four additional categories, namely tasteless, multitaste, non-sweet, and 

miscellaneous. We extracted only the canonical simplified molecular input line entry system 

(SMILES) representations and the corresponding taste labels of sweet, bitter, and umami 

compounds from the database. Similarly, the sweet and bitter molecules used by Tuwani et al. 

to build the BitterSweet models were obtained. The two sets of canonical SMILES were merged, 

and the duplicates were removed to create our initial raw tastant database. It contained 1966 

bitter molecules, 2091 sweet molecules, and 98 umami molecules, making up a total of 4155 

tastants.  



2.2 Featurization and Data Preprocessing 

We generated molecular descriptors using the cheminformatics tool RDKit for building DNN 

models [30]. The Descriptors module of RDKit returns a list of 200 features for each molecule, 

which represent the structural, physical, and chemical information of the molecule as numerical 

values. They include a wide variety of molecular properties and fragment counts. However, not 

all features are relevant for a particular dataset or task and including them can lead to poor 

model quality. We manually removed five features (MaxAbsEStateIndex, MinAbsEStateIndex, 

ExactMolWt, MaxAbsPartialCharge, and MinAbsPartialCharge) that are perfectly correlated to 

other features (MaxEStateIndex, MinEStateIndex, MolWt, MaxPartialCharge, and 

MinPartialCharge) in the dataset. Then, we removed those features for which less than 20 % of 

the molecules have non-zero values, to prevent overfitting. The remaining 102 descriptors after 

feature selection were used to build the DNN models. We also dropped a few molecules from 

the dataset for which RDKit was unable to generate descriptors. The final clean dataset 

contained 4115 tastants— 1938 bitter, 2079 sweet, and 98 umami. 

The dataset was split into training and test sets with a train-test ratio of 85:15 for model 

building and evaluation. Multiple training and test sets with different random states were 

created to ensure the reliability of results (see Supporting Information). We applied min-max 

scaling and one-hot encoding to transform the features and taste labels, respectively. All 

preprocessing was performed with the Scikit-learn package [31].  

For building the GNN model, we obtained the SMILES strings of the molecules from the 

database for conversion to graph objects, keeping the training and test sets same as previously 



discussed. In the GNN framework, molecules are treated as undirected graphs. Each heavy 

atom (non-hydrogen) in a molecule is considered as a node, and we compute the following 

node features: one-hot encoding of the element, degree of the atom, whether the atom is 

aromatic or not, number of attached hydrogen atoms, and the implicit valence. The bonds are 

homologous to graph edges with the following edge features: one-hot encoding of the bond 

order or aromaticity, whether the bond is part of a ring, and whether the bond is conjugated. In 

addition, an adjacency matrix is generated for each molecule which contains information about 

the neighbors of all the atoms. 

2.3 Model Development 

We first built a DNN model to classify the 4115 tastants in our database into three taste 

classes— bitter, sweet, and umami. The architecture consisted of the input layer, two hidden 

layers, and the output layer. Both the hidden layers were made up of 100 neurons each and 

activated by a rectified linear unit (ReLU) function. To reduce overfitting, the dropout technique 

was employed after the first hidden layer with a probability 0.3. Three output neurons, with 

SoftMax activation, predicted the probability of molecules belonging to each of the three 

classes. We chose the class with the highest probability as the model output for taste 

prediction. The input data was fed to the DNN model in batches of 32. The Adam optimizer with 

a learning rate of 0.0001 and the categorical cross-entropy loss function were used to train the 

model. 15 % of the training data was kept aside for validation, and the model with lowest 

validation loss obtained during the training process of 200 epochs was saved as the best model. 

We arrived at the architecture after experimenting with multiple values of hidden layers and 

number of units to maximize validation accuracy and ensure minimal overfitting. Finally, the 



model was evaluated on the test set by computing the overall accuracy, confusion matrix, and 

classwise precision, recall, and F1 scores. The Keras API of TensorFlow 2 was used to implement 

the DNN model [32]. 

As our dataset includes much fewer umami compounds than sweet or bitter, the problem of 

class imbalance arises. Imbalanced datasets can lead to inferior performance for the minority 

class, even though the overall accuracy may be quite high. We attempt to solve this problem 

using the synthetic minority oversampling technique (SMOTE), a popular method of data 

augmentation which generates synthetic datapoints based on the original data but not its 

duplicates [33].  

We further built a GNN model based on convolutional neural networks operating directly on 

molecular graphs, as proposed by Duvenaud and co-workers [34]. The architecture consists of 

two identical convolution blocks, each of which is made of a graph convolution layer and a 

graph pooling layer, with batch normalization applied between the two layers. The convolution 

blocks update the per-atom feature vectors in a non-linear way by incorporating information 

from its bonds and adjacent atoms. A channel width of 64 and ReLU activation function is used 

for the graph convolution layer and max-pooling is used for aggregating the neighborhood 

information of an atom. Finally, a graph gather layer combines the node-level feature vectors 

into a single graph-level feature vector that represents the entire molecule. This feature vector 

is then passed through a dense layer of 128 neurons to the output layer that predicts the 

desired probabilities of the three taste classes. The dropout technique was used after each 

layer with probability 0.1 to reduce overfitting. Figure 1 presents a schematic of the information 

flow in the GNN architecture. Additional details regarding the model architecture can be found 



in the original paper. Like DNN training, the input data was fed to the model in batches of 32, 

the categorical cross entropy loss function was employed, and 15 % of the training data was 

kept aside for validation. The model was trained for 50 epochs and the hyperparameters were 

optimized using random search to minimize the validation loss. We implemented the GNN 

model using the DeepChem framework [35, 36]. 

 

 

Figure 1: Flow of information in the graph neural network architecture. The input molecular 

graph with its node features is processed by two convolution blocks. A graph gather layer 

combines the per-atom representations to generate a molecule-level fingerprint vector, which 

is processed by a dense layer. The three output nodes predict the probability of a molecule 

being either bitter, sweet, or umami. 

  

The class imbalance problem is particularly challenging for GNNs to tackle. We experimented 

with oversampling using SMILES enumeration. 20 variants of each SMILES string were 

generated for the umami molecules in the training set and augmented with the original training 

data. It is to be noted that although the initial inputs for the augmented date are different, 



GNNs are, by nature, permutation invariant. Hence, the learnt representation after the two 

convolutional blocks is same for all the SMILES variant of a molecule, which effectively makes 

the data transformation a simple case of oversampling.  

 

3 Results and Discussion 

3.1 Exploratory Data Analysis 

The final set of 4115 tastants, belonging to any one of the three taste qualities— bitter, sweet, 

or umami, was analyzed for characteristics, patterns, and insights. Figure 2 (a) shows the 

density distribution plot of molecular weights of the tastants. Molecular weight relates to the 

size of molecules, and hence affects ligand binding to a receptor. We observe that most 

tastants have molecular weights within 1000 Daltons, and thus can be considered as small 

molecules, although a few molecules with higher weights exhibit taste qualities as well. The 

molecular weights are normally distributed, with umami tastants more likely to be heavier than 

sweet and bitter compounds. Figure 2 (b) shows the density distribution of the octanol-water 

partition coefficient logP, a measure of hydrophobicity. We find a good mix of hydrophilic (logP 

< 0) and hydrophobic (logP > 0) molecules in the sweet and bitter categories, while most umami 

molecules are hydrophilic. Di Pizio et al. reported in a study with limited datapoints (677 bitter 

and 312 sweet) that bitter compounds have higher hydrophobicity than sweet ones, while 

sweet compounds have a wider size range [37]. However, our work, based on a superset of 

their data, reveal that such conclusions may not be drawn with high certainty. Figures 2 (c), (d), 

and (e) highlight the hydrogen bond-forming tendencies of the three classes of tastants. 



Hydrogen bond stabilizes protein-ligand complexes and thus crucially affects the binding 

affinity. In agreement with our expectations, most tastant molecules have hydrogen bond 

donors and acceptors, which enable them to interact with the residues in the binding pockets 

of the receptors.  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dataset characteristics based on key molecular properties. Density distribution of (a) 

molecular weight and (b) octanol-water partition coeffcient logP of bitter, sweet, and umami 

compounds in the dataset. Hydrogen bond donors and acceptors in the (c) bitter, (d) sweet, and 

(e) umami molecules. A single point in (c), (d), and (e) can be an overlap of multiple tastants. 

 

(a) (b) 

(c) (d) (e) 



To further explore the dataset visually, we performed principal component analysis (PCA) to 

reduce the high dimensional data. PCA is an unsupervised learning technique that transforms a 

large set of correlated variables into a smaller set of uncorrelated variables, while maintaining 

the variation of the original dataset. Figure 3 (a) shows the relationship between the first and 

second principal components. As evident from the PCA plot, the tastants have ample structural 

diversity. But the overlap between the three taste qualities is significant and no trivial way to 

separate them is apparent, which complicates the classification task. The first principal 

component explains 30 % of the total variance, and the second one explains around 11 %. We 

also generated t-distributed stochastic neighbor embedding (t-SNE) plots for our dataset, as 

shown in Figure 3 (b). t-SNE is also an unsupervised dimensionality reduction technique, more 

powerful than PCA for visualizing complex data in two-dimensional space [38]. It minimizes the 

divergence between the distribution that measures pairwise similarities of input objects and 

the distribution that measures pairwise similarities of the corresponding embeddings. We 

assessed the performance of the algorithm for different values of the two key 

hyperparameters, perplexity and learning rate, by visually comparing the generated plots after 

optimizing for 2000 iterations. A perplexity of 80 and a learning rate of 800 was found to be 

suitable. t-SNE concurs with PCA regarding the structural diversity of the tastants in the dataset 

and the difficulty of the classification task. Although small clusters of similar tasting compounds 

can be observed, the overlap between the classes is high. No clear distinction between the 

taste qualities is apparent from the t-SNE visualization. It is to be noted that cluster size and 

distance between clusters in t-SNE plots bear no significance. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Unsupervised dimensionality reduction using (a) PCA and (b) t-SNE techniques. 

Molecules are colored according to their taste. 

 

All results from our exploratory data analysis confirm the huge diversity of molecules, mostly 

within the small molecule chemical space with a few exceptions. Distributions of important 

molecular properties, as well as low-dimensional representations of the dataset, point to 

significant overlap between the three taste qualities. The structural similarities between many 

(a) 

(b) 



sweet and bitter compounds have been long known in the scientific community, with multiple 

cases of taste alteration on slight modifications in the structure [39]. Our work demonstrates 

this complication using data analytics and adds an added layer of complexity by including 

umami tastants within its scope. 

3.2 Functional Group Analysis 

To look deeper into the chemistry of tastants, we analyzed the functional groups present in the 

bitter, sweet, and umami compounds in our database. In-built modules in RDKit can compute 

the frequency of a predefined list of 85 substructures in a molecule, and we evaluated only 

those fragments for our analysis. Figure 4 shows the most common functional groups in the 

three classes of tastants along with their frequencies of occurrence. Carbonyl oxygen, which 

can belong to aldehydes, ketones, carboxylic acids, esters, amides, and other functional groups, 

is the most common fragment in both bitter (59.9 %) and sweet (66.2 %) molecules. In Figure 4, 

we consider only non-overlapping groups, and hence carbonyl is not shown— aldehyde, 

ketones, and other unique groups are treated as separate entities. It is visible from our analysis 

that many functional groups occur often in both bitter and sweet molecules, which agrees with 

our earlier discussion on the structural similarities between the two tastes. Apart from 

benzene, ether, and tertiary amine, which are among the five most frequently occurring groups 

in both sweet and bitter compounds as shown in Figure 4, we also find aliphatic hydroxyl (36.2 

% bitter and 31.9 % sweet), carboxylic acid (12.1 % bitter and 33.3 % sweet), methoxy (17.1 % 

bitter and 19 % sweet), primary amine (9.6 % bitter and 22.4 % sweet), secondary amine (26.2 

% bitter and 33.3 % sweet), and tertiary amine (34.7 % bitter and 14.4 % sweet) in many 



molecules of the two classes. About 45.6 % bitter and 16.2 % sweet compounds have bicyclic 

rings in their structure. 

Umami molecules are rich in nitrogen and phosphorous containing functional groups, as 

evident from Figure 4. Primary, secondary, and tertiary amines are present in 31.6 %, 76.5 %, 

and 64.3 % of umami compounds, respectively, the latter two being among the five most 

common groups. Imidazole (57.1 %), amide (27.6 %), and aniline (22.4 %) exist widely as well. 

Imidazole and phosphate ester strikingly distinguish umami as these two groups are scarcely 

found in sweet (0.2 % contain imidazole, 0.05 % contain phosphate ester) and bitter (2.3 % 

contain imidazole, 0.05 % contain phosphate ester) compounds. Like sweet and bitter, ether 

and aliphatic hydroxyl can be found frequently in umami molecules too, as shown in Figure 4. 

Sulfide group occur in 16.3 % of umami compounds, compared to 1.6 % and 4.3 % for bitter and 

sweet, respectively. Salts of reactive metals like calcium, potassium, sodium, and magnesium 

make up slightly more than half of the umami molecules in our database, with disodium salts 

being the most common. 

Only five fragments, among the 85 calculated by RDKit, are not present in any of the molecules 

in our entire database. The bitter class shows the greatest diversity in terms of groups present 

in at least one compound. Even rare functional groups (present in less than 5 % of tastants for 

all three classes) occur more often in bitter molecules than in sweet or umami. This diversity 

can be attributed to the 25 T2Rs that can bind to a wide variety of ligands and elicit a taste 

sensation. In contrast, we observe the least number of functional groups in umami molecules, 

which can possibly be the cause or consequence of the smaller set of known umami-tasting 

compounds. Overall, the functional group analysis sheds light on the chemical make-up of 



tastants and corroborates the inferences from exploratory data analysis regarding the 

complexity of the classification problem.  
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Figure 4: Most common functional groups in bitter, sweet, and umami compounds. The bar 

plots denote the percentage of compounds in each of the taste classes having the functional 

groups. The chemical structure of the functional groups and their exact percentage are 

provided beside each of the bar plots. Red, green, and blue in the bar plots correspond to 

bitter, sweet, and umami tastants, respectively. 

 

3.3 DNN Model Performance 

The predicted taste classes from the DNN model were compared to the actual taste labels in 

our dataset to evaluate its performance. Figure 5 shows the confusion matrices of the DNN 

model with and without SMOTE for both the training and test sets. The hold-out test set 

contains 285 bitter, 318 sweet, and 15 umami molecules, which preserves the classwise 

distribution of tastants in the entire dataset. The overall prediction accuracies of the DNN 

model without SMOTE are 0.90 and 0.87 for the training and test sets, respectively. On applying 

SMOTE, the corresponding accuracies rise to 0.91 and 0.89. An interesting observation is that 

the model rarely mislabels sweet or bitter compounds as umami. Although these results are 

satisfactory, accuracy is not always the appropriate measure of model performance in 

classification problems, especially with imbalanced datasets. We calculate more insightful 

metrics— precision, recall, and F1 score, for the three taste classes, as shown in Table 1. 

Precision is defined as the ratio of true positives to total predicted positives, while recall is the 

ratio of true positives to total actual positives. F1 score, which is the harmonic mean of 

precision and recall, strikes a balance between the two, and takes uneven class distribution into 

account. For multiclass classification tasks, especially with class imbalance, classwise F1 score, 

and confusion matrix gives a complete description of the prediction performance. We see that 

the F1 scores of all three classes improve on applying SMOTE. All precision and recall values 



increase as well. In particular, the umami F1 score changes significantly, which was the main 

motivation for using SMOTE to resample the dataset.  

 

 

Figure 5: Confusion matrices based on the predictions of the DNN model with and without 

SMOTE for training and test sets. The numbers in each cell denote the absolute number of 

datapoints that satisfy the condition of the cell. 

 

The confusion matrices show us that many sweet molecules are mislabeled as bitter and vice 

versa. The model is not able to entirely resolve the complexity of classification due to the 



structural similarity between sweet and bitter compounds. Although direct comparisons with 

existing literature is not possible due to the novelty of the multiclass problem and disparity 

between datasets, the accuracies and F1 scores are similar to or better than those obtained in 

the simpler sweet/non-sweet and bitter/non-bitter classification models, many of which further 

suffer from additional limitations like small dataset size, random negative set, unverified taste 

information, and lack of chemical diversity [16, 17, 18, 21]. Hence, our results indicate that 

neural networks can tackle complex classification problems in the biochemical domain by 

learning representations, provided that properly curated datasets are available. 

 

Table 1: Classwise precision, recall, and F1 scores of the training and test sets for the DNN 

model with and without SMOTE 

Sampling Dataset Metric 
Taste Class 

Bitter Sweet Umami 

Without SMOTE 

Training 

Precision 0.92 0.88 0.96 

Recall 0.87 0.94 0.79 

F1 Score 0.90 0.91 0.87 

Test 

Precision 0.88 0.86 0.80 

Recall 0.84 0.90 0.80 

F1 Score 0.86 0.88 0.80 

With SMOTE 

Training 

Precision 0.94 0.89 0.99 

Recall 0.88 0.94 1.00 

F1 Score 0.91 0.92 0.99 

Test 

Precision 0.89 0.88 0.82 

Recall 0.86 0.91 0.93 

F1 Score 0.88 0.89 0.88 

 



3.4 Explaining DNN Predictions using SHAP 

Despite exceptional predicting capabilities, neural networks are infamous for their lack of 

interpretability and explainability. The two terms are often used interchangeably, but a subtle 

yet crucial difference exists. Interpretability is the extent to which a cause-and-effect 

relationship can be determined to consistently predict how the output changes given a change 

in input. High interpretability often comes at the cost of performance, as it is difficult to 

establish cause-effect relationships beyond simple ML models like linear regression and 

decision trees. For the DNN model, we are concerned with explainability, which aims to 

understand the behavior of ML algorithms in human terms. Much effort in ML research has 

been directed towards explainability in recent years, and we chose the Shapley additive 

explanations (SHAP) technique because of its unified framework for interpreting predictions 

[40]. SHAP uses a cooperative game-theoretic approach to compute the contribution of each 

feature towards the prediction and provides Shapley values as output. Specifically, we leverage 

the DeepExplainer method, which is suitable for neural networks. Figure 6 shows the average of 

absolute SHAP values over the entire test set for the ten key features based on the prediction 

of the DNN model with and without SMOTE. The features are ranked according to their overall 

relative importance, as explained by SHAP. The average SHAP values are computed separately 

for each taste class and plotted together by stacking. Please see supporting information for 

more detailed visualization for the three taste classes. Individual SHAP values corresponding to 

each test example and each feature is also shown in supporting information. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bar plots of the mean absolute SHAP values for the test set of the ten important 

features, ranked in order of their relative importance, based on the predictions of the DNN 

model (a) without SMOTE and (b) without SMOTE. Stacking is used to visualize the SHAP values 

of all three taste classes in a single chart. 
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Comparing the 20 main features (only ten are shown in Figure 6) of the DNN model with and 

without SMOTE, 11 are common to both, although their relative importance changes. 

Resampling with SMOTE helps the model to learn the relevant information to adequately 

represent all three classes. We observe that electrostatic (PEOE_VSAs), polarizability 

(SMR_VSAs), hydrophobicity/hydrophilicity (SlogP_VSAs), and electro-topological (EState_VSAs) 

properties, along with Lipinski parameters (FractionCSP3, NumAliphaticCarbocyles, 

NumAromaticCarbocyles, NumSaturatedHeterocycles) and counts of fragments like benzene 

and aliphatic carboxylic acid, are the crucial features that determine the taste of molecules. The 

SHAP explanation agrees with our current understanding of the physics of receptor-ligand 

interactions, where these properties (electrostatic, polarizability, hydrophobicity, etc.) 

determine the affinity of molecules towards a binding pocket. The DNN model discovers this 

physics without being explicitly programmed and makes predictions accordingly. Our work 

demonstrates the capability of neural networks in learning complex structure-property 

relationships in molecules, while still being explainable to some extent with assistance from 

techniques like SHAP. Incorporating explainability within the realm of DL, especially in 

biochemical applications, can play a paramount role in bolstering its acceptance in industrial 

settings and bridging the gap with physics-based theoretical understanding of various 

phenomena.  

3.5 GNN Model Performance 

Similar to the DNN model, we compared the predictions of the GNN model with the actual taste 

labels and computed the performance metrics. Figure 7 shows the confusion matrices for the 

GNN model with and without oversampling. The overall prediction accuracies without 



oversampling are 0.94 and 0.88 for the training and test sets, respectively, which are 

comparable to the DNN model accuracies. Like DNN, the GNN model also mislabels many sweet 

molecules as bitter and vice versa. We experimented with different dropout probabilities and 

found 0.1 for all layers to be an optimum value that reduced the extent of overfitting without 

compromising on the test set performance. SMILES enumeration for handling class imbalance is 

especially helpful to create valid synthetic data that is different from the original data, when 

string-based featurization is used for building ML models. However, for graph-based 

featurization, different SMILES for the same molecule lead to node feature and adjacency 

matrices with different row ordering, which ultimately generates the same embedding as 

permutation invariancy is a precondition of all GNNs. But oversampling of the minority class is 

also a valid resampling technique for dealing with class imbalance. The prediction accuracies 

with oversampling are 0.94 and 0.90 for the training and test set, respectively. Table 2 shows 

the classwise precision, recall, and F1 score of the GNN model for the training and test sets. We 

observe that most metrics are comparable to those of the DNN model. Oversampling 

significantly improves the predictions of the minority umami class, while moderate refinement 

can also be observed for the sweet and bitter classes during evaluation of the test set. Hence, 

the performances of both of our DL models are similar on all metrics. 

 



 

Figure 7: Confusion matrices based on the predictions of the GNN model with and without 

oversampling using SMILES enumeration for training and test sets. The numbers in each cell 

denote the absolute number of datapoints that satisfy the condition of the cell. 

 

Although graph-based DL techniques have proved to be powerful tools for various molecular 

property prediction tasks, they often require large datasets to surpass the performance of 

traditional ML models. Otherwise, the likelihood of overfitting and poor test set performance is 

significant. Our tastant dataset only consists of a few thousand datapoints, which is typically 

not enough for GNNs. But we show that the graph convolutional approach proposed by 

Duvenaud et al. performs satisfactorily on the dataset and classifies bitter, sweet, and umami 



molecules with high accuracy, precision, and recall. As discussed earlier, GNNs have the 

additional advantage of learning directly from the molecular structure and the associated 

chemical information like atom type, valance, aromaticity, etc., without the need for software-

based expert featurization. The number of descriptors, their values and calculation 

methodology, as well as the range of information they provide can vary widely among the 

various commercial and free cheminformatics tools. Hence, if better or comparable 

performance is achieved, it is desirable to use GNNs in automated workflows over DNNs or 

traditional ML models. If larger datasets are obtained in the future from experiments, 

simulations, and data curations, GNNs are likely to outperform other alternatives. 

Table 2: Classwise precision, recall, and F1 scores of the training and test sets for the GNN 

model with and without oversampling 

Sampling Dataset Metric 
Taste Class 

Bitter Sweet Umami 

Without 

Oversampling 

Training 

Precision 0.96 0.92 0.94 

Recall 0.92 0.97 0.95 

F1 Score 0.94 0.94 0.95 

Test 

Precision 0.93 0.85 0.75 

Recall 0.81 0.95 0.80 

F1 Score 0.86 0.89 0.77 

With 

Oversampling 

Training 

Precision 0.97 0.92 0.92 

Recall 0.91 0.97 1.00 

F1 Score 0.94 0.95 0.96 

Test 

Precision 0.94 0.86 1.00 

Recall 0.84 0.95 0.80 

F1 Score 0.89 0.91 0.89 

 



4 Conclusions 

In this paper, we present a data-driven approach for analysis and classification of tastants. 

Among the five basic tastes, bitter, sweet, and umami are sensed via GPCRs and hence are 

considered for a multiclass classification problem. We curated an extensive dataset of verified 

tastants from literature, which included a diverse class of molecules. The characteristics of the 

dataset including key chemical properties and functional groups are discussed in detail. 

Significant structural similarities between sweet and bitter molecules are observed from our 

data analysis, which revalidates the existing ideas on taste. To classify the molecules, we built 

and trained a descriptor-based DNN model and a graph-based GNN model. Both showed 

comparable performance in terms of multiple metrics. The GNN model has a notable advantage 

of being able learn from the molecular structures without requiring handcrafted features. As 

the number of umami molecules in the dataset is much lower compared to bitter and sweet, 

we applied special techniques to handle the class imbalance. Additionally, the SHAP method 

was utilized to explain the predictions of the DNN model. We observed that the neural network 

attributed more importance to features that correspond to physically relevant properties for 

molecule binding to a receptor.  

Future directions in computational taste prediction include expanding the ideas we have 

established in this paper to all the five basic tastes, multitaste, and tastelessness. Achieving this 

would require curating datasets with significant number of molecules belonging to all the 

different classes, as the performance of ML techniques strongly depends on the data. 

Estimating the relative taste intensities of molecules with respect to a reference is productive 

as well, but, except for sweetness, the progress is limited due to lack of experimental results. 



For industrial applications, simultaneously predicting one or more taste labels for a molecule, 

along with the taste intensity, will be of great economic advantage. Taste prediction can be 

further combined with cheminformatics approaches for oral bioavailability and toxicity analysis 

to screen databases for potential tastants with desired properties. Finally, an integrated 

computational framework can include a molecular docking or molecular dynamics module at 

the end of the pipeline to validate the screened molecules. This work contributes a foundation 

to this framework and demonstrates that DL can be a powerful tool for food and flavor 

applications. 
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