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Abstract

Molecular dynamics (MD) simulations are used in diverse scientific and engi-

neering fields such as drug discovery, materials design, separations, biological sys-

tems, and reaction engineering. These simulations generate highly complex datasets

that capture the 3D spatial positions, dynamics, and interactions of thousands of

molecules. Analyzing MD datasets is key for understanding and predicting emer-

gent phenomena and in identifying key drivers and tuning design knobs of such phe-

nomena. In this work, we show that the Euler characteristic (EC) is a powerful topo-

logical descriptor that facilitates MD analysis. The EC is a versatile, low-dimensional,

easy-to-compute, and easy-to-interpret descriptor that can be used to reduce, analyze,

and quantify complex data objects that are represented as graphs/networks, mani-

folds/functions, and point clouds. Specifically, we show that the EC is an informative

descriptor that can be used for machine learning and data analysis tasks such as clas-

sification, visualization, and regression. We demonstrate the benefits of the proposed

approach through case studies that aim to understand and predict the hydrophobicity

of self-assembled monolayers and the reactivity of complex solvent environments.
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Introduction

The development of advanced molecular dynamics (MD) simulation methods has pro-

vided researchers the ability to rapidly screen for new chemistry, biological interactions,

and materials.1–3 For example, large-scale molecular simulations have been used in the

screening of molecular organic frameworks (MOFs) for hydrogen storage.4 These tech-

niques are also employed in the study of soft materials such as proteins and polymers,5–7

and in the design of self-assembled colloidal systems.8 However, the analysis of MD

datasets is challenging due to both their size and complexity; specifically, MD simula-

tions can produce terabytes of data that require computationally efficient and scalable

analysis methods, while the complexity of the data requires methods that are generaliz-

able to a broad range of systems and that are robust to data heterogeneity and noise.9

Quantification and reduction of molecular simulation data has been traditionally con-

ducted via order parameters and summarizing statistics such as radial distribution func-

tions and correlation fields, particularly for condensed-phase systems.10 These descrip-

tors are usually computationally efficient, physically interpretable, and are derived from

principles of physics and statistical mechanics. Moreover, such descriptors usually corre-

late to emergent properties of interest and thus can be used to construct predictive mod-

els. However, order parameters are typically designed for particular applications that

meet specific assumptions (e.g., spatial isotropy or crystallinity) and are thus limited in

scope.11–14

Another approach for quantifying molecular simulation data consists of using ma-

chine learning (ML) tools such as convolutional neural networks (CNNs) and autoen-

coders to extract informative descriptors from data.15–19 ML tools are versatile in that

they require few assumptions on the application and can be used for processing diverse

data formats (e.g., images, tensors, graphs). However, descriptors extracted using ML
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tools can be difficult to interpret and training predictive models based on such descrip-

tors may require large numbers of parameters and large amounts of labeled MD data,

which can be computationally costly to produce.

In this work, we investigate the application of tools from topology for the analysis

of MD simulation data. Topology focuses on characterizing the global structure (e.g.,

connectivity, continuity) of shapes and objects and has been gaining attention in diverse

scientific and engineering fields.20,21 In the context of molecular simulations, connectivity

and continuity of molecules such as polymers, proteins, and other molecules have been

studied via topology. These topological methods have mostly relied on the use of applied

knot theory, which can quantify the entangled structures of molecules and use this infor-

mation to predict thermodynamic bulk properties. These techniques have also been used

for connecting the knotting of molecules with their reactivity and function (e.g., DNA

recombinase enzymes).22–24 In these applications, however, the connection between the

molecular data object and its topological representation (i.e., knots) is limited to specific

settings. Recent work has also focused on the application of persistence homology to

molecular simulation data.20,25 Persistent homology has been shown to provide power-

ful characterizations of the topology and geometry of data.25–30 However, the outputs of

these methods (e.g., persistence diagrams) can be difficult to directly integrate into data

analysis and ML tasks without further transformation (e.g., vectorization and smoothing)

and hyperparameter optimization.21

The main goal of this work is to demonstrate that topology can be applied to a broad

range of molecular simulation settings. At the core of this approach is the observation that

one can represent data as graphs and manifolds, which are versatile topological objects

that can be efficiently quantified using a topological descriptor known as the Euler Char-

acteristic (EC).21,31 Graph representations for molecular simulation data have been widely

3



applied and are easy to justify from a physical standpoint.32,33 An example arises in the

analysis of non-covalent bonding networks (e.g., hydrogen bonding networks in water).

Here, the individual water molecules can be considered vertices of a graph with non-

covalent bonds (e.g., hydrogen bonds) representing edges between the vertices. Mani-

fold representations for molecular simulations arise when there is a continuous function

describing behavior over a space (or surface) of a simulation. An example of a mani-

fold representation arises in the analysis of time-averaged spatial density, where density

is computed at each spatial location resulting in a continuous function over the entire

simulation space.20,21 Manifolds can be extended to more complex spaces, such as the

surface of a molecule, nanoparticle, polymer, or protein.34 In these approaches, the sur-

face is treated as a manifold and physical characteristics (e.g., hydrophobicity, charge,

forces, curvature) represent functions on the manifold. However, graph and manifold

representations of molecular simulation data can be high-dimensional and not directly

amenable to common analysis tasks (e.g. classification, regression, visualization). Thus,

there is need for simple and computationally efficient methods for reducing and quanti-

fying these topological data representations. This characterization can be accomplished

by performing a decomposition of the space into a set of independent topological bases that

capture basic topological features such as holes, connected components, and voids. The

EC is a scalar integer quantity that is defined as the alternating sum of the rank of these

topological bases of an object. The EC is often combined with a data processing technique

known as filtration, which enables the characterization of more complex topological ob-

jects such as matrices, images, fields/functions, and weighted graphs.21,35 The filtration

process gives rise to the so-called EC curve, which is a function that summarizes how

topological features emerge and disappear through the filtration process. Compared to

descriptors obtained from persistent homology (e.g., persistence diagrams), the EC curve

provides a quantifiable and easy-to-interpret descriptor of complex data objects.
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To illustrate the efficiency and effectiveness of the EC, we provide studies arising in

a couple of complex molecular simulation systems. The first simulation system is the

measurement of hydrophobicity on the surface of 2D self-assembled monolayers (SAMs),

and the second system is the analysis of 3D solvation effects on acid-catalyzed reactions

systems for biomass processing. Previous work suggests that the topology and geome-

try of water plays a critical role in understanding and predicting emergent physical and

chemical properties for both of these systems.36,37 Thus, in both examples, we are focused

on quantifying the topological structures and patterns emerging from solvent behavior at

the surface of a SAM and around biomass-relevant reactants to quantify hydrophobicity

and reactivity, respectively. We also show that the EC can be used to quantify different

forms of data representations typically used in these types of MD simulations (hydrogen

bond networks and density fields). Specifically, we show that the EC is a descriptor that

correlates strongly with emergent properties and this enables the construction of low-

dimensional and effective predictive models that are significantly more computationally

tractable than recently-developed ML models such as CNNs. We show that simple re-

gression models that take the EC as input are able to accurately predict the hydration

free energy of simulated 2D SAMs and the change in reactivity due to solvation effects

in acid-catalyzed reaction systems. These studies also illustrate the stability of the EC in

quantifying noisy MD data and the physical intuition that can be gained through topo-

logical analysis. Moreover, we show that the EC can be used to monitor the dynamic

evolution of topology in these MD systems which can be used, for instance, to determine

when a system has achieved a topological steady-state. We also note that solvent-rich

processes (like those studied here) are common in a diverse range of systems analyzed

through MD, further supporting the general relevance of these methods. All code and

data needed for reproducing our results are provided.
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Topology of Graphs and Manifolds

To analyze MD simulation data with the EC, we begin by defining a couple of fundamen-

tal topological data representations: graphs and manifolds.

A graph is a 2D topological object that consists of an ordered pair G(V,E), where

V represents a set of vertices and E represents a set of paired vertices known as edges.

Edges represent relationships (connectivity) between vertices. A graph representation for

an atomistic simulation of water is shown in Figure 1. Here, the water molecules are

represented as vertices and hydrogen bonds between molecules are represented as edges.

This graph (network) representation can be used to understand how water is interacting

both locally and globally, by quantifying specific topological features, such as the number

of cycles and connected components of the graph. A cycle represents a path that traverses

edges on a graph starting at a particular vertex vj and ending at that same vertex vj .

Physical examples of graph cycles are found in tetramer, pentamer, and hexamer water

structures.38,39 A connected component is a subset of a graph C(VC , EC) ⊆ G(V,E) in

which any vertex vi ∈ VC of the subgraph can reach any other vertex vj ∈ VC by traversing

edges of the subgraph {vi, vj} ∈ EC , and is disconnected from all other subsets of the

graph. In other words, the number of connected components is the number of connected

partitions of a graph. In a hydrogen bonding network for water, connected components

help us understand the physical state of the system; for example, in a condensed (or

crystalline) state, there will be many hydrogen bonds present, reducing the total number

of connected components but increasing the total number of molecules in each connected

component. The opposite would hold true for a system acting as an ideal gas; here, no

bonds are formed and thus each molecule exists as its own connected component. Data

can also be encoded in a graph object (in nodes and edges) using functions f : V → R and

f : E → R. Values attached to nodes or edges are typically called weights or features; as

such, graphs that encode data are also known as weighted graphs.
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Figure 1: Graph and manifold representations of a molecular simulation of water. (a)
Snapshot of an atomistic simulation of water (only some molecules are shown). (b) A
graph representation of the hydrogen bonding network formed between water molecules
within the simulation, and (c) a density field derived from time-averaging water molecule
positions during the simulation. The density field is represented as a manifold M, with
a continuous function f : M → R that maps each point of the manifold to a correspond-
ing water density value; visualized here by changes in the height of the surface. (d,e)
Represents the EC (χ) quantification of the graph and manifold data representations. (d)
The graph topology is quantified by subtracting the total number of cycles from the total
number of connected components in the graph (χ = 12 − 2 = 10). (e) The manifold is
quantified through a filtration. At multiple increasing density thresholds ki ∈ R, the EC
χi is computed by subtracting the total number of holes from the total number of con-
nected components in the filtered manifold x ∈ M : f(x) ≤ ki. We note that filtered
manifolds all originate from the same data object and that the vertical layout is meant to
illustrate the topological changes as the filtration is performed. The paired values {ki, χi}
are used to construct an Euler characteristic curve.
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Manifolds are also versatile topological data representations that can capture contin-

uous forms of information in high-dimensional spaces (e.g., 3D density fields). This con-

trasts with graph representations, which capture discrete characteristics of a 2D data ob-

ject (e.g., number of bonds, molecules, clusters). A manifold M is a topological space

that locally resembles a Euclidean space; this means that the neighborhood of a point

x ∈ U in an n-dimensional manifold (with U ⊆ M) can be mapped to n−dimensional

Euclidean space through a continuous, bijective function. These neighborhoods and as-

sociated mappings are also known as charts. For example, the surface of the Earth is a 2D

manifold and we can map the curved surface of the Earth to a flat Euclidean plane (i.e.,

a 2D Euclidean space) using a chart in order to measure properties such as distances or

areas. The general nature of manifolds allows them to represent a broad range of struc-

tures, shapes, and complex geometric objects in molecular simulations (e.g., surface of a

protein or a nanoparticle). Manifolds can also have encoded data on them (e.g., Earth sur-

face temperature), which is captured using a continuous function f : M → R. In Figure

1, we present a manifold representation for a 2D simulation of water. Here, the simula-

tion domain (e.g., a 2D plane) is a 2D manifold and we define a continuous function that

captures the time-averaged density of water at each location in the domain.

The Euler Characteristic

Graph and manifold representations are able to capture both discrete and continuous in-

formation within a given simulation and their topology can be directly quantified/summarized

using a descriptor known as the Euler characteristic (EC).21 The EC is denoted as χ ∈ Z

and is mathematically defined as the alternating sum of the rank of topological bases for a

given space known as Betti numbers βi ∈ Z+, where i ∈ Z+ represents the dimensionality

of the topological basis:
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χ :=
n∑

i=0

(−1)iβi (1)

Importantly, the topological bases of a space (e.g., connected components, holes, voids)

are preserved under deformations such as stretching, twisting, and bending (they are

topological invariants); as such, the EC is a topologically invariant quantity. For instance,

objects that might appear to be spatially distinct, might have the same topological fea-

tures and EC.

For any topological space of n-dimensions, there can only exist topological bases up

to that given dimension. For example, a 3D space can only contain β0 (representing con-

nected components), β1 (representing holes and cycles), and β2 (representing voids and

cavities) in the space. Figure 1 represents a hydrogen bonding network for an atomistic

MD simulation of water as a graph. A graph is a 2D topological space, and thus has a

couple of Betti numbers β0 and β1. Figure 1 illustrates that, for a simulation snapshot,

the number of connected components is 12, the number of cycles is 2, and thus the EC is

χ = 12− 2 = 10.

Manifold Filtrations

Analysis of data encoded in manifolds (or weighted graphs) requires an added process-

ing step known as a filtration. A filtration quantifies the topology of sublevel sets of the

manifold. Given an n-dimensional manifold M and a continuous function f : M → R,

a sublevel set of the manifold is defined as Mki that contains points {x ∈ M : f(x) ≤ ki},

where ki ∈ R represents our filtration threshold. Hence, we can construct nested sublevel

sets at increasing filtration thresholds for the manifold:
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Mk1 ⊆ Mk2 ⊆ ... ⊆ Mkn ⊆ M (2)

where k1 < k2 < ... < kn represent our filtration thresholds, and M represents the original

manifold. We can measure/quantify the topology of these nested sublevel sets with the

EC at each filtration threshold {χ1, χ2, ..., χn}. We ultimately obtain an ordered pair of val-

ues {ki, χi}, which characterize the topology of the manifold and its associated function.

An illustration of the filtration process is found in Figure 1 for a 2D atomistic simulation,

where time-averaged water density is analyzed over the space of the simulation. We have

selected three different filtration values k1 ≤ k2 ≤ k3 corresponding to the three sublevel

sets. Similar to the graph example, we compute the EC by counting the total number

of n-dimensional topological bases (β0, β1 for a 2D manifold). The bottom sublevel set

at filtration value k1 represents a single connected component, capturing a local minima

in the function f , and resulting in χ1 = 1 − 0 = 1. As the filtration threshold increases

to k2, a single connected component remains but four holes (i.e., cycles) are formed in-

dicating the presence of local maxima of the function f , which results in an EC value of

χ2 = 1− 4 = −3. The final filtration threshold k3 returns the original manifold, which is a

single connected component: χ3 = 1−0 = 1 (further filtration of the space will not change

the manifold topology). The filtration of a weighted graph is conducted in an analogous

manner (by eliminating nodes or edges in which the data is below a certain threshold

value). We note that filtration and EC computation operations are easy to conduct and

are scalable; this makes the use of the EC attractive in the analysis of large datasets.

Applications of Topology in MD Simulations

The EC of graphs and manifolds provides a topological descriptor that summarizes and

quantifies complex structures and patterns that arise in MD simulations. The EC can be
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used to conduct a wide variety of ML and data analysis tasks such as visualization, clus-

tering, regression, and classification. Here, we demonstrate that the EC of a molecular

system correlates strongly to emergent physical and chemical characteristics. As such,

we show that the EC can be used as an informative descriptor to predict emergent be-

havior; moreover, we show that such predictions can be conducted using simple linear

regression models (easier to build and analyze), which contrasts with existing approaches

based on CNNs.

The first set of simulations studied involve self-assembled monolayers (SAMs); here,

we use the EC to predict the hydration free energy of the 2D SAM surface. The sec-

ond set of simulations aims to predict the reactivity of a molecule based on the topol-

ogy of a solvent environment composed of water and a cosolvent. These examples were

specifically chosen because they were previously studied using advanced CNNs and thus

have a frame of reference.36,40 We also highlight that these molecular systems are solvent-

dominated; as such, their emergent properties are known to be influenced by the spatial

structure and correlations of the solvent environment.41,42 This information will be quan-

tified directly using the EC of graph and manifold representations of such environments.

Implementation details for both case studies can be found in the Supplementary In-

formation. All code and data needed to reproduce the results can be found in https:

//github.com/zavalab/ML/tree/master/MD_Euler.

Hydrophobicity on the Surface of Self-Assembled Monolayers

We study the surfaces of SAMs using an MD simulation dataset obtained from recent

work of Kelkar and co-workers.36 The SAM structures are built from a planar array of

alkanethiol ligands with hydroxyl, amine, or amide end groups. Each simulation consists

of a single SAM solvated by bulk water. A simulation snapshot can be found in Figure
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2a. A total of 50 different SAMs were created (22 having hydroxyl groups, 14 with amine

end groups, and 14 with amide end groups). The partial charges of the end groups are

modulated using a scaling factor that simulates changes in the polarity of the SAM sur-

face. Additional details on the MD simulation methodology and parameters are available

in the work of work of Kelkar and co-workers.36

Our goal is to study the topology of water in a thin interfacial layer located at the SAM

surface. To do so, we leverage the topological structures formed by water at the SAM-

water interface to directly predict the hydration free energy (HFE) of the SAM through

linear regression. The HFE is a property that captures surface hydrophobicity behavior

and is key in understanding protein adsorption.43,44 A common method for computing

the HFE in molecular simulations is indirect umbrella sampling (INDUS). This method is

accurate but it is computationally expensive, as it requires sampling of a low-probability

event.45 The dataset developed in previous work leveraged INDUS to create a set of SAM

simulations with computed HFE values. Such simulations were used to train and test a

CNN that directly predicts HFE from the SAM interfacial water structure (represented as

a 2D water density field). Here, we instead develop a linear regression model using the

EC of the SAM interfacial water structure.

To quantify the topology of the SAM structure, we subsample each SAM simulation

using non-overlapping sets of 800 simulation time steps (800 picoseconds). We then com-

pute a time-averaged EC value for the hydrogen bonding network Gww within the inter-

facial layer denoted as ⟨χ(Gww)⟩ for each subsample. We will represent the EC value for

graphs G as χ(G) to distinguish it from the EC values computed for manifolds (denoted as

χ). The presence (or absence) of hydrogen bonds between water molecules was computed

using the Luzar-Chandler criterion.46,47 For an interval of simulation time points t ∈ [a, b)

where b, a ∈ Z+ and b− a = 800, we compute the EC value of the hydrogen bonding net-
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work χ(Gww)t at each simulation time point t ∈ 0, 1, ..., 800. The time-averaged hydrogen

bonding EC value is computed as:

⟨χ(Gww)⟩ :=
1

(b− a)

b∑
t=a

χ(Gww)t. (3)

In other words, ⟨χ(Gww)⟩ captures the time-average topology of the hydrogen bonding

network Gww. The details outlining the practical computation of the EC for these simula-

tions can be found in the supporting information and code shared with the manuscript.

The selection of hydrogen bonding criterion can impact the computed EC value. How-

ever, time-averaged water density information is unaffected by this choice. Thus, incor-

porating both hydrogen bonding and density information will provide a data representa-

tion that is robust to particular choices of criterion.As such, we represent the SAM surface

as a 2D manifold M and treat the time-averaged water density at the interfacial layer as a

continuous function on the manifold f : M → R as shown in Figure 2. The manifolds are

constructed by binning water molecule positions at the interfacial layer in a 20× 20 grid,

where each grid point accounts for 0.1 nm2 area on the surface of a SAM over the period

of 800 simulation time steps. The accumulated bin data are then averaged to obtain a con-

tinuous water density function for our surface manifold M. This representation matches

the representation of Kelkar and co-workers used as input to a CNN to allow for direct

model comparison.36 We performed a manifold filtration to quantify spatial density fluc-

tuations in water at the SAM surface with an EC curve. We recall that the EC curve is the

set of paired filtration thresholds ki and EC values χi of the filtered sublevel sets Mki . The

filtration thresholds ki represent water densities given in units of molecules/nm2.

A visualization of the EC curve for a time-averaged water density field derived from

a SAM simulation (HFE = 33kBT ) is shown in Figure 2. We illustrate the topological
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changes in the manifold as we perform our filtration: M0.05 ⊆ M0.07 ⊆ M0.12 ⊆ M0.20.

We see in the first sublevel set M0.05 that connected components start to form. These are

a direct result of local minima (e.g., areas of low water density) near the SAM surface,

and result in a positive EC value. As the filtration threshold increases, there is an increase

in the number of connected components representing areas of low water density and an

increased EC value M0.07. As the filtration threshold increases, we begin to pass saddle

points in the density function where individual components merge, resulting in a single

connected component with many holes (representing local maxima of the water density)

and a corresponding negative EC value M0.12. The filtration then reaches a threshold in

which the topology of the sublevel set is equal to the topology of the original manifold

M0.20 = M. In this case, the original manifold M is a single connected component with

an EC value χ = 1. Details on the practical computation of the EC for sublevel sets can be

found in the supporting information and code.

Figure 3 illustrates the input for a regression model derived from subsets of a SAM

simulation (HFE = 33kBT as labeled by INDUS). Figure 3 also reveals that topological

representations are invariant to different types of deformation of the data.48 Specifically,

we see that both the hydrogen bond network and water density manifold topology varies

significantly over time, but their corresponding topologies (captured by ⟨χ(Gww)⟩ and

EC curves) are similar. This result is of practical relevance, because it shows that the EC

can be used to monitor the dynamics of topology (e.g., to determine when the system is

undergoing a topological transition or has reached a steady-state). For example, Figure 4

illustrates the topological convergence of χ(Gww) for a simulation of a SAM with hydroxy-

undecanethiol endgroups. The topology of the hydrogen bonding networks converges

after approximately 1500 picoseconds of simulation time; as such, this portion of the sim-

ulation is not included in the training/testing data.
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(a)

(b)

Figure 2: (a) Interfacial water density field derived from a SAM simulation. The 2D den-
sity field is represented as a manifold M with a continuous function f : M → R that
maps each manifold location to its corresponding water density value visualized here by
color (blue = low, red = high) and surface height. (b) The EC curve obtained from level
set filtration of the density field. The EC curve is created by thresholding the density field
function/manifold, creating multiple nested submanifolds Mki , and then computing the
EC of each submanifold. The EC curve is constructed from the paired values {ki, χi}. We
visualize the corresponding submanifolds as the density threshold increases from k0 = 0
to kn = 0.2.
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(a) Graph and Manifold Representations

(b) t ∈ [0, 800)

(c) t ∈ [800, 1600) (d) t ∈ [1600, 2400)

Figure 3: (a) Illustration of the graph and manifold data representations derived from
the SAM simulation shown in Figure 2 at HFE = 33kBT ,. (b),(c) and (d) Representative
hydrogen bond networks (graphs) and time-averaged density fields (manifolds) derived
from the interfacial water in SAM molecular simulations over different time frames of
the same simulation. They also contain the time-averaged graph EC ⟨χ(Gww)⟩ and the
EC curve created from a filtration of the associated density field. Each SAM simulation
is split into multiple subsets of a single simulation t ∈ [a, b), for which a corresponding
density field EC curve and time-averaged graph EC is computed. We note the stability
of both the time-averaged graph EC and the EC curve. The density fields and graphs are
visually (spatially) quite different, but the topological measures of the graphs and density
fields are almost identical throughout the simulation. This demonstrates the robustness
of these topological descriptors in capturing the underlying characteristics of molecular
simulations.
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Figure 4: Demonstration of topological convergence of the hydrogen bonding network
in a simulation of a SAM with hydroxy-undecanethiol endgroups. We illustrate both
the directly measured χ(Gww) and a smoothed value (rolling window average) to better
emphasize the trending of χ(Gww). There is a clear convergence of the hydrogen bonding
network found in the initial 1500 picoseconds of the simulation. This initial portion of the
simulation is not included in the training/testing datasets.

Before building a linear regression model that predicts HFE from the SAM structure,

we first determined if there was indeed a relationship between the topology of the SAM

interfacial water structure and the HFE. In Figure 5, we see that there is indeed a strong

correlation between the topology of the time-averaged water density field at the SAM sur-

face and its emergent HFE. Specifically, the local minima and maxima (i.e., critical points)

of the density change in both shape and magnitude as the HFE for the SAM is changed.

These topological changes are captured effectively using the EC curve. At low HFE val-

ues (e.g., HFE = 33kBT ) we see that there are many critical points with relatively low

magnitude; as HFE is increased (e.g., HFE = 100kBT ) we see fewer critical points but the

corresponding magnitude of these critical points is increased, which we see is reflected

directly in the EC curves.

We further highlight the relationship between the SAM topology and the HFE by per-

forming principal component analysis (PCA) on all 400 sampled EC curves derived from
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40 simulations with precomputed HFE values. The EC curve of each sample is repre-

sented as a vector xj ∈ Rm where m = 20 is our number of filtration thresholds and the

entries of xj are the EC values of the sublevel sets. Each vector is stacked into a matrix

[x1 x2 · · · xn]
T ∈ Rn×m. We apply a singular value decomposition to this matrix and vi-

sualize the data projected onto the two leading principal components; these components

capture the low-dimensional structure of the EC and show that this is highly correlated

with the HFE. These results confirm that the topology of the SAM affects the HFE and

that such topology can be captured using the EC; moreover, we can see that the topology

of the SAM changes continuously as we increase/decrease the HFE.

(a)

(b)

Figure 5: (a) EC curves for multiple density fields taken from simulations of SAMs with
increasing HFE values. The impact of increased HFE on the SAM interfacial water layer
is directly correlated with changes in the resulting EC curve. (b) Principal Component
Analysis (PCA) is conducted on the EC curves for each density field from the set of SAM
simulations. From (a) we see a continuous change in the EC curve that correlates with
the HFE of the given SAM, in (b) we capture this continuous change and visualize a data
structure that correlates directly with the HFE of the simulations through the first two
principal components.

We next develop a linear regression model by using the water density EC curves and

hydrogen bonding network EC values ⟨χ(Gww)⟩ as model inputs. The model chosen is a
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linear support vector machine (SVM) model taken from the LIBSVM library.49 We train the

linear model using a set of 40 simulations with precomputed HFE values via the INDUS

method (400 samples). Once the model has been trained, we test its prediction accuracy

on a completely separate set of 10 SAM simulations (100 subsampled points). Our goal

is to accurately predict the true HFE (computed via INDUS) for this separate set of sim-

ulations. The regression results for both model training and model testing are shown in

Figure 6. We see that the linear model is able to predict the HFE for the testing set of

simulations with little error (RMSE = 6.4 kBT ). Moreover, we have found that this model

improves the results of a previously-developed 2D-CNN (RMSE = 8.0 kBT ), and is similar

in performance to a 3D-CNN model (RMSE = 5.9 kBT ).36 The computations required to

both train and predict with the linear model are minimal compared to INDUS and to both

machine learning models. Thus, this topological approach can be used in the analysis of

high-throughput simulations or in screening for surfaces with optimal chemical or phys-

ical properties. We have also compared the results obtained using the EC with models

trained on water density profiles that capture fluctuations in water density as a function

of distance from the SAM surface. All details of this analysis are found in the supplemen-

tary information and code. The water density profile models have a large error (RMSE

= 20 kBT ). This confirms previous results that water density profiles are unable to char-

acterize surface hydrophobicity.50 This finding is also supported by existing results from

the areas of stochastic geometry and statistical thermodynamics, which demonstrate that

the EC can be used to distinguish molecular configurations and phase transitions that the

density profiles and radial distribution functions cannot distinguish.51,52

The linear prediction model uses topological information obtained from both graph

and manifold representations of the SAM. We have found that when either representa-

tion (density field or hydrogen bond network) is used independently for developing a

model, the resulting prediction RMSE values increase. Removing the graph EC ⟨χ(Gww)⟩
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increases the RMSE of the model to 7.7 kBT . Removing the manifold EC curve χ increases

the RMSE to 18 kBT . These results indicate that spatial fluctuations in water density play

a much larger role in characterizing hydration free energy, which is consistent with past

studies of water density fluctuations.36,44,45 Moreover, we have found that such models

lead to severe underprediction of HFE for amide-dodecanethiol simulations. This may be

explained by the tendency for amide end groups to form substantial hydrogen bonds with

other amide end groups rather than water, which is unique for the surfaces studied.53–55

This added complexity is captured effectively when combining topological information

from both graph and manifold representations and highlights how such representations

can provide complementary information.

Euler Characteristic Interpretability

An added benefit of using linear models and our topological characterization of MD sim-

ulation data is interpretability, which in the physical sciences is often as important as

prediction accuracy.56 Linear models provide a level of interpretability that is not acces-

sible when using more complex machine learning models, such as the previously-trained

CNN. For example, we can train a non-linear SVM using a radial basis function (RBF)

kernel on this same dataset. The RBF SVM model performs slightly worse on the testing

set than the linear SVM model (RMSE 6.9 kBT - details found in supplementary code).

Moreover, the non-linear SVM is no longer interpretable because the model coefficients

do not correspond directly to the data features (e.g., the EC curve).57 This issue is not

present in the application of linear models because the magnitude and sign of the model

coefficients correspond directly to the significance of a particular feature of the data. We

can interpret the trained linear model output F ∈ R (HFE) as the sum of the EC values

weighted by the model coefficients F =
∑

i ciχi + b⟨χ(Gww)⟩ + I . Here, ci ∈ R represent

the model coefficients for the input EC curve, b ∈ R represents the model coefficient for
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(a) Training. (b) Testing.

Figure 6: (a) Training data parity plot of predicted versus INDUS derived HFE. Lin-
ear regression is conducted using the corresponding EC curve and averaged graph EC
⟨χ(Gww)⟩ as inputs. The training data set is split into two portions, one for model train-
ing and the other for model validation. Predictions on the validation dataset are very
accurate and suggest the linear model can obtain high accuracy in HFE prediction (RMSE
= 5.1 kBT ). (b) Testing data parity plot of predicted versus INDUS derived HFE. The
testing data consists of a completely separate set of SAM simulations not used in model
training. For each simulation EC curves and ⟨χ(Gww)⟩ are measured. The trained linear
model is then used to predict the HFE for the separate set of SAM simulations. The results
demonstrate a high level of accuracy and low prediction error (RMSE = 6.4 kBT ), which
is comparable to validation set accuracy as expected. Error bars in both plots represent a
single standard deviation from the mean.
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the averaged graph EC, and I ∈ R is a constant value. Thus, a coefficient ci, b with high

magnitude suggests an area of the filtration that has significance in the prediction of HFE.

We explore this in an analysis of water density EC curves at both low HFE (33kBT ) and

high HFE (100kBT ). In Figure 7a and 8a, the solid (blue) line represents the EC values

during a filtration χi, and the dashed (red) line represents the model coefficients ci ∈ R

associated with the EC at each level of the filtration i.

To interpret the results of our linear regression model, we recall that each value of the

EC curve χi represents the alternating sum of the Betti numbers β0i and β1i. We recall that

β0i represents the number of connected components at filtration level i and β1i represents

the number of cycles (holes) at filtration level i. Thus, we can decompose the EC curve

(Figures 7a & 8a) into two curves that reflect the individual Betti numbers during the

filtration. These curves are known as Betti curves. The Betti curve for β0 is found in Figure

7b for the low HFE simulation and in Figure 8b for the high HFE simulation. Viewing

these individual curves provides a better understanding of how the linear model captures

and interprets the topological characteristics of the data. For the low HFE simulation we

see there is minimal weighting of β0 during the filtration, which will result in a low HFE

value prediction. For the high HFE sample, we see that the β0 values during the filtration

almost perfectly overlap with positive model coefficients. This will contribute to a high

HFE value prediction. We see a similar trend in the analysis of β1 (Figure 7c & 8c). For

low HFE we see a large positive weight of β1, this will result in a negative value in the

model output F (low HFE prediction) because the EC is an alternating sum. For the high

HFE sample we see a large negative weighting of β1, which will result in a positive value

in the model output (and a larger HFE prediction). Physically, these changes in topology

represent differences in the spatial distribution of water on the SAM surface. For a high

HFE sample, we observe alternating areas of high and low density, which represent cycles

β1 and connected components β0 that exist during a large portion of the filtration. For the
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(a) χ = β0 − β1 analysis

(b) β0 analysis

(c) β1 analysis

Figure 7: An analysis of the trained linear SVM model coefficients for a SAM surface with
low HFE (33kBT ). (a) Overlay of model coefficients with the EC curve. (b) Overlay of
model coefficients with the Betti curve representing β0 (connected components) during
the filtration. The model coefficients place almost no weight on the β0 peak which corre-
sponds with a low HFE prediction. (c) Overlay of model coefficients with the Betti curve
representing β1 (cycles) during the filtration. We observe a positive weighting of the β1

peak which will result in a large negative value (low HFE) in the model output because
the EC is an alternating sum of the Betti numbers. The shape of these curves is a direct
result of the homogeneity of the water density distribution on a low HFE surface.
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(a) χ = β0 − β1 analysis

(b) β0 analysis

(c) β1 analysis

Figure 8: An analysis of the trained linear SVM model coefficients for a SAM surface with
high HFE (100kBT ). (a) Overlay of model coefficients with the EC curve. (b) Overlay of
model coefficients with the Betti curve representing β0 (connected components) during
the filtration. The model coefficients place a large positive weight on the β0 peak which
corresponds with a high HFE prediction. (c) Overlay of model coefficients with the Betti
curve representing β1 (cycles) during the filtration. We observe a negative weighting of
the β1 peak which will result in a large positive value (high HFE) in the model output
because the EC is an alternating sum of the Betti numbers. The shape of these curves is
a direct result of the heterogeneity of the water density distribution on a high HFE SAM
surface. We see large fluctuations in the density on the SAM surface, which result in
connected components and holes that exist during a large portion of the filtration.24



simulation with low HFE, we observe water as being distributed homogeneously across

the SAM surface. This results in small spatial fluctuations in water density on the surface

which induce cycles and connected components that appear during a small portion of the

filtration. This further illustrates how the EC curve can allow a simple linear model to

identify complex changes in molecular density distribution in a simulation.

Solvent-Mediated Reactivity in Acid-Catalyzed Reactions

We now use the EC for understanding and predicting solvent-mediated reactivity of

acid-catalyzed reactions based on the topology of water and cosolvent mixtures. Pre-

vious work has demonstrated that varying the cosolvent type and concentration in a

cosolvent/water mixture impacts the relative reactivity of acid-catalyzed reactions for

biomass conversion.37,40 Walker and co-workers analyzed the influence of solvation to-

wards reactivity by studying the structure of water in molecular simulations of a single

reactant molecule in different cosolvent/water mixtures (snapshot shown in Figure 9).

We demonstrate that the EC can be used to predict the solvent-mediated changes in reac-

tivity as the concentration and type of cosolvent are varied, a task that previously used 3D

CNNs.40 The organic, polar aprotic cosolvents modeled in this study are dioxane (DIO),

γ-valerolactone (GVL), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), acetonitrile

(ACN), and acetone (ACE). Biomass-derived reactants modeled in this study are ethyl

tert-butyl ether (ETBE), tert-butanol (TBA), cellobiose (CEL), glucose (GLU), levoglucosan

(LGA), 1,2-propanediol (PDO), fructose (FRU), and xylitol (XYL); further details about the

dataset can be found in the supporting information and work of Chew and co-workers.40

We again represent the MD simulation data as both graphs and manifolds and assess

whether topological descriptors alone can predict solvent-mediated reaction rates (Figure

9). We propose this method of analysis because there is an established history of water

enriched structures playing an important role in understanding and predicting reactiv-
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ity.37,58–60 These structures can be quantified through the EC and EC filtrations and used

directly in prediction. The simulations contain a single reactant molecule centered in a 4

nm3 cube surrounded by water and cosolvent in specified weight percentages. We sub-

sample the 2 ns simulations in sets of 200 picoseconds (i.e. 20 frames) and produce both

graph (hydrogen bonding) and manifold (water density) representations. To understand

the topology of the hydrogen bonding networks in the simulations, we consider the EC

for the water-water hydrogen bonding network χ(Gww), the cosolvent-reactant hydro-

gen bonding network χ(Gcr), and the water-reactant hydrogen bonding network χ(Gwr).

Hydrogen bonds in each case were computed using the Luzar-Chandler criterion. For

each of these networks, we construct a time-averaged EC value for the subsampled sim-

ulations ⟨χ(Gww)⟩, ⟨χ(Gcr)⟩, ⟨χ(Gwr)⟩. The manifold M for this system is now the entire

simulation space (versus the surface of the SAMs described previously), which consists

of a 3D cube with a continuous function f : M → R representing the time-averaged den-

sity of water in each simulation subsample. We ignore the structure of the corresponding

cosolvent topology because it is directly related to the water topology (high density water

implies low-density cosolvent). We construct our manifold and function representation

by placing a 20× 20× 20 grid centered on the reactant molecule. We then accumulate and

bin water positions within each grid point (each representing a 0.2 nm3 volume) over the

200 picoseconds of simulation time. The accumulated data is then averaged over the time

frame and represents a continuous density function over the simulation space. The EC

curves in Figure 9 look slightly different to those for our previous 2D system. This system,

now in 3D, has a 3rd Betti number (β2), which quantifies the number of voids/cavities that

appear during filtration. These voids are associated with pockets of high water density

(e.g., local maxima) within our 3D manifold and result in a second peak in the EC curve

χ = β0 − β1 + β2. Details for the practical computation of the EC for these 3D manifolds

can be found in the supporting information and code.
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(a) Graph and Manifold Representations

(b) t ∈ [0, 200)

(c) t ∈ [200, 400) (d) t ∈ [400, 600)

Figure 9: (a) Illustration of the graph and manifold data representations derived from the
acid-catalyzed reaction simulations. (b),(c), and (d) Representative water-water hydro-
gen bond networks (graphs) and time-averaged density fields (manifolds) derived from
the water in the molecular simulations over different time frames. They also contain the
time-averaged graph EC ⟨χ(Gww)⟩ and the EC curve created from a filtration of the water
density field. The density fields and graphs are visually different, but the EC values are
similar throughout the simulation. These results demonstrate the robustness of topologi-
cal descriptors.
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Figure 9 provides another demonstration of the robustness of these topological meth-

ods. We illustrate the changes in the water density and hydrogen bonding network

⟨χ(Gww)⟩ during the course of a single MD simulation. Visually, these graphs and mani-

fold functions appear to be distinct, but when quantified and compared through the EC

they are almost identical (indicating that they are topologically close). From the ECs of

Figure 9, for instance, it appears that the system quickly reaches a topological steady-state

and thus the MD simulation can be terminated early to reduce computational time.

We developed a linear regression model that takes as input the corresponding EC

curves and hydrogen bonding EC values ⟨χ(Gww)⟩, ⟨χ(Gcr)⟩, ⟨χ(Gwr)⟩ and outputs the

experimentally determined change in reaction rate σ = log10(korg/kH2O) where korg rep-

resents the reaction rate in a cosolvent/water mixture and kH2O represents the reaction

rate in pure water.37 We train the linear regression model on a set of 76 cosolvent and

reactant combinations (760 subsampled points) and test our model on a set of 32 differ-

ent reactant and solvent combinations (320 subsampled points), which is the same data

training/testing split used to evaluate the CNN developed in the work of Chew and co-

workers.40 Figure 10 lists the different potential combinations of reactant, cosolvent, and

cosolvent/water ratios that are used in both training and testing. Figure 10 also shows

the accuracy of the linear model in both training (RMSE = 0.39) and testing (RMSE = 0.42),

from which we can conclude that the simple linear model is able to accurately predict the

change in reactivity for these chemical systems. We can compare these results directly to

the work of Chew and co-workers, where the authors used 3D CNNs that contain up to

∼172,417 parameters, compared to the 23 parameters used in our linear model. The topo-

logical approach achieves accuracy superior to the trained 3D CNN on the same testing

set (RMSE = 0.48). We also note significant improvements in the computational resources

needed for training the models. Our linear model takes approximately 2 minutes to train

(this time includes computation of ECs), while the 3D CNN can take up to 2 hours. Fur-
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(a) Training Data Regression. (b) Testing Data Regression.
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(c) Structures of reactants and co-solvents.

Figure 10: (a) Training data parity plot of predicted versus experimental σ (change in re-
action rate). The EC curve and averaged graph EC values ⟨χ(Gww)⟩, ⟨χ(Gcr)⟩, ⟨χ(Gwr)⟩ are
used as inputs to a linear model. Predictions on the training dataset are accurate (RMSE =
0.39) and suggest a linear model could be used to obtain high accuracy in the prediction of
reactivity trends (σ). (b) Testing data parity plot of predicted versus experimental σ. An
unseen test set of acid-catalyzed reaction simulations are created for different cosolvents
and solutes. From this data, the corresponding EC curve and graph EC values are com-
puted. The trained linear model is used to predict the experimentally verified reactivity
increase for the separate set of acid-catalyzed reaction simulations. The results demon-
strate a high level of test set accuracy with low prediction error (RMSE = 0.42). Error bars
in both plots represent a single standard deviation from the mean.
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thermore, our linear model does not require a search for optimal hyper-parameters or 3D

CNN architecture, further reducing the needed computational resources. These results

highlight the desirable scalability of topological characterizations based on the EC.

As noted previously, the linear regression model trained here has an added benefit of

interpretability. Figure 11 contains an analysis of simulations of fructose in varying cosol-

vent/water mixtures, all at the same cosolvent/water weight ratio (90%/10%). Figure 11

illustrates the differences in water topology that occurs when the chemistry of the cosol-

vent is altered. We focus on two particular cosolvents: THF and DMSO. For fructose, the

change in reaction rate is highest when in a DMSO/water mixture (σ = 1.7) and lowest

when in a THF/water mixture (σ = 0.8). We note that this corresponds with large changes

in the topology of the water density. In THF, water is agglomerated in large clusters near

the reactant, which reduces the total number of topological features in the water density

function (e.g., connected component, holes, voids) and dampens the magnitude of the

peaks and valleys in the EC curve, which is consistent with the findings of Chew and

co-workers.61 The sublevel sets at points in the filtration are also illustrated (Figure 11),

further confirming this result. The opposite holds true for water in DMSO, here we see a

larger number of high-density and low-density areas on our manifold increasing the peak

and valley magnitude of the EC curve. This indicates that DMSO is interrupting the inter-

actions between water molecules and reducing the total amount of water molecules near

fructose. This behavior can increase selectivity of the acid-catalyzed reaction of fructose,

where the shielding of subsequent products (e.g., 5-hydroxymethylfurfural) inhibits the

formation of undesired products (e.g., levulinic acid) as shown in the findings by Mushrif

and co-workers.58

30



Figure 11: EC curves for fructose solvated in different cosolvent/water mixtures along
with the representative submanifolds during various points in the filtration. Each of the
EC curves are computed with a 90 wt% cosolvent, 10 wt% water solution. Many of the
simulations (ACN, DIO, GVL) behave similarly from a topological perspective, and each
have a similar impact on the reactivity of fructose. The EC curves for THF and DMSO
differ from the EC curves of the previously mentioned solvents. DMSO interrupts water-
water interactions resulting in a larger number of high and low density areas, which man-
ifests in an increased number of connected components, holes, and voids in the density
field captured by the EC curve. The opposite occurs with THF where we see fewer, but
larger, clusters of high and low density water; this suggests that THF increases the inter-
actions between water molecules and causes larger clusters of water to form.

31



Discussion and Future Work

Manifold and graph representations of molecular simulation data provide a flexible av-

enue for capturing both discrete and continuous information sources. In this work, we

analyze the topology associated with simulations of self-assembled monolayers and acid-

catalyzed reaction systems. We characterize these topological representations with the

Euler characteristic curve, which is a simple and robust data descriptor that can be di-

rectly integrated into data analysis tasks such as dimensionality reduction or regression.

We show that this method results in improvements in computational efficiency, gener-

alizability, and simplicity which can be leveraged to reduce the complexity of models

needed for analysis of molecular simulation data (e.g., 3D convolutional neural networks

are reduced to linear regression models). These improvements also reduce the need for

large labeled datasets needed for ML model training and provide physical intuition. This

provides opportunities to improve the information gained from the analysis of high-

throughput or large-scale simulation data, which can be used in screening for new ma-

terials and chemistry or in optimizing physical and chemical characteristics of existing

systems.

The methods developed in this work can be extend to other scientific domains because

manifolds and graphs can represent many different materials and chemistry simulation

datasets, permitting analysis via topology and the Euler characteristic. For example, den-

sity functional theory (DFT) calculations can provide direct graphical representations of

molecular bonds.62 The topology of these molecular graphs provides insight into phys-

ical and chemical characteristics.62–64 Topology and the EC allow us to summarize these

complex molecular graphs for tasks such as high-throughput screening.28,65 For example,

topological analysis can improve the high-throughput screening of nanoporous materi-

als used for gas storage and separation, like zeolites28,66 and metal organic frameworks

(MOFs).67 DFT and molecular dynamics simulations also provide powerful manifold rep-
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resentations of data through molecular surfaces.68 Molecular surfaces are one way to cap-

ture complex interactions between molecules or molecules and their environment.68–70

These molecular surfaces are manifolds with associated functions. Thus, topological

methods can quantify and summarize molecular surface data. Topology also provides

complementary information that is not captured in statistical summaries (e.g., sigma pro-

files).71 We envision that such topological analysis can thus a wide range of systems and

processes involving analysis of molecular surfaces, including in studies of protein folding

and docking, nanoparticles, membranes, pharmaceuticals, and catalysts.34,72–75

In future work, we will address some of the existing challenges faced by the Euler

characteristic in its application to the study of physical and chemical systems. For ex-

ample, we aim to form deeper relationships between the Euler characteristic and the

thermodynamics of chemical systems through connections between topology and geom-

etry that are found in stochastic geometry.52,76,77 We will also further explore statistical

frameworks such as hypothesis testing in the analysis of the Euler characteristic, similar

to those found in the study of random fields.31,78 This information will aid in provid-

ing comparisons between the Euler characteristic and other topological measures such as

those found in persistence homology, and when either method can be efficiently applied.

These advancements will continue to establish the Euler characteristic as a physically

meaningful measure for the study of other chemical systems such as colloidal polymers,

gels, surfactants, multi-phase systems, and proteins that demonstrate complex topology

and geometry.79–83
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