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ABSTRACT 
Stereodivergent dual catalysis has emerged as a powerful tool to selectively prepare all four 

stereoisomers in molecules containing two chiral centers from common starting materials. Most 

processes involve the use of two substrates, and it remains challenging to use dual catalyst approaches 

to generate molecules having three newly formed stereocenters with high diastereo- and 

enantioselectivity. Here we report a multicomponent, stereodivergent method for the synthesis of targets 

containing three contiguous stereocenters by the combination of enantioselective Rh-catalyzed 

conjugate addition and Ir-catalyzed allylic alkylation methodologies. Both cyclic and acyclic a,b-

unsaturated ketones undergo b-arylation using aryl boron reagents to form an enolate nucleophile that 

can be subsequently allylated at the a-position. The reactions proceed with generally >95% ee and with 

>90:10 dr. Epimerization at the a-carbonyl center enables the preparation of any of the eight possible 

stereoisomers from common starting materials, as demonstrated for cyclohexanone products. 
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INTRODUCTION 
 Stereoselective synthesis plays an important role in the discovery and production of bioactive 

molecules.1 Many strategies exist for controlling the configuration of a single stereocenter in a molecule 

or producing one major diastereomer during a bond forming reaction. The enantio- and 

diastereoselectivity in reactions that generate more than one stereocenter is often controlled by both 

the catalyst and substrate/product – chiral catalysts control absolute stereochemistry (enantioselectivity) 

while the structure of the substrate or product dictate relative stereochemistry (diastereoselectivity).2 
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Attention has recently been placed on developing ways to synthesize all possible stereoisomers of a 

target with two stereocenters directly through the action of two distinct chiral catalysts.3 When 

successful, the four permutations of catalyst combinations can provide access to any of four product 

stereoisomers from the same set of starting materials. Spurred by Carreira’s report on dual catalyst 

enabled stereodivergent synthesis,4 there are now an impressive array of processes that achieve this 

feat in reactions forming two stereocenters (Fig 1a).5  

 

 
Figure 1. Stereodivergent catalysis – overview of established processes, dual catalyzed allylic alkylation 
and this work on stereodivergent multi-component coupling to generate products with three 
stereocenters. 
 

 The stereodivergent synthesis of molecules containing three stereocenters is more challenging than 

those with only two. The few established methods require different isomers of stereodefined starting 
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materials in order to prepare the full array of eight isomers (Fig 1b).5b, 5k In these cases, a coupling 

partner with an enantioenriched stereocenter5k or an alkene substrate with either E- or Z-configuration5b 

is needed to direct the selectivity at one of the product stereocenters. Reactions that can be used to 

control the configuration of three newly formed stereocenters from a single set of prochiral starting 

materials are not established. Given that many targets of interest in drug discovery have more than two 

stereocenters, multi-component stereodivergent techniques of this type would be desirable to streamline 

synthetic routes and maximize efficiency.6 

 Of the many reported strategies, transition metal catalyzed allylation has proven to be one of the 

most successful manifolds for stereodivergent synthesis.3i These processes involve the generation of a 

catalyst-bound nucleophile, for example an enolate, and its subsequent addition to a allyl electrophile 

generated by a second catalyst (Fig 1c).7 We questioned whether the reactive nucleophile in an 

enantioselective allylic alkylation could be generated in-situ by an initial catalytic enantioselective 

conjugate addition (Fig 1d).8 This would enable a multicomponent process for the catalytic 

stereodivergent synthesis of molecules with three adjacent stereocenters. 

 We focused on combining Rh-catalyzed conjugate addition9 with Ir-catalyzed allylic alkylation 

methodologies (Fig 2a).10-12 This process would require trapping a Rh-enolate intermediate I,13 

generated by an enone b-arylation reaction of III, with Ir-allyl species II generated by allylic carbonate 

oxidative addition (Fig 2b). Independently, both reactions are among the most reliable methods for 

enantioselective C–C bond formation. Despite this, the process has conceivable pitfalls. For example, 

the intermolecular trapping of Rh-enolates generated by conjugate addition by non-proton electrophiles 

generally results in poor diastereoselecitivies.14, 15 Additionally, competitive protonolysis of Rh-enolate I 
by water to generate hydroarylation products or the arylation of Ir-allyl II by Rh-aryl III to form allylic 

arylation products would need to be suppressed.16 Rh(I) and Ir(I) would need to react selectively with 

the correct substrate, despite both metals ability to promote conjugate addition and allylic substitution.17 

Nonetheless, after careful optimization, we report the stereodivergent coupling of aryl boron reagents, 

enones, and allylic carbonates via dual Rh/Ir-catalysis. The catalysts control absolute stereochemistry 

at the arylated (b) and allylated (b’) positions, while diastereoselective protonation can be used to give 

access to the cis-cyclohexanone set of epimers allowing synthesis of any of the 8 possible 

stereoisomers for cyclic enone substrates (Fig 2c).  
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Figure 2. A dual catalysis, multi-component approach for the enantioselective synthesis of the complete 
set of a,b-difunctionalized cyclohexanone stereoisomers with three adjacent stereocenters by Rh-
catalyzed conjugate addition/Ir-catalyzed allylic alkylation.  
 

RESULTS AND DISCUSSION 
 Three-component coupled product 1 derived from the combination of cyclohexenone, 3-bromophenyl 

pinacol boronic ester and a cinnamyl carbonate could be obtained in 75% yield, 99% ee, and >98:2 dr 

using a phellandrene-derived Rh-catalyst ([Rh]-1)18 and a phosphoramidite Ir-catalyst ([Ir]-1)19 (Fig 3a). 

The minor diastereomer 2, with inversion at the cyclohexanone a- and b-positions, arises from the minor 

enantiomer generated in the Rh-catalyzed conjugate arylation step. Use of other Rh-based catalysts 

([Rh]-2–5) resulted in lower yields due to non-productive consumption of substrate, as did other Ir-based 

catalysts known to promote enantioselective allylic alkylations ([Ir]-2–4) (Fig 3b-c). Reaction conditions 

and the aryl boron nucleophile were tuned to maximize the productive reaction between the Rh-enolate 

and Ir-allyl intermediates while still enabling catalytic turnover via protonolysis (Fig 3d). The use of 

dioxane solvent with 5 equivalents of H2O and 3 equivalents aryl–B(pin) nucleophile provided best 

results. Using less water slowed reaction rates and resulted in poor conversion, while the use of 

alternative aryl boron species led to increased hydroarylation product 3 (in the case of boronic acid or 

B(neop)) or simply no reaction (in the case of boroxines or BAr4). Reactions could be conducted with as 
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low as 0.5 mol% Rh-dimer and 1% Ir to give 1 in 60% yield and 99% ee. Control experiments showed 

that the b-aryl cyclohexanone 3 formed by Rh-catalyzed hydroarylation does not re-enter the catalytic 

cycle. This suggests the process involves the direct reaction between Rh-enolate and Ir-allyl 

intermediates (Fig 3e). The ee of hydroarylation product 3 decreases slightly over the time scale of the 

reaction, suggesting the Rh catalyst is prone to degradation over time and explains the formation of 2 

as the minor diastereomer, particularly under non-optimal conditions (from >99.5 to 95% ee, see SI for 

details). 
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Figure 3. Reaction development. 0.20 mmol scale, enone:ArB(pin):allylOBoc = 3:3:1, 0.25 M, 17–22 h. 
Yields and dr determined by calibrated 1H NMR, ee determined by chiral HPLC, dr is the ratio of major 
product to all isomers. Ar = 3-BrC6H4, Ar’ = 4-OMeC6H4. 
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coupled products using the reaction between cyclohexenone, 3-bromophenyl boronic ester and 

cinnamyl carbonate as template. The configuration of Rh- or Ir-catalyst controls the absolute 

stereochemistry of products at the b and b’ positions where a-allylated trans-cyclohexanones 4 and 5 

can be obtained in 99% ee, 61–42% isolated yield, and >90:10 dr (Fig 4). Control experiments show, as 

expected, the trans-stereoisomers are the thermodynamically more stable products, however the 

selectivity for this isomer is enhanced by the catalysts (see the SI). Preparation of the cis-cyclohexanone 

series can be accomplished by synthesis of the thermodynamic silylenol ether20 and subsequent 

protonation21 from the less hindered enol face to give diastereomers 6 and 7.  

 

 
Figure 4. Stereodivergent synthesis of all possible stereoisomers of the three-component enone-aryl 
boron-cinnamyl carbonate coupling. 
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isolation of analytically pure material is not trivial. The cinnamyl carbonate unit can also be modified with 

various substituents, including OMe, Cl, naphthyl, benzodioxole, and thiophene (Fig 5, 1, 19–22). 

Substrate limitations include pyridyl boronic esters and highly electron-poor cinnamyl carbonates (see 

the SI for details). The reaction was easily scaled to prepare gram quantities of 4 in 99% ee and >98:2 

dr.  

 

 
Figure 5 Reaction scope with cyclohexenone. Unless noted, yields are of isolated material. 
Enone:ArB(pin):allylOBoc = 3:3:1, 0.25 M, 17–22 h. See SI for full details. Ar = 3-BrC6H4, Ar’ = 4-
OMeC6H4. aYield determined by calibrated 1H NMR. bArB(neop) instead of ArB(pin). Reactions where 
conducted with (R,R,R)-[Rh]-1 and (S,S,S)-[Ir]-1 to give the configuration shown. 
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Nishimura’s Ph-tfb ligated catalyst [Rh]-522 and phenyl-9-BBN in place of phenyl boronic ester was 

essential to improve reaction yields and selectivities. Best results were obtained by the conducting 

reactions in a sequential order, where the allylic carbonate and [Ir]-1 were added after the completion 

of the conjugate addition reaction. Non-sequential addition of reagents and catalysts (all components 

added at the beginning of the reaction) gave 23 in lower yield and slightly reduced selectivities (62% 

yield, 93% ee and 81:19 dr). The methoxy-bridged catalyst [Rh]-5 is particularly effective, as related tfb-

ligand based catalysts give lower ee and/or dr. It is likely that these reactions occur via a boron-enolate 

intermediate.23 

 

 
Figure 6. Reaction optimization with acyclic enones. 0.10 mmol scale, enone:Ph-9-BBN:allylOBoc = 
1.2:1.5:1, 0.22 M, room temperature, 17–22 h. Yields and dr determined by calibrated 1H NMR, ee 
determined by chiral HPLC, dr is the ratio of major product to all isomers.  
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Figure 7. Reaction scope with enones. Enone:Ph-9-BBN:allylOBoc = 1.2:1.5:1, 0.22 M, 17–22 h. 
Reaction conducted by sequential addition process, adding Ir-catalyst and allylic carbonate after the 
completion of the Rh-catalyzed conjugate addition. X-ray structure was obtained for 23 to determine 
relative stereochemistry. Dr reported is the ratio of product:all other diastereomers. Unless noted, yields 
are of isolated material. See SI for full details. aYield determined by calibrated 1H NMR. benone:Ph9-
BBN:allylOBoc = 3:3:1. 
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the enantioenriched Rh-enolate intermediates can be functionalized by catalytically generated 

electrophiles in a selective manner. Given the broad scope of Rh-catalyzed conjugate additions,9b this 

approach should be a general platform to rapidly synthesis molecules with multiple adjacent 

stereocenters in a divergent fashion. 
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