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Abstract	

The borylation of aryl and heteroaryl C–H bonds is valuable for the site-selective 
functionalization of C–H bonds in complex molecules. Iridium catalysts ligated by 
bipyridine ligands catalyze the borylation of the aryl C–H bonds that are most acidic and 
least sterically hindered, but predicting the site of borylation in molecules containing 
multiple arenes is difficult. To address this challenge, we report a hybrid computational 
model that predicts the Site of Borylation (SoBo) in complex molecules. The SoBo model 
combines density functional theory, semi-empirical quantum mechanics, 
cheminformatics, linear regression, and machine learning to predict site selectivity and to 
extrapolate these predictions to new chemical space. Experimental validation of SoBo 
showed that the model predicts the major site of borylation of pharmaceutical 
intermediates with higher accuracy than prior machine-learning models or human 
experts, demonstrating that SoBo will be useful to guide experiments for the borylation of 
specific C(sp2)–H bonds during pharmaceutical development. 

 

Introduction	

The selective functionalization of C–H bonds in complex molecules is an emerging approach to 
increase the potency of lead compounds and to facilitate studies of structure-activity relationships 
during pharmaceutical development.[1] While reactions are being developed that occur with 
remarkable chemoselectivity for C–H bonds over classic functional groups, site selectivity is 
challenging to achieve and difficult to predict because of the ubiquity of C–H bonds and the effects 
of competing chemical phenomena on relative rates (Fig. 1A)[2]. While heuristic guidelines can help 
predict site selectivity, they are frequently limited to cases in which single factors dictate the 



 

reaction outcome. For reactions in which multiple factors control reactivity, one could imagine that 
sophisticated modeling technologies could predict selectivity with greater accuracy. However, 
methods to predict site selectivity have rarely been the target of modeling research, and 
experimental validation of the model’s predictions with synthetically relevant examples are rarely 
reported.  

 

 
Fig.	1.	A. Sample compounds synthesized via late-stage C–H functionalization of pharmaceutical 
intermediates. B. Site selectivity of the borylation of C–H bonds has been rationalized in simple 
arenes by heuristic guidelines. C. A hybrid computational model enables accurate prediction of the 
site of borylation in complex, multi-arene substrates relevant to medicinal chemistry. 

 

One class of reaction that enables the functionalization of C–H bonds in medicinally active 
compounds is the undirected borylation of C–H bonds. The borylation of C–H bonds has been shown 
to occur on a wide range of substrates and does not require functional groups that coordinate the 
catalyst to direct site selectivity. The borylation of C–H bonds is especially valuable because the 
resulting C–B bond can be converted reliably to C–O, C–N, C–X, and C–C bonds. Given the utility of 
the borylation of C–H bonds, an ability to predict the site of arene borylation in complex structures 
would enable the application of this reaction to discovery research.  

The site selectivity of the borylation of aryl C–H bonds can be high, but the selectivity for reaction 
of one C–H bond over another in a molecule of multiple aromatic rings can be difficult to predict. 
The borylation of aryl and heteroaryl C–H bonds is commonly accomplished by an iridium catalyst 
ligated by bidentate pyridyl ligands, such as bipyridine or phenanthroline, with stoichiometric 
amounts of pinacol diborane (B2pin2). These reactions proceed by oxidative addition of a C–H bond, 



 

which is typically irreversible. Therefore, the oxidative addition step controls site selectivity,[3] and 
this step occurs most rapidly at the most sterically accessible and acidic C–H bond. A series of 
heuristic guidelines to predict the site selectivity of borylation of various heteroarenes have been 
deduced from experimental studies on small heteroarenes; these guidelines include a lack of 
product from borylation at the position next to basic nitrogen functionality, faster borylation of 
heteroarenes than of arenes, and faster borylation of 5-membered heteroarenes than of 6-
membered heteroarenes (Fig. 1B). However, it is unclear how these competing relative rates 
influence site selectivity in more complex cases, including cases in which the substrate contains 
multiple aromatic rings, because the relative rates of borylation of multiply substituted arenes and 
heteroarenes are not well established, and the interplay between competing steric and electronic 
factors are difficult to assess. Thus, a more refined approach to predict the site or sites of the 
borylation of C–H bonds is needed.[4] 

Several computational approaches can be envisioned to predict site selectivity. Density 
functional theory (DFT) has been used to rationalize experimental trends,[5, 6] but high 
computational costs and requisite specialized expertise limit the generality and scalability of this 
approach. More efficient approaches to predict reaction outcomes have been developed, such as 
hand-coded rules,[7–11] semi-empirical quantum chemical methods,[12] and machine-learning 
models.[13–15] Although machine-learning methods can reveal reaction trends from experimental 
data, including regio-,[16] stereo-,[17] and chemoselectivity,[18] they generally require large 
amounts of data to make accurate predictions over a broad reaction space. This requirement is a 
significant limitation when applying machine learning to synthetic chemistry because experimental 
data are typically available in small quantities and with varying levels of quality. In addition, 
achieving accurate predictions for examples outside the training set, such as novel chemical 
structures, remains an outstanding challenge.  

Here, we show that combining machine learning with multiple additional computational 
disciplines into a hybrid model, termed SoBo (Site of Borylation), enables us to predict with high 
accuracy the aryl or heteroaryl C–H bond at which borylation occurs (Fig. 1C). We determined site 
selectivities by calculating the barriers to the oxidative addition of all possible C–H bonds to a 
catalytically relevant iridium catalyst, but to avoid computationally demanding and labor-intensive 
calculations of the transition-state structures for many possible reactions, we developed a 
streamlined, multi-modal predictive system. This system combines kallisto[19] to dock the arenes 
at iridium, a semi-empirical quantum mechanical (SQM) method to generate approximate 
transition-state energies,[20, 22] and two regression models to refine the predicted transition-state 
energies to achieve high accuracy. High-quality experimental and computational data were used to 
train the models, and the precision of SoBo was demonstrated by predicting with high accuracy the 
site of borylation of complex molecules containing multiple aromatic units. This model 
outperformed predictions made by either expert synthetic chemists or previously reported 
machine-learning models, and these predictions are obtained within several minutes on a high-
performance computing cluster using a command-line script easily accessible to synthetic chemists. 

 



 

Results	and	discussion	

Data	collection	

High-quality training data were collected to develop a predictive model for arene borylation. 
From the rich body of published work on this reaction, 86 examples of arene borylations catalyzed 
by iridium ligated by bipyridine or phenanthroline ligands were selected.[22] Among these 
examples, few gave products from borylation at more than one C–H bond. However, such examples 
are necessary to benchmark model performance because they allow for the direct calculation of 
relative transition-state energies leading to isomeric products. Thus, we conducted reactions of 15 
additional substrates that undergo borylation at two positions to augment the literature examples, 
and experimentally determined the ratio of products formed (Fig. 2A). The subsequent combined 
dataset of 101 examples comprised the training and testing set for model development.  

 

 
Fig.	2.	A. An experimental training set of arenes that undergo borylation at two positions augments 
a literature-based dataset. Product distributions are normalized to 100, and the major site of 
borylation is highlighted. B. An intermolecular competition experiment mirrors the selectivity of the 
borylation of two arenes in the same molecule, demonstrating the feasibility of training a model on 
isolated arenes to predict the reactivity of a substrate containing multiple arenes. 



 

 

This dataset primarily consists of simple arenes, but the envisioned application of a predictive 
model is the borylation of substrates containing multiple aromatic subunits. To test the feasibility 
of this type of extrapolation – training a model on isolated arenes to predict the reactivity of 
substrates containing multiple substituted arenes – we assessed the site selectivity of borylation of 
a series of arenes in separate reactants and within one reactant. Fig. 2B demonstrates that the 
relative reactivity of two arenes in the same reaction vessel mimics the relative reactivity of one 
substrate that contains both arenes. For example, the borylation of N-methyl pyrrole occurs to a 
greater extent than that of toluene in both intermolecular (84:16) and intramolecular (85:15) 
competition experiments. Within each arene, the site selectivity is conserved, both for the borylation 
of N-methyl pyrrole (C2:C3 selectivity; 88:12 intermolecular; 89:11 intramolecular) and of toluene 
(C3:C4 selectivity; 63:17 intermolecular; 67:13 intramolecular). Good agreement between 
intramolecular and intermolecular reactivity was observed for several competition experiments 
(see SI for details), demonstrating that a model trained on the reactions of isolated arenes could 
predict the site selectivity for reactions of a substrate containing multiple arenes. 

Hybrid	computational	workflow	

The workflow for the computational model was developed by combining several distinct 
predictive methodologies to exploit the capabilities and compensate for the deficiencies of each 
approach. We termed this model SoBo for Site of Borylation, and the workflow by which it predicts 
the site of borylation is shown in Fig. 3. In Step 1, a user provides a substrate of interest in the form 
of a Simplified Molecular Input Line Entry System (SMILES[23]) string. Three-dimensional 
coordinates were constructed from this one-dimensional representation using RDKit.[24] In Step 2, 
the transition state for the oxidative addition of the C–H bond in benzene to the iridium catalyst 
ligated by tert-butyl bipyridine was calculated by DFT (B3LYP[25, 
26]D3(BJ)[27]/LACVP**/PB(THF)). The benzene in this structure was replaced by a heteroarene or 
substituted arene of interest using kallisto[19], and the structure of the transition state for addition 
of the C–H bond was optimized using a constrained semi-empirical quantum mechanical (SQM) 
method (GFN2-xTB). Exchanging arenes for benzene in DFT-optimized structures provides an 
approach to generate the initial structures for calculations of the transition state containing a 
substituted arene, enabling relatively accurate transition-state structures to be calculated in orders 
of magnitude less time by SQM than by DFT (ca. minutes vs.	hours), and obviating the need for user 
intervention when identifying the transition state. In this way, kallisto	leverages the accuracy of DFT 
with the efficiency of SQM. We repeated this calculation for each aryl C–H bond in the molecule of 
interest. The resulting relative transition-state barriers alone did not accurately predict the product 
distribution. Thus, we layered additional computations involving machine learning and linear 
regression to calculate finer differences between the barriers for addition of various C–H bonds. 

To improve the accuracy of the energies predicted by SQM, we applied two regression models 
(Step 3). In Step 3a, extended connectivity molecular fingerprints (ECFP)[28] were constructed 
from the various aryl C–H bonds of the substrate. This representation was used to train a series of 
machine-learning models, and the 10-fold, cross-validated predictive performance was analyzed by 
the mean absolute error (MAE) and root mean squared error (RMSE). We defined two dummy 
regressors as computational baselines, one that predicts the mean (mean regressor) and one that 
predicts the median (median regressor). A series of machine-learning architectures, such as random 
forest, Bayesian ridge, k-nearest neighbors, kernel ridge regression, Gaussian processes, and partial 



 

least squares (PLS) regression, with different kinds of feature preprocessing, were implemented 
using scikit	learn.[29]  

 

 
Fig.	3.	Computational workflow to train SoBo to predict the site of borylation. Starting from a 
molecular representation (1), three-dimensional structures are generated and activation barriers 
for the oxidative addition of each substrate C–H bond to the iridium catalyst are calculated (2). Next, 
a partial least squares regressor (3a) and sterimol-based steric approximator (3b) are trained to 
predict site selectivity. These regressors are combined (3c), and the absolute energy barriers for 
oxidative addition of all C–H bonds are adjusted (4). The workflow outputs Boltzmann weights in 
percentages as calculated from activation barriers at standard conditions. 



 

 

The most accurate model was a PLS regression model (n	components	= 13) with a polynomial 
combination feature preprocessing (degree	= 2), with MAE	= 3.1 kJmol−1 and RMSE	= 4.7 kJmol−1. 
Both the mean regressor (MAE	= 6.4 kJmol−1, RMSE	= 6.5 kJmol−1) and median regressor (MAE	= 6.5 
kJmol−1, RMSE	= 9.0 kJmol−1) predicted the relative energy barriers of the oxidative addition of 
different C–H bonds in a molecule, derived from experimental ratios of borylation, with 
approximately half the accuracy of the regressor trained using chemically meaningful data. While 
this PLS regressor is more accurate than the baseline models, it alone does not provide sufficient 
accuracy for synthetic purposes. In addition, fingerprint-based models are unable to extrapolate 
beyond the scope of chemical space represented by the encoded fingerprints. Thus, we combined 
PLS regression with additional computational approaches to create a more accurate and robust 
predictor. 

To augment the energies from SQM calculations and predictions from the PLS model, we 
introduced a Neighbor Penalty (NP, Step 3b), to capture the deactivating effect of large substituents 
ortho	 to C–H bonds. For each C–H bond, Sterimol descriptors were calculated for all ortho	
substituents (L, Bmin, and Bmax).[30] These descriptors were fit to hybrid DFT energies in a multi-
variant regression model (coefficient of determination, R2 = 0.76, see SI for details). This approach 
represents a quantification of the experimental trend that borylation frequently occurs at the most 
sterically accessible C–H bond. The resulting intuitive regression model, termed Neighbor Penalty 
(NP), complements the less-readily interpretable, fingerprint-based PLS model.  

To combine the two correlation models (Step 3c), we calculated the binary Rogers–Tanimoto 
similarity[31] scores for the C–H bond of interest against all C–H bonds in the training set used to 
construct the PLS model. The similarity score was used to construct a mixing function between the 
PLS and NP regressors. By this mixing function, the PLS prediction is weighted more heavily when 
the environment of a C–H bond is like those in the training set, but the NP prediction is prioritized 
when the C–H bond is in a position less like those in the training set. This dynamic mixing enables 
ML predictions to be used when they are most applicable, and NP predictions, which are more 
extrapolative, to be used when the C–H bond is in a chemical environment that lies outside the 
chemical space of the training set. This approach allows for the extrapolation of predictions to new 
chemical space that is not represented by the training data, thereby circumventing a common 
challenge of models based purely on ML. Finally, in Step 4, the predictions from regression models 
were combined with SQM-calculated barriers to generate absolute activation barriers, which were 
used to calculate Boltzmann populations for the isomeric products. Across the training set, we 
obtained an accuracy of 97.1% for the site selectivity of arene borylation. This entire workflow uses 
open-source software, and the prediction of site selectivity for a new substrate using SoBo is 
complete within minutes on a high-performance computing cluster. More information on 
computational techniques is available in the SI, and all code and data are available on GitHub.[32] 

Results	of	SoBo	on	simple	arenes	

Fig. 4 shows the SoBo predictions and experimental product ratios for sample substrates from 
the original data set, depicted as product ratios out of 100, with the major site of borylation 
highlighted by a circle. In each case, the predictions agree well with the experimental outcome. The 
entire list of predicted and reported sites of borylation are available on GitHub.[32] Having trained 
a model to predict the site of arene borylation for members of a dataset comprising mostly 



 

substrates containing a single aromatic unit, we next investigated the ability of the model to 
accurately predict the reactivity of more complex, polyaromatic systems that are chemically distinct 
from the training set. In particular, we sought to create a predictive model for the late-stage 
borylation of pharmaceutical compounds. Thus, we tested the workflow on molecules that represent 
pharmaceutical chemical space. 

 
Fig.	4.	 Comparison of SoBo predictions and experimental results from model training. Starting 
materials are shown along with the relative ratio of borylation at various positions, normalized out 
of 100. The major site of borylation is indicated by a colored circle. 

 

Experimental	validation	with	pharmaceutical	substrates	

We assembled an out-of-sample validation set of pharmaceutical intermediates from the 
AstraZeneca collection that contain at least two aromatic rings, possess a range of functional groups, 
and are publicly available. These molecules differ significantly from the ones used to develop the 
model, which consist predominantly of substrates containing a single arene. The higher level of 
structural complexity and substitution pattern in the validation set evaluates the ability of SoBo to 
extrapolate to new chemical space. To ensure rigorous validation, no modification to the model was 
allowed during the work with this validation set. 

Fig. 5 shows the results of this validation with experimental data obtained under the standard 
reaction conditions used to obtain the dataset on small arenes. Despite the number of potentially 
reactive C–H bonds in each compound, one product was observed in all but one cases. In every case, 
SoBo correctly predicted the major site of borylation. The model quantitatively predicted the major 
product (entries 4 and 5) and correctly identified both the major and minor products when two 
products formed (entry 3). In some cases, the model predicted a minor isomer that was not observed 
(entries 1, 2, and 6). These data demonstrate that the model is accurate for synthetic applications, 
and future work will expand the model to predict when no reaction or side reactions will be 
observed when attempting an arene borylation. 



 

 

 
Fig.	5	Experimental validation using pharmaceutical intermediates compares SoBo predictions and 
experimentally determined sites of borylation. Product distributions are normalized out of 100 with 
the major site of borylation highlighted with a circle. 

 

Comparison	to	other	approaches	to	predict	site	selectivity	

To understand the extent to which SoBo can augment human intuition, a series of alternative 
approaches to predict reaction outcomes were tested against the validation set. The current best 
computational model for predicting site selectivity of arene borylation is a multi-task Weisfeiler–
Lehman neural network (WLN),[13] which predicts site selectivity for borylation and electrophilic 
aromatic substitutions. The WLN model was trained using reactions that primarily follow an 
electrophilic aromatic substitution mechanism, which results in different site selectivity than does 
the iridium-catalyzed borylation of C–H bonds. For this reason, the WLN model incorrectly predicted 
the major site of borylation for all six substrates in our validation set (Fig. 6A). This result highlights 
the importance of pairing computational models with mechanistically sound approaches to achieve 
high predictive power.  



 

 
 

Fig.	6.	A. Comparison of various predictor systems, such as general computational models (WLN), 
human chemists at various levels of familiarity with C–H borylation, and SoBo at predicting the 
major site of arene and heteroarene borylation across the validation set. B. Predicted major sites of 
borylation made by all chemists surveyed, normalized out of 100, with experimental sites of 
borylation highlighted with a circle. 

 

An alternative predictor for the site selectivity of arene borylation is human knowledge and 
intuition. To assess the predictive power of chemists relative to computational models, 15 chemists 
from AstraZeneca and UC Berkeley predicted the site at which borylation occurred in the molecules 
of the validation set. Each chemist classified themselves as an expert in the borylation of C–H bonds 
(5–6 respondents) or an experienced synthetic chemist lacking specific expertise in borylation (7–



 

10 respondents). Each respondent was allowed to specify one or more sites of borylation, or no 
reaction, and could consult the literature to inform their predictions. 

The ability of these chemists to predict the major site of borylation of molecules in the validation 
set was compared to that of the SoBo model (Fig. 6A). In general, the experts in borylation predicted 
the major site of reaction more accurately than did general synthetic chemists, but they did so less 
accurately than did the SoBo model. The chemists accurately predicted the major products for some 
of the substrates (>	80% for 5	and 6), but they did so less accurately for other substrates (<	40% for 
1	and 2). While the predictions of some chemists were more accurate than those of others, none of 
the chemists correctly predicted the major product for all six molecules, while SoBo predicted the 
major site of borylation for each. In some cases, the chemists incorrectly predicted the borylation 
product when the reaction occurred ortho	to a functional group (1	and 2), highlighting the difficulty 
of balancing the effect of steric and electronic influences on selectivity. 

We also compared the precision of the two approaches by the distribution of predicted sites of 
reaction. The distribution of predictions made by all chemists is shown in Fig. 6B, with the major 
site of borylation (and SoBo’s prediction) highlighted by a blue circle. In general, the chemists 
predicted a wider range of site selectivities than did SoBo. Across the validation set, the chemists 
predicted borylations to occur at 16 of the 34 aromatic C–H bonds (47%), while SoBo predicted 
borylations to occur at only 10 of the C–H bonds (29%). This comparison indicates that a 
computational approach can yield predictions of both higher accuracy and a greater level of 
precision than human knowledge alone. The difficulty of predicting the site of arene borylation in 
complex systems, even for chemists highly experienced with this transformation, is evident, but the 
precision of SoBo is high enough to be valuable for those seeking conduct the borylation of specific 
C–H bonds in complex substrates. 

Conclusion	

The value of late-stage functionalization of C–H bonds relies on accurate predictions of site 
selectivity and the degree of selectivity. We have shown that a predictive model, created by 
combining a series of computational tools to leverage the strengths and supplement the weaknesses 
of each, identifies the site of borylation of arenes and heteroarenes catalyzed by iridium complexes 
ligated by bipyridine ligands. DFT was used to create approximate transition-state geometries, SQM 
was used to optimize these structures for new substrates, and ML, in combination with 
cheminformatics, refined the predictions of site selectivities. The resulting model (SoBo) accurately 
predicted the major site of borylation of substrates in the training set (97.1%) and out-of-sample 
validation set (100%), demonstrating the strong ability of the model to extrapolate to new chemical 
space and to be valuable for designing experiments for late-stage functionalizations of C–H bonds in 
pharmaceutically relevant molecules. SoBo proved to be more accurate than a collection of expert 
chemists or prior machine-learning models, and should complement chemical intuition during 
synthetic planning. Future efforts will expand predictive models to capture reactivity trends, using 
mechanistic information to predict catalyst poisoning and side reactivity. The prediction of site 
selectivity for a new substrate using SoBo requires no specialized computational experience and is 
complete within minutes on a high-performance computing cluster; a user simply enters the 
substrate as a SMILES string to a submission script, and the fully automated workflow returns the 
predicted likelihood of borylation at each aryl C–H position, as is described in the GitHub 
repository[34]. The computational approach developed herein can be applied to any reaction for 



 

which the transition state of the product-determining step is well defined and, therefore, constitutes 
a general platform to predict the outcome of many different chemical reactions. 

 

1 Data	and	code	availability	
The training set for machine-learning is shared in a separate GitHub repository.[32] Within this 

repository, we list all GFN2-xTB optimized catalyst structures, all training labels, the database used 
to calculate Rogers–Tanimoto similarities, helper scripts that enable the creation of the PLS 
machine-learning model, and the final fitted model itself. The validation set is shared in a separate 
GitHub repository,[33] which includes structures from the AstraZeneca database that are publicly 
available. We queried this database for structures with at least two different substituted aromatic 
rings that have more than two possible C–H positions and made sure that no iridium-catalyzed 
borylation of the molecules were previously reported. In addition, we created a chemist’s survey to 
create a human predictor system for C–H borylation. 

The workflow implementation is shared in a separate GitHub repository.[34] This workflow was 
implemented in python using the dask library to create a directed acyclic graph workflow[35] 
together with the slurm[36] high-performance computing job scheduler. Main dependencies are 
numpy,[37] scipy,[38] rdkit,[24] scikit learn,[29] kallisto,[19] and GFN2-xTB.[20] 
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