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Abstract 

In recent years, there is a large increase in structural diversity of novel psychoactive 

substances (NPS), exacerbating drug abuse issues as these variants evade classical detection 

methods such as spectral library matching. Gas chromatography mass spectrometry (GC-MS) 

is commonly used to identify these NPS. To tackle this issue, machine learning models are 

developed to address the analytical challenge of identifying unknown NPS, using only GC-MS 

data. 891 GC-MS spectra are used to train and evaluate multiple supervised machine learning 

classifiers, namely artificial neural network (ANN), convolutional neural network (CNN) and 

balanced random forest (BRF). 7 classes, comprising 6 NPS classes (cathinone, cannabinoids, 

phenethylamine, piperazine, tryptamines and fentanyl) and other unrelated compounds can be 

effectively classified with a macro-F1 score of 0.9, averaged across all cross-validation folds. 

These results indicate that machine learning models are a promising complement as an effective 

NPS detection tool. 



1. Introduction 

Novel psychoactive substances have been on the rise recently, with yearly increase in numbers 

entering the illegal market. These synthetic drugs are controlled as they induce significant 

social and human health issues [1–3]. Examples of controlled drug substances include fentanyl, 

cathinone, amphetamine, and many others of which synthetic NPS seek to emulate [4]. These 

substances are thus regulated under law and their presence is heavily monitored. These 

synthetic drugs have diverse molecular structures by design, with the intent to exploit 

regulation loopholes and evade detection efforts [5,6]. Extensive efforts have been made to 

develop robust chemometric methods for different measurement techniques to better detect 

them.  

There exist various analytical methods that can detect such compounds such as infrared 

spectroscopy [7,8], Raman spectroscopy [9–11], high-resolution liquid chromatography with 

tandem mass spectrometry (LC-MS-MS) [12,13] and many others [14–17]. However, GC-MS 

[18] remains one of the most widely used techniques to identify chemicals due to its ease of 

operation and ability to distinguish compound mixtures. GC-MS acquires both 

chromatographic retention time and fragmentation patterns during the electron ionization 

process. Conventionally, a compound is identified by matching the retention time and mass 

spectrum obtained against known records in a library through similarity matching algorithms 

[19]. This requires an extensive GC-MS database for effective identification, which for the case 

of NPS, is a challenging task as malicious actors create NPSs with ever increasing structural 

diversity to evade detection. Thus, current GC-MS database are unable to exhaustively cover 

the spectrum of all possible NPSs. Careful analysis and elucidation of the unknown NPS 

identity through possible combinations of molecular fragments is possible but it a non-trivial 

effort and is heavily dependent on the expert user analysing the spectrum. This presents an 

analytical challenge to identify unknown NPSs. 



There exist modified library matching methods for mass spectra that involve a Hybrid 

Similarity Search algorithm which considers the difference between the nominal molecular 

mass of an unknown chemical compound and a potential target and shifts the original peaks 

accordingly [20]. Thereafter, the similarities and hence class of the unknown compound is 

inferred from likely candidates in an existing library. However, this approach requires 

knowledge of the nominal mass which may not be possible using only electron ionization (EI) 

based GC-MS measurements. Thus, it is necessary to study alternative methods that can 

attribute unknown NPSs to well-defined classes to reduce latency from drug seizure to 

identification. 

Non-library matching methods generally involve two approaches. The first is a generative 

approach where synthetic GC-MS data is derived from theoretically predicted NPS molecular 

structures which then serves as references in a library for comparison [21]. Ji et al. also reports 

a related method where molecular fingerprints are directly predicted from machine learning 

models and a molecular identity is predicted from the fingerprint combination [22]. However, 

this approach would require both molecular structure and GC-MS predictions to be acceptably 

accurate for effective NPS identification. Furthermore, this method would not be able to 

exhaustively cover all possible NPSs due to resource limitations. Fragmentation pathways for 

substances of interest can also be predicted, as in the case of fentanyl analogues and synthetic 

opioids but such a work has not been extended to other NPS classes [23]. 

Another approach classifies unknown compounds based on statistical consideration or machine 

learning models trained on related compounds in the library. Recently, principal component 

analysis has been used in classification of fentanyl analogues based on infrared spectroscopy 

[7] as well as surface-enhanced Raman spectra [10]. Similarly, Esseiva et al has developed GC-

MS based linear discriminant analysis and support vector machine models for distinguishing 

fiber from cannabis drug-type seedlings [24]. Recent work by Koshute et al have trained 



various machine learning models for the purpose of fentanyl analogue detection from mass 

spectra [15]. These chemometric methods have limited coverage, targeting specific subset of 

NPSs. For classification of a wider range of newly synthesized drugs, Jang et al. demonstrated 

use of artificial neural network to screen unknown erectile dysfunction drugs based on their 

LC-MS/MS spectra [12]. Combining it with a hybrid search algorithm, Lee et al. extended this 

neural network approach for NPS, also using high resolution LC-MS/MS spectra as inputs [13]. 

Thus, there does not exist a complete solution for classifying unknown NPS from GC-MS 

spectra. 

Inspired by these recent works, we seek to develop a machine learning based model that can 

classify an unknown NPS to its drug class based solely on its GC-MS, with no knowledge of 

its nominal molecular mass. In this work, we trained and evaluated several supervised machine 

learning models based on mass spectra of known NPS. We also present the necessary pre-

processing steps to prevent inflated prediction accuracies. 

2. Materials and Methods 
 

2.1 Dataset 

NPS GC-MS data was obtained from the Scientific Working Group for Seized Drug [25] and 

Cayman Chemical Spectral Library [26] while GC-MS data of other non-related compounds 

with nominal mass < 600 was selected from the database distributed with the demonstration 

software version of NIST MS Search v2.3. The non-related compound class represents a 

diverse selection, with each chemical compound having only one GC-MS spectrum, to evaluate 

the model’s ability in identifying compounds that do not belong to the NPS classes of interest. 

The maximum nominal mass allowed is set at 600 as the nominal mass for all NPS compounds 

in the dataset is < 600. 



Distribution of the classes in the dataset is described in Table 1. 689 open-source GC-MS 

spectra from a selection of NPS classes and GC-MS of 202 other compounds were used to train 

and evaluate the machine learning models. A typical GC-MS mass spectrum is shown (Figure 

1). Each spectrum of the dataset has been normalised against a maximum abundance of 100 for 

consistency between spectra. All GC-MS data comprises of relative abundance peaks plotted 

against the mass-to-charge ratio (m/z). All relative abundance of molecular fragments at mass-

to-charge ratios from 1 to 600 are used as model inputs. Mass-to-charge ratios are rounded to 

the nearest integer for a total of 600 features with no further feature engineering performed. 

Mass-charge ratios with no abundance peaks are assigned a value of zero. 

Classification is performed for 7 different classes and their analogues, namely, cathinones [27], 

cannabinoids [28], phenethylamines [29], piperazines [30], tryptamines [31], fentanyls [32] 

and a general mixture of non-related compounds. The dataset is manually split into the various 

classes according to their molecular structure. Choice of classes is to ensure sufficient 

population in each class for effective model training and hence classification. Chemical 

identities and their associated classes are provided in the dataset made available in the 

Supplementary Data. Data augmentation is performed on the dataset prior to training the model, 

similar to previous work by Skarysz et al. [33]. Augmentation is done by randomly scaling the 

original abundance peaks by 10% of their values and renormalizing them back to values 

relative to the largest peak intensity (given a value of 100), to mimic variations in GC-MS 

measurements. All training data is augmented tenfold. 

2.2 Machine Learning Models and Evaluation Metrics 

In this work, we constructed supervised machine learning models to classify unknown spectra 

according to 7 classes (cathinone analogues, cannabinoid analogues, phenethylamine 

analogues, piperazine analogues, tryptamine analogues, fentanyl analogues and other non-

related compounds). Different machine learning models are trained and evaluated, namely 



artificial neural network (ANN) [34], convolutional neural network (CNN) [35] and balanced 

random forests models [36]. 4-fold cross validation is carried out for model evaluation, in 

which 75% of  the total data is used for training the model while the remaining 25% is used for 

evaluation. 

Model performance is evaluated based on recall, precision, and F1-scores. The performance 

metrics are calculated using the following equations: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(1) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2) 

F1 score = 2
Precision x Recall

Precision + Recall
(3) 

where: 

True positive (TP): number of correct model predictions on the positive class, 

False positive (FP): number of incorrect model predictions on the positive class, 

True negative (TN): number of correct model predictions on the negative class, 

False negative (FN): number of incorrect model predictions on the negative class. 

2.3 Baseline comparison with classical library matching 

We baselined the model performance against a library matching method using similarity scores 

obtained through simple match factor between two spectra, as employed in NIST Mass Spectral 

Search Program (MS Search). Hybrid match factor scores are not used as we assumed no 

knowledge of the molecular mass. The dataset and data splits from which the scores are 

calculated are identical to those used to train and evaluate the machine learning models.  

The equation for the simple match factor [14], sMF is as follows: 



𝑠𝑀𝐹(𝑥ଵ, 𝑥ଶ) = 𝐶ଵ.
(∑ 𝑎௫ଵ[𝑖]௜ . 𝑎௫ଶ[𝑖])ଶ

(∑ 𝑎௫ଵ[𝑖]ଶ
௜ ). (∑ 𝑎௫ଶ[𝑖]ଶ

௜ )
(4) 

where C1 is defined as 999 according to conventions while x1 and x2 represents the two 

compared spectra and a is the peak intensity value at mass-charge ratio i. Similarity scores for 

the spectrum of the unknown compound in validation set is calculated against all spectra 

present in the training set. The unknown is then classified according to the majority class label 

present amongst the top ten compounds with the highest simple match factor scores. Only 

spectra with sMF > 700 are considered to exclude compounds that has low match scores with 

the query molecule. If there is no majority class label, the compound is labelled as unknown 

and is considered as an incorrect prediction. 

3. Results and Discussion 

The dataset includes spectra of NPS which are isomers of each other. Structural isomers, 

especially ring positional isomers, can give nearly identical results when measured under single 

energy EI GC-MS, if no additional methods such as low energy ionization [37] are used. Such 

isomer pairs (Figure A1) can easily be matched to each other through direct similarity 

measures. Thus, proper care should be taken when splitting GC-MS data into 

training/validation sets. We compare two different splitting methods here to demonstrate this 

effect. One method is isomer agnostic, where all samples in the dataset are treated equally when 

distributed between training and validation sets. A different method takes into consideration 

the presence of position isomers, ensuring that these isomers are all found in the same training 

or validation split. Baseline performance using our simple match factor strategy is compared 

(Table 2) between the two methods. Using recall averaged across all cross-validation folds as 

a performance metric, we observed that the performance of the simple match factor strategy 

for isomer agnostic data splits is much higher across all classes. Such a difference shows that 

the high structural similarity and hence GC-MS spectra between position isomers cannot be 



ignored as this results in an over estimation of the model’s performance. To counter that, 

isomeric consideration is taken during data splitting for subsequent experiments. 

Machine learning results shown here are based on three top performing models, Artificial 

Neural Network (ANN), Convolutional Neural Network (CNN) and Balanced Random Forests 

(BRF) are presented. BRF is used as there exists class imbalances in the dataset. Table 3 

describes the F1 scores of the respective models. BRF model performs best, scoring highest 

across almost all classes. The receiver operating characteristic (ROC) [38] curves for the BRF 

model are described for all NPS classes (Figure 2). In the ROC graph, model performance 

across all classes is presented, with the vertical axis showing TP rate and the horizontal axis 

showing FP rate. The area under the ROC curve (AUC) values are also labelled. The closer the 

AUC to 1, the better the model performs in identifying the correct class while minimising false 

positives. 

Compared to a simple match factor classification strategy, all machine learning models perform 

better for all classes. This demonstrates the effectiveness of a supervised machine learning 

approach in classifying unknown NPSs over a classical library matching method.  BRF model, 

depending on the class, presents a 20% to 700% increase in recall scores compared to a simple 

match factor strategy (Figure 3). Compared to previous work which uses both LC-MS/MS and 

hybrid match factors [13], our model which is solely based on GC-MS mass spectra, albeit 

classifying for a smaller range of NPS classes, have greater model performance while having 

no knowledge of the molecular mass. Our classifier can also predict a wider range of NPS 

classes compared to a recent work which focuses only on fentanyl analogues [15]. 

Comparatively, our deep learning models have lower performance, likely due to the lower 

diversity in the minority classes such as piperazines. 

To further investigate the model’s ability to discern chemicals of interest from a larger 

population, we evaluated the trained BRF model against the remaining mass spectra (nominal 



weight < 600) present in the database distributed with NIST MS Search v2.3 (total of 2167 

spectrum). The model has a high detection rate of 97 ± 1%, despite being trained on a much 

smaller dataset set size of 202 mass spectrum in the non-related compounds class. The results 

are slightly lower than that of Koshute et al [15], likely due to the larger number of classes 

being predicted for and the smaller class size being trained. This reflects the generalisability of 

the model in detecting compounds belonging to the NPS classes of interest. 

4. Conclusion 

In this work, we have shown that machine learning approaches enables effective classification 

of unknown NPS with BRF being the best performing model. The model’s accuracy 

outperforms classical library matching. We have also shown that the model is able to discern 

the NPS types of interest from the larger chemical population, indicating that the model 

constructed can be used to detect NPS from unknown chemical mixtures. Additionally, our 

approach requires no feature engineering and takes in the complete distribution of relative 

abundance at the various mass-charge ratios of the GC-MS mass spectrum as input. Isomeric 

considerations are also taken into account to minimise inflated model performance scores. This 

facilitates easy integration with existing systems with minimal pre-processing performed on 

the measurement data. 

As the model is trained on a single type of measurement, determining the exact molecular 

structure of an unknown substance is not straightforward due to limited information. A further 

improvement would be to predict the molecular structure from GC-MS data, but that would 

likely require inputs from complementary spectroscopic techniques such as Raman and 

infrared. These data inputs can be combined in the future to increase the predictive capabilities 

of the models. In addition, spectra obtained from samples with mixed composition of chemical 

compounds can be used to train the model, enhancing its robustness towards mixed samples. 

Furthermore, the retention time could potentially be included in the model as an input feature. 



In all, our current work suggests a promising complement to existing methods for identifying 

unknown NPS not present in the library. The methodology developed is not limited to NPS but 

can be extended to other chemicals of interest. 
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Table 1 
Dataset distribution. 

Class Population Species 

Cathinone analogues 89 88 

Cannabinoid analogues 149 149 

Phenethylamine analogues 112 112 

Piperazine analogues 50 48 

Tryptamine analogues 67 67 

Fentanyl analogues 222 222 

Other compounds 202 202 



. 

 

 

 

 

 

 

 

 

Figure 1. GC-MS spectrum of a cannabinoid-analogue NPS, JWH-116 (structure shown in 

inset). Blue numbers represent mass of molecular fragments which are more abundant. 

  



 

  

Table 2 
Recall scores of a simple match factor strategy. 

Class 

Mean Recall 

Isomer 
Agnostic 

Isomers in 
Same Split 

Cathinone analogues 0.751 0.650 
Cannabinoid analogues 0.375 0.377 
Phenethylamine analogues 0.616 0.348 
Piperazine analogues 0.599 0.082 
Tryptamine analogues 0.627 0.540 
Fentanyl analogues 0.738 0.504 
Other compounds 0.153 0.149 



 

  

Table 3 
Comparison between different machine learning models. 

 F1 Score 

Class ANN CNN BRF 

Cathinone analogues 0.786 0.886 0.873 

Cannabinoid analogues 0.857 0.867 0.930 

Phenethylamine analogues 0.726 0.843 0.866 

Piperazine analogues 0.414 0.489 0.852 

Tryptamine analogues 0.820 0.886 0.899 

Fentanyl analogues 0.920 0.949 0.980 

Other compounds 0.754 0.842 0.901 



 

 

 

 

 

 

 

 

 

 

Figure 2. ROC of BRF model for single cross-validation fold. Legend shows average AUC 

values. 

  



 

 

 

 

 

 

 

 

Figure 3. Recall scores of BRF model versus baseline simple match factor strategy. 

  



Appendix 

A. GC-MS Mass Spectrum of an Isomer Pair 

A representative example of isomers with highly similar mass spectra. Mass spectra belonging 

to the pair of cathinone analogues shown in Figure A1 are almost similar with a high simple 

match factor score of 982.9 when calculated using Equation 4. 

 

 

Figure A1. Mass spectrum of two position isomers, showing their similarity. 

  



B. Machine Learning Models 

Balanced Random Forests (BRF) model consist of multiple decision trees which votes and 

classifies the object based on a random choice of feature inputs, in this case the GC-MS mass 

peak abundance values. BRF model used in this work is constructed using the Python 

imbalanced-learn package [36]. ANN and CNN models are trained using the Python keras 

package. 

 

Table A1  
Hyperparameters used for the ML models 

Model Hyperparameters used 

 
Balanced Random 
Forest 

 
maximum depth = 50; 
maximum features = 0.1; 
no. of estimators = 1000; 
criterion = ‘gini’ 

 
Artificial Neural 
Network 

 
no. of densely connected layers = 3; 
nodes per layer = [300, 30, 7]; 
optimizer = ‘Adam’; 
loss = categorical cross entropy 

 
Convolutional 
Neural Network 

 
no. of convolutional 1D layers = 3; 
kernel size = 3; 
padding = ‘valid’; 
channels per convolution layer = [16, 32, 64]; 
no. of densely connected layers = 3; 
nodes per layer = [480, 48, 7]; 
optimizer = ‘Adam’; 
loss = categorical cross entropy 

 

  



C. Predictions of the Balanced Random Forest Model 

 

 

Figure A2. Confusion matrix describing predictions of the Balanced Random Forest model 

across all cross-validation folds. 


