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Abstract

Molecular Dynamics simulations have been employed to investigate the effect of

polydispersity on the aggregation of asphaltene. To make the large combinatorial

space of possible asphaltene blends accessible to a systematic study via simulation, an

upfront unsupervised machine learning approach (clustering) was employed to identify

a reduced set of model molecules representative of the diversity of asphaltene. For

these molecules, monodisperse asphaltene simulations have shown a broad range of

aggregation behavior, driven by their structural features: size of the aromatic core,
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length of the aliphatic chains and presence of heteroatoms. Then, the combination of

these model molecules in a series of polydisperse mixtures have highlighted the complex

and diverse effects of polydispersity on the aggregation process of asphaltene, which

yielded both antagonistic, synergistic and seed effects. These findings illustrate the

necessity of accounting for polydispersity when studying the asphaltene aggregation

process and have permitted to establish a robust protocol for the in-silico evaluation

of the performance of asphaltene inhibitors, as illustrated for the case of a nonylphenol

resin.

1 Introduction

As a consequence of global governmental policies, the increasing popularity of electric

vehicles and the momentum for hydrogen as a clean source of energy, the consumption of

gasoline and other fuels is set to steadily decline. On the other hand, the proportion of

the average oil barrel dedicated to petrochemicals will grow up to an estimated 20% by

2040.1 Therefore, ensuring a sustainable production of fossil resources will continue to be an

objective of paramount importance. A predominant challenge for the Oil & Gas industry

is the deposition of asphaltene,2 a class of compounds defined as the fraction of crude oil

that is soluble in toluene but not in n-heptane.3 Asphaltenes, considered to be among the

heaviest and more polar components of crude oils, are generally described as a very poly-

disperse class of organic solids made of a variety of polyaromatic structures with aliphatic

chains or heteroatoms, either organic or metallic.2 Their interaction with water, clay and

between themselves can result in critical issues in oil fields. Overall, they can precipitate

in the reservoir and plug production and transportation flowlines, risking economic loss due

to flow interruption and environmental damage.4 An efficient and economical mitigation

strategy consist of injecting chemical additives, referred to as asphaltene inhibitors, to sta-

bilize asphaltene in crude oil. Hence, the development of these additives is of high industrial

relevance. They are generally surfactants or polymers,5–8 but the potential of more exotic
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chemistries, such as amphiphilic macromolecules9 or deep eutectic solvents10 (a class of prod-

ucts formed by the hydrogen bonding between cheap and safe components, e.g. an amine

and a carboxylic acid, which represents an alternative to the expensive traditional ionic liq-

uids) has also been evaluated. The development of efficient asphaltene inhibitors is often

hindered because of the oilfield dependence of asphaltene stability and aggregation behavior.

Therefore, it seems critical to understand and rationalize the underlying mechanisms of the

asphaltene aggregation process to better address its inhibition.

After decades of research, two main interpretations of the asphaltene aggregation pro-

cess are usually presented. On the one hand, the ”Yen-Mullins” model argues a hierarchical

description in which asphaltenes are predicted to form dense nanoaggregates of less than

10 molecules, driven by interactions between aromatic centers, which then aggregate less

strongly into larger clusters.11,12 Such macroaggregates end up being too heavy and produce

solid deposits on the pipeline wall. On the other hand, as the ”Yen-Mullins” model fails

to predict or reconcile a series of experimental observations, such as the complexity of as-

phaltene molecular structure or the heterogeneous distribution of nanoaggregates sizes, Gray

et al. 13 proposed an alternate supramolecular model to better capture the high complexity

of the aggregation process. In this paradigm, aromatic π−π stacking is not considered to be

the dominant aggregation driving force but a contributing factor alongside other interactions

relevant to petroleum such as acid-base interactions, hydrogen bonding, metal coordination

complexes and interactions between cycloalkyl and alkyl groups.14 In this model, strongly

bound nanoaggregates can continue to grow beyond 10 asphaltenes. As encouraged in the

research article from Gray et al.,13 this paradigm has been put to the test both experimen-

tally and computationally over the last decade.

Historically, asphaltene research has been mostly experimentally led,15 but, in the context

of the global digital transition, there is undoubtedly a momentum for in-silico approaches,

thanks to their contributions to the understanding and the rationalization of complex chem-

ical and physical processes, as well as their relative affordability in comparison to laboratory
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experiments. Seminal works such as the ones by Headen et al.16,17 and Seghdi et al.18 have

established robust molecular dynamics (MD) simulations protocols capable of providing valu-

able insights into the first stage of the asphaltene aggregation process. More recently, via

a series of MD studies19–24 Santos Silva et al. have worked on decoding the complex rela-

tionships between asphaltene molecular structures and their aggregation, studying the role

of heteroatoms positioned either on the core or on the lateral chains,19,20 the role of met-

alloporphyrins and demulsifier molecules,21,24 and the effect of variations in the size of the

aromatic core and lateral chains length.22 Overall, they have shown that the formation of

nanoaggregates depends on the size of the conjugated core and on the possible presence of

an H-bonds forming polar group, whereas macroaggregation is determined by the length of

the lateral chains and their possible terminal polar group.23 Given that their observations

lay outside the domain of the ”Yen-Mullins” model, they consequently argued that this col-

loidal model, even though it is capable of describing the aggregation process of standard

asphaltenes, might be a particular case of the more general supramolecular model, as pro-

posed by Gray et al.,13 which is better suited to address the complete chemical diversity

of asphaltenes. Furthermore, in a few studies, MD simulations have also been deployed to

investigate the inhibitor action of chemical additives such as dodecylbenzenesulfonic acid,25

limonene,17 n-octylphenol,26–28 and a series of polymers (two succinimide-based structures

and one maleic anhydride),29 on asphaltene aggregation. Finally, Headen et al. have demon-

strated that MD aggregation simulations for monodisperse asphaltene systems qualitatively

reproduce neutron total scattering data.30

However, two types of limitations have been identified for MD simulations of asphal-

tene:31,32 i) the size and time scales limitations of MD simulations restrain this approach to

the first stage of aggregation, and coarse-grained simulations would be necessary to simu-

late the second and later stages of assembly (e.g., flocculation), and ii) polydispersity in the

asphaltene molecular structures is of great importance for the prediction of aggregation struc-

tures and should be included in any simulation. Indeed, in order to thoroughly investigate
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the effect of functional groups on the aggregation process, many previous works—with the

exception of Javanbakht et al.32—had to be limited to series of asphaltene model molecules

with similar aromatic cores18–20,22,33 to prevent the complexity of the systems from hindering

the decoding of interaction mechanisms that underlie such process. To provide a different

perspective on the asphaltene aggregation process, one objective of this work is to account

for the global asphaltene polydispersity.

The molecular structure of asphaltene has been a long standing debate and important

focus during decades of investigation, thus over time their molecular weight has been esti-

mated at values spanning six orders of magnitude.34 The development of asphaltene model

molecules, which is not the focus of this work, designed for performing MD simulations, has

been addressed and reviewed in a series of studies.31,35–38 In recent years, two experimental

techniques have provided insights of unprecedented quality on the molecular structures of

asphaltenes. On the one hand, atomic force microscopy studies have permitted to visualize

more than 100 asphaltene motifs,39 confirming the presence of structures made of polynuclear

aromatic hydrocarbons with alkyl side-chains, usually referred to as the ”island” or ”con-

tinental” model. On the other hand, extrographic fractionation and ultrahigh-resolution

mass spectrometry studies advocate that in petroleum island-type asphaltenes coexist with

less generally accepted ”archipelago” motifs, in which multiple aromatic cores are bridged

together and include multiple functionalities.40,41 Such works argue that while the island

motifs are readily accessible, asphaltene purification is required to detect and characterize

archipelago asphaltenes.

In this work, we have performed a series of MD simulations to investigate the aggrega-

tion of different systems of asphaltene. After identifying, via unsupervised machine learning

(ML) approaches, a set of asphaltenes that are representative of the diversity of the catalogue

of Law et al.,38 we have have focused first on the aggregation of monodisperse asphaltene

systems. Then, the selected model molecules have been combined to study the aggregation

of polydisperse asphaltene mixtures. Finally, the most aggregating polydisperse mixture
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of asphaltene has been selected as test case to study the action of a nonylphenol resin as-

phaltene inhibitor at a reasonably low concentration of 1 wt%. In what follows, the results

are reported and discussed while the details of the computational methods employed are

presented in the final section.

2 Results and discussions

2.1 Identification of representative asphaltene models

The asphaltene molecular models used in this work have been selected from a catalogue

of 100 plausible molecular models designed for MD simulations of asphaltenes (89 models)

and resins (11 models) that comprises both island and archipelago motifs.38 To generate

these models, the quantitative molecular representation approach implemented by Boek

et al.42 had been applied to elemental analysis and 1H–13C nuclear magnetic resonance

spectroscopy experimental data.38 Furthermore, as shown by Law et al.,38 their catalogue of

molecules reasonably covers the same chemical space as previous asphaltene models collected

from an in-depth literature review. Simulating all 89 asphaltene molecules and multiple

combinations of these is currently beyond the reach of affordable MD simulations. Therefore,

identifying representative asphaltene models out of this catalogue is a way of accounting for

polydispersity at a reasonable cost. After digitalization of the catalogue of molecules,38 an

unsupervised machine learning (ML) strategy relying on unsupervised clustering, detailed in

section 4.1, has been implemented to identify the 6 model molecules displayed in Figure 1.

These molecules are representative of the large diversity of asphaltene structures, with 4

island and 2 archipelago asphaltenes. In particular the island models have very different

structural features: A3 has long side-chains, A54 has many heterocycles and A29 is very

bulky. The detailed composition of each cluster is given in the Supporting Information.
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Figure 1: 2D representations of the representative asphaltene model molecules selected after
the cluster analysis. The molecule name is consistent with the original work from Law et
al.,38 and cluster labels and colors are consistent with Figure 8. No molecule from cluster
#3 has been selected as they are resins.
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2.2 Monodisperse asphaltene systems

The aggregation of representative asphaltene model molecules from Figure 1 has been

studied by a series of MD simulations in toluene and heptane. The detail of the set-up

is given in section 4.2. To investigate the trade-off between convergence and simulation

cost, monodisperse asphaltene simulations with 40, 100, and 200 asphaltene molecules at a

concentration of 7 wt % were performed. The aggregation state of asphaltenic systems is

monitored consistently with previous works: the series of observables defined by Headen et

al.31 have been implemented in a homemade python script using the package MDAnalysis

version 2.043 and are defined in section 4.3. The aggregation number, gn, which corresponds

to the number of molecules per aggregate, also referred to as clusters, permits to monitor

the equilibrium state of the system while estimating the size of a cluster of asphaltenes. In

Figure 2, the evolution of gn during the 240ns simulation of 100 molecules of model A29 in

heptane is represented along with 5ns and 20ns moving averages to guide the eye.

Figure 2: Aggregation number, i.e., average asphaltene cluster size from the simulation of
100 molecules of asphaltene A29 in heptane. 5ns and 20ns moving averages are used to filter
short term fluctuations of the aggregation dynamics.

For all other monodisperse simulations performed in this study, the evolution of gn is

displayed in the Supporting Information Figure S5 to Figure S9, and Table 1 reports the

final values of the 20ns average window of the aggregation number, thus filtered from short
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time oscillations. Additionally, intermediate values for the same observable after 120ns are

provided to evidence the necessity of extending these simulations up to 240ns. As always

in molecular modelling, identifying the reasonable system size and time scale to simulate is

crucial to balance the trade-off between simulation cost and accuracy. In recent studies, i)

Headen et al.31 have performed simulations of 27 asphaltene molecules during 80ns (even

tough they occasionally extended up to 160ns and 500ns, ii) with the same model molecules

Ghamartale et al.27 simulated 50 molecules of asphaltene during 120ns, and iii) Villegas et

al.,33 who focused on the aggregation of a subfraction of asphaltene in toluene, showed by

comparison with simulations of system sizes up to 160 asphaltene molecules that in their

case simulating 20 asphaltene molecules during 120ns already yielded converged results.

For the model molecules studied in this work, it appears that simulating systems of 100

asphaltenes during 240ns, a system size and simulation time that is well in the top tier of

the current state-of-the-art, is the best compromise between cost and accuracy. Indeed, as

shown in Table 1 and in the Supporting Information (Figure S7 and Figure S8), with 100

model molecules finite size effects are only observed for A29 in heptane, which arrives at full

segregation within 240ns (aggregate size of 100 molecules in Figure 2), whereas aggregate

size does not reach 200 when 200 asphaltenes are in the system. However, even at the largest

system size studied (200 asphaltenes), aggregation is clearly much stronger with A29 than

any other model asphaltene, which is already well captured with 100 asphaltene molecules.

When using only 40 asphaltene molecules, finite size effects are also observed with molecules

A3, A54 and A85 in heptane. Although very insightful, the simulations performed with

200 asphaltene molecules are currently still too expensive (for instance up to 621,082 atoms

for A3 in heptane) to be performed on a regular basis and must be reserved to case-by-

case studies. Additionally, when the aggregation behavior of a system is uncertain, as for

example with 40 molecules of A85 in heptane (see the Supporting Information Figure S6),

extending the simulation time further than 240ns can provide more trustworthy insights. In

what follows, we focus our analysis and comments on simulations of 240ns performed with
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100 asphaltene molecules. While these system sizes and simulation time scales are accessible

on High Performance Computer facilities, though costly over an entire study, it is worth

mentioning some initiatives that have been pushing the system size and time scale limits.

On the side of the simulation time scale, Glova et al.44 performed simulations of 50 asphaltene

molecules during 5µs to identify the best partial charge method, namely AM1-BCC, to use

in combination with the general AMBER force field, whereas on the system size aspect,

Javanbakht et al.32 studied the aggregation of polydisperse asphaltene mixtures of size up to

1005 model molecules during 200ns and concluded that, under their simulation conditions,

375 asphaltene molecules were enough to capture all possible nanoaggregate shapes.

Table 1: Values of the 20ns average window of the aggregation number of all monodisperse
simulations performed in this study after half of the MD production, g120n at 120ns, and at
the end of the simulations, g240n at 240ns.

40 asph. 100 asph. 200 asph.

asph. solvent g120n g240n g120n g240n g120n g240n

A3 toluene 10.2 ± 0.9 7.6 ± 0.5 7.6 ± 0.2 8.3 ± 0.2 7.1 ± 0.1 6.7 ± 0.3
A3 heptane 20.6 ± 0.0 40.0 ± 0.0 12.6 ± 0.6 28.1 ± 1.7 12.0 ± 0.1 28.2 ± 1.5
A29 toluene 40.0 ± 0.3 29.2 ± 3.7 16.9 ± 0.7 60.2 ± 2.8 14.3 ± 0.2 40.8 ± 0.7
A29 heptane 22.1 ± 4.6 40.0 ± 0.0 45.6 ± 4.9 100.0 ± 0.0 37.9 ± 4.5 66.9 ± 0.3
A54 toluene 4.6 ± 0.1 4.0 ± 0.1 4.6 ± 0.1 5.3 ± 0.1 / /
A54 heptane 15.2 ± 0.9 19.8 ± 1.3 16.5 ± 0.6 23.8 ± 1.4 / /
A63 toluene 3.9 ± 0.1 3.7 ± 0.1 3.8 ± 0.1 3.9 ± 0.1 3.8 ± 0.0 3.5 ± 0.0
A63 heptane 5.4 ± 0.2 4.9 ± 0.2 6.4 ± 0.2 6.8 ± 02 5.4 ± 0.1 6.4 ± 0.1
A80 toluene 3.3 ± 0.2 3.1 ± 0.1 3.1 ± 0.1 3.4 ± 0.1 / /
A80 heptane 6.1 ± 0.2 8.7 ± 0.8 10.2 ± 0.4 14.0 ± 0.4 / /
A85 toluene 3.4 ± 0.1 3.7 ± 0.2 3.4 ± 0.2 3.5 ± 0.1 / /
A85 heptane 7.8 ± 1.0 23.3 ± 4.2 10.0 ± 0.2 13.7 ± 1.0 / /

Further than the average number of asphaltene molecule per cluster, the size of these

clusters can also be characterized via their radius of gyration, Rg, while an estimate of their

density and their relative shape anisotropy κ2, which takes values between 0 for a spherical

cluster and 1 for a linear chain, provide information relative to their shape. Details of the

implementation of these metrics are presented in section 4.3. Besides, as these observables

have been defined to charaterize the equilibrated state of the asphaltenic systems that were

simulated, we have focused on the last 40ns of each simulation in order to compare what we
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consider equilibrated asphaltenic systems.

Table 2: Summary of the monodispere simulations performed with 100 asphaltene molecules.
For the aggregation number, g240n , we report the 20ns average window at the end of the
simulation. For the radius of gyration, Rg (in Å), the estimated density and the relative
shape anisotrpy, κ2, we report the average value over the last 40ns of the simulations.

asph. solvent g240n av. Rg av. density av. κ2

A3 toluene 8.3 ± 0.2 14.5 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
A3 heptane 28.1 ± 1.7 19.6 ± 2.3 0.4 ± 0.0 0.1 ± 0.0
A29 toluene 60.2 ± 2.8 30.0 ± 4.0 0.3 ± 0.0 0.2 ± 0.1
A29 heptane 100.0 ± 0.0 35.0 ± 0.3 0.4 ± 0.0 0.2 ± 0.0
A54 toluene 5.3 ± 0.1 10.3 ± 0.6 0.5 ± 0.0 0.2 ± 0.0
A54 heptane 23.8 ± 1.4 18.2 ± 1.6 0.4 ± 0.0 0.3 ± 0.0
A63 toluene 3.9 ± 0.1 11.6 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
A63 heptane 6.8 ± 0.2 12.6 ± 0.8 0.4 ± 0.0 0.2 ± 0.0
A80 toluene 3.4 ± 0.1 15.6 ± 1.1 0.2 ± 0.0 0.3 ± 0.0
A80 heptane 14.0 ± 0.4 17.4 ± 1.6 0.3 ± 0.0 0.2 ± 0.0
A85 toluene 3.5 ± 0.1 13.1 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
A85 heptane 13.7 ± 1.0 15.8 ± 1.6 0.3 ± 0.0 0.2 ± 0.0

Along with the aggregation number, the different observables displayed in Figure 3,

accumulated during the last 40ns of a simulation with 100 asphaltenes A29, permit to analyze

the aggregation of the different monodisperse systems. Figures for all other simulations are

available in the Supporting Information Figure S10 to Figure S18 and results (average values

of radius of gyration, estimated density and shape anisotropy) with 100 asphaltene model

molecules are summarized in Table 2 (see Supporting Information Table S3 and Table S4 for

equivalent summaries for simulations with 40 and 200 asphaltene molecules, respectively).

As could be expected, in toluene the dispersion of the model molecules studied in this work

is generally very stable. For simulations with 100 asphaltenes, aggregation numbers larger

than 10 are only obtained for one exception: molecule A29 (see Table 1 and Figure S7).

A29 is also very clearly the most strongly aggregating molecule in heptane. In heptane,

Figure 2 shows different stages of aggregation of A29, with 3 plateaus around gn = 33,

gn = 50 and gn = 100, the later corresponding to a complete segregation of the asphaltenes

from the solvent. As observed in other simulations,18,23 the aggregation process of this

system can be described hierarchically. Initially, in the stage that Sedghi et al.18 named
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Figure 3: Properties of the asphaltene clusters from simulations of 100 molecules of A29
in toluene and heptane. Top panel: distributions of the cluster radius of gyration. Middle
panel: distribution of the estimated cluster density. Bottom panel: distributions of the
cluster relative shape anisotropy.
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nanoaggregation, the size of the aggregates smoothly increases up to gn values around 15-17

at 40ns, which is larger than the definition of the Yen-Mullins model.11,12 Then, between

40ns and 120ns, gn starts exhibiting a step-wise increase characteristic of the beginning of a

clustering stage, in which aggregation occurs between asphaltene clusters. As the simulation

time increases, gn steps increase, illustrating the merger into asphaltene clusters of increasing

size until the event at 180ns that results in the combination of the two last remaining

clusters. In heptane, the asphaltene model molecules can be classified in two groups: i)

the stable A63, A80 and A85 that do not aggregate and ii) the unstable A3, A29 and A54

that aggregate. The relative aggregation ranking of these systems is consistent with previous

studies decoding the relationship between structure of the asphaltenes and aggregation.18,23,31

Indeed, as nanoaggregation has been shown to primarily depend on the size of the aromatic

core of asphaltenes, it is to be expected that A29 reaches the highest level of aggregation in

this study. Additionally, A29 contains polar aliphatic chains with sulfur heteroatoms that,

in spite of their length, contribute favorably to macroaggregation. A29 is followed by A3,

which also possess long polar aliphatic chains, and A54, which is made of many heterocycles

and short apolar aliphatic chains.

Figure 4: Snapshots from monodisperse simulations of 100 model molecules in heptane for A3
(left), A29 (center), A54 (right) after 220ns. Carbon atoms are represented in gray, nitrogen
atoms in blue, sulfur atoms in yellow and hydrogen atoms in white. Full page images for
each system are available in Supporting Information Figure S21 to Figure S23.
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Over the 240ns simulations, asphaltene aggregates of gn ≥ 20 are formed in these three

unstable systems. To illustrate their equilibrium states, snapshots of the simulations after

220ns are displayed in Figure 4 and some full page zooms are provided in the Supporting

Information Figure S21 to Figure S23. Even tough A3 long polar aliphatic chains do not

seem to limit aggregation in comparison with A54, they govern the packing of the aggre-

gates. Indeed, the aromatic cores of A3 and A54 are of similar size, but A3 exhibits ordered

parallel stacks of 5 to 10 molecules, sometimes referred as ”pancakes stacking”, whereas A54

aggregates in a more disordered manner with numerous T-shape interactions between paral-

lel stacks of smaller size, typically 2 to 5 molecules. It seems that even though T-shape π−π

interactions occur for A3, they are not as frequent as with A54. This can be attributed to a

combination of factors: the heterocycles of A54 strengthen both parallel and T-shape π − π

interactions between aromatic cores, while the long aliphatic chains of A3 hinder T-shape

π− π interactions. In the case of A29, in spite of the limitations of the static 2-dimensional

view, we clearly see a single aggregate of 100 molecules, whereas many clusters are present

in the two other systems. Consistently with its larger aggregation number, A29 in heptane

also yields aggregates with a much larger radius of gyration: average Rg = 35.0 ± 0.3 Å in

comparison with Rg = 19.6 ± 2.3 Å, Rg = 18.2 ± 1.6 Å and Rg = 12.6 ± 0.8 Å, respectively,

for A3, A54 and A63 in heptane (Table 2). Nevertheless, despite these differences, Figure

S14 shows similar distributions for the estimated density of the aggregates produced by these

island systems. The more peaked Rg and density distributions of A29 in comparison with

A3, A54 and A63 confirms that A29 has reached a completely equilibrated segregation from

the heptane solvent. With respect to the relative shape of the aggregates, as evidenced by

the average values in Table 2, the clusters are more elongated than spherical (values close to

0). Among the three asphaltenes stable in heptane, A80 and A85 are of archipelago type, a

type of molecules known for its stability, and A63, with its aromatic core of moderate size

and absence of heteroatoms, do not present any structural feature favouring aggregation. As

mentioned previously, the finite size effects of the simulations affect quantitatively the values
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of the observables for A29 in heptane. All details for simulations with 200 asphaltenes in hep-

tane are provided in the Supporting Information (Figure S9, Figure S12, Figure S15, Figure

S18 and Table S4) and most of the qualitative conclusions on the differences between A29 and

other model molecules still apply. However, it is worth mentioning that the differences in Rg

and in density between A3 and A29 do not seems as important with simulations performed

with 200 asphaltene molecules (Figure S12 and Figure S15 and Table S4), even though the

difference in final gn is already striking with gn = 66.8 ± 4.5 for A29 and gn = 28.2 ± 0.1.

This shows that with larger system sizes, more representative of the reality, the simulation

time required for the system to settle into the clustering stage of the aggregation process and

adopt its characteristics, beyond the step-wise increases visible with 200 asphaltenes A29 in

heptane (Figure S9), can be longer than 240ns. To obtain confirmation we have extended

up to 500ns the simulations in heptane with 200 molecules of A3 and with 200 molecules

of A29, which yields aggregation numbers gn = 28.9 ± 0.6 and gn = 200.0 ± 0.0, respec-

tively. The observables for these simulations, plotted in Figure S19 and Figure S20, confirm

an important quantitative difference between these two asphaltene model molecules already

observed in simulations with 100 asphaltene molecules in spite of the finite size effects. Con-

sequently, the multi-stage aggregation processes observed in early simulation works may be

artefacts from simulation finite size effects, but could still be confirmed by longer or larger

simulations. However, with the computational power currently available, gaining insights

into the late stages of the aggregation process would probably require to resort to coarse-

grained simulations.45 Overall, the representative asphaltene model molecules identified by

unsupervised ML show a diversity of aggregation behavior that confirms their suitability for

describing asphaltene polydispersity once mixed together.

2.3 Polydisperse mixtures of asphaltene

To study the effect of asphaltene polydispersity on the aggregation process, a series of

polydisperse mixtures, made of 3 to 4 types of model molecules for a total concentration of
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7 wt % of asphaltene, have been designed based on the results from monodisperse simulations

(details in Table 3). While simulations of the first four quaternary mixtures (Q1, Q2, Q3

and Q4) contain 25 molecules of each model, in ternary mixtures (T1, T2, T3 and T4)

34 molecules of the first listed model and 33 of the other two are combined to reach 100

asphaltene molecules per simulation. Q5 and Q6 have been designed slightly differently than

the other quaternary mixtures, and contain, respectively, 23 molecules of A23, 33 molecules

of A29, and 22 molecules of A54 and A85 for Q5, and 33 molecules of A29, 23 molecules of

A63 and 22 molecules of A80 and A85 for Q6. The reasoning behind the specific selection

of model molecules in the ternary mixtures is the following: T1 and T4 were designed to

mix together the asphaltene model molecules that are stable (A63, A80 and A85 in T1)

and unstable (A3, A29 and A54 in T4) in heptane. Then, T2 mixes the two most unstable

molecules (A3 and A29) with the less stable of the stable ones, namely A85. Finally, T3

mixes two aggregating asphaltenes (A3 and A54) with A85, but does not include the very

strongly aggregating molecule A29. Table 3 summarizes the results of the simulations, and

all plots, in analogy to those of the monodisperse simulations, can be found in the Supporting

Information Figure S24 to Figure S33.

As could be anticipated from the monodisperse simulations, aggregation in toluene is

always quite low in polydisperse simulations (gn always ≤ 11.0 in Table 3). The aggregation

level observed for T1 in heptane is quite low with gn = 8.8±0.1, which is even lower than the

average aggregation from monodisperse simulations (gavT1
n = 0.34×6.8+0.33×14.0+0.33×

13.7 = 11.5). Thus, already in that case, we observe that polydispersity does not necessarily

yield an aggregation level corresponding to the weighted average of the contributions from

monodisperse simulations, but instead an antagonistic effect to the aggregation process can

be observed. This antagonistic effect is even more pronounced in T4, for which aggregation

only reaches gn = 18.8 ± 0.6, whereas individually, all monodisperse simulations of the

constituents of this mixture exceed gn = 23.8 (see Table 2). Conversely, in T3, aggregation

reaches gn = 20.0± 2.9, which is the same range than the weighted average of contributions
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Table 3: Summary of the polydisperse simulations performed with 100 asphaltene molecules.
In ternary mixtures the are 34 molecules of the first listed model and 33 of the other two.
Quaternary mixtures Q1 to Q4 contain 25 molecules of each model. Q5 is a mixture of 23
molecules of A23, 33 molecules of A29, and 22 molecules of A54 and A85. Q6 is a mixture
of 33 molecules of A29, 23 molecules of A63 and 22 molecules of A80 and A85. For the
aggregation number, g240n , we report the 20ns average window at the end of the simulation.
For the radius of gyration, Rg (in Å), the estimated density and the relative shape anisotrpy,
κ2, we report the average value over the last 40ns of the simulations.

mixture asph. models solvent g240n av. Rg av. density av. κ2

T1 A63 A80 A85 toluene 3.3 ± 0.0 13.2 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
T1 A63 A80 A85 heptane 8.8 ± 0.1 14.8 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
T2 A3 A29 A85 toluene 9.5 ± 0.2 15.0 ± 1.5 0.4 ± 0.0 0.3 ± 0.0
T2 A3 A29 A85 heptane 52.6 ± 1.3 27.2 ± 3.7 0.3 ± 0.0 0.3 ± 0.1
T3 A3 A54 A85 toluene 6.2 ± 0.1 12.8 ± 1.0 0.4 ± 0.0 0.2 ± 0.0
T3 A3 A54 A85 heptane 20.0 ± 2.9 15.9 ± 2.8 0.4 ± 0.0 0.2 ± 0.0
T4 A3 A29 A54 toluene 8.3 ± 1.6 15.2 ± 2.7 0.4 ± 0.0 0.2 ± 0.1
T4 A3 A29 A54 heptane 18.8 ± 0.6 17.0 ± 1.1 0.4 ± 0.0 0.1 ± 0.0
Q1 A3 A29 A54 A85 toluene 7.0 ± 0.9 13.6 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
Q1 A3 A29 A54 A85 heptane 18.2 ± 1.1 15.5 ± 1.4 0.4 ± 0.0 0.2 ± 0.0
Q2 A54 A63 A80 A85 toluene 3.9 ± 0.1 12.6 ± 0.8 0.3 ± 0.0 0.3 ± 0.0
Q2 A54 A63 A80 A85 heptane 12.1 ± 0.9 16.3 ± 1.9 0.4 ± 0.0 0.2 ± 0.1
Q3 A29 A63 A80 A85 toluene 4.5 ± 0.1 13.2 ± 1.0 0.3 ± 0.0 0.3 ± 0.0
Q3 A29 A63 A80 A85 heptane 18.2 ± 1.8 18.0 ± 3.3 0.4 ± 0.0 0.3 ± 0.1
Q4 A3 A63 A80 A85 toluene 4.1 ± 0.1 13.1 ± 0.8 0.3 ± 0.0 0.2 ± 0.0
Q4 A3 A63 A80 A85 heptane 10.4 ± 0.3 15.4 ± 1.2 0.4 ± 0.0 0.2 ± 0.0
Q5 A3 A29 A54 A85 toluene 9.0 ± 0.7 13.7 ± 1.3 0.4 ± 0.0 0.2 ± 0.0
Q5 A3 A29 A54 A85 heptane 35.3 ± 1.9 20.3 ± 2.8 0.5 ± 0.0 0.2 ± 0.0
Q6 A29 A63 A80 A85 toluene 4.6 ± 0.0 12.7 ± 0.8 0.4 ± 0.0 0.3 ± 0.0
Q6 A29 A63 A80 A85 heptane 20.0 ± 0.2 16.8 ± 1.1 0.4 ± 0.0 0.2 ± 0.0
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Figure 5: Aggregation number gn (top left) from simulations of polydisperse mixture T2
in heptane. 5ns and 20ns moving averages are used to filter short term fluctuations of the
aggregation dynamics. The distributions of the properties of the asphaltene clusters from
simulations of T2 in both heptane and toluene are also represented, namely the radius of
gyration (top right), the estimated density (bottom left) and the relative shape anisotropy
(bottom right), accumulated over the last 40ns of the simulations.

from monodisperse simulations (gavT3
n = 0.34 × 28.1 + 0.33 × 23.8 + 0.33 × 13.7 = 21.9)

and in T2, aggregation reaches gn = 52.6 ± 1.3, which even exceeds the respective average

(gavT2
n = 0.34×28.1+0.33×100+0.33×13.7 = 47.1). Therefore, the effect of polydispersity

is complex and the aggregation between molecules of different types is driven by a sum of

correlated contributions from aromatic cores, aliphatic chains or heteroatoms. Comparing

T2 and T4, it seems that there might be a lower compatibility in the aggregation of molecules

A29 with molecules A54 than in the aggregation between A29 and A85 that results to be

more favorable. Simulations of binary mixtures in heptane, not reported in this paper for
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the sake of conciseness, mixing the three model molecules A29, A54 and A85 have confirmed

this observation with gn[0.50 × A29 + 0.50 × A54] ≤ gn[0.50 × A29 + 0.50 × A85], whereas

in monodisperse simulations the aggregation of A54 is clearly superior to the aggregation

of A85 (gn = 23.8 ± 1.4 for A54 vs gn = 13.7 ± 1.0 for A85). A similar conclusion can be

drawn looking at the compatibility of A54 and A85 with molecule A3. Thus, the archipelago

nature of A85, even though usually associated with stable asphaltenic systems, seems to

facilitate the aggregation – when combined with bulky asphaltene such A3 and A29 as in

T2 – more than the island nature of A54 with very short aliphatic chain, as in T4. Figure 5

displays all aggregation observables for T2, which exhibits the largest aggregation among

the polydisperse mixtures studied, with gn = 52.6 ± 1.3. It is the only mixture to reach the

clustering stage of the aggregation as confirmed by the step-wise increases of its aggregation

number (see Figure 25).

To further test the effects of polydispersity, the aggregation of quaternary mixtures has

been studied. In particular, Q5 and Q6 mixtures have been designed to test both the driving

potential of A29 and the synergistic action of A29 and A85 with respect to aggregation.

Conversely to T2, no synergistic effect is observed at the specific compositions in Q5 nor

Q6 (aggregation does not exceed the weighted average contributions from the monodisperse

simulations) even tough a seed effect from the molecules A29 can be detected comparing T1

with Q3 and Q6 and T3 with Q1 and Q5. However, this seed effect is not linearly correlated

with the composition of the systems. For example in Q3, there is the same number of

each model molecule (25 molecules) A63, A80, A85, and A29, and an important increase in

aggregation (gn = 18.2 ± 1.1) is observed in comparison with T1 (gn = 8.8 ± 0.1). However,

in Q6 there are more molecules of the very strongly aggregating A29 (33 molecules) in

comparison with Q3, but yielding a proportionally smaller increase in aggregation (gn =

20.0 ± 0.2). Thus it seems that in this case the seed effect of molecules A29 reaches a

saturation point. Conversely, in Q3, which contains the same number of each model molecule

(25 molecules) A3, A54, A85, and A29, the presence of 25 of the strongly aggregating A29
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molecules does not lead to a larger aggregation (gn = 18.2±1.8) than in T3 (gn = 20.0±2.9),

which only contains molecules of A3, A54, and A85. Meanwhile, in Q5, where the number

of molecules of A29 is set to 33, a clear increase in aggregation is observed (gn = 35.3± 1.9),

as if there were a concentration threshold to overcome within this polydisperse mixture for

the seed effect to be activated. Besides, comparing Q2 and Q4 with Q3 shows that A29 is

clearly a stronger aggregation seed than A3 and A54, but no synergistic effect is observed

among the quaternary mixtures investigated in this work. Finally, a word of caution must

be mentioned here: even though the conclusions presented just above seem reasonable, it is

important to keep in mind that they are only based on small differences obtained from single

run simulations. Ideally, one would like to perform many simulations per system in order to

draw stronger conclusions. However, the computational cost of such MD simulations makes

a systematic n-repetition process prohibitive.

Overall, the investigation of the asphaltene aggregation process in these polydisperse

mixtures has shown a variety of complex and correlated effects: antagonistic and synergis-

tic effects within mixtures and seed effects of specific model molecules, A29 in particular,

have been detected. These findings highlight once again the necessity of accounting for

asphaltene polydispersity even though the level of asphaltene aggregation in polydisperse

mixtures never reaches the largest aggregation level of monodisperse simulations of A29.

Moreover, as the ultimate goal is to contribute to the design of asphaltene inhibitors, it is

important to ensure that the in-silico evaluation of their performance is not biased by a

specific asphaltene model molecule with which the inhibitor could interact a lot and limit its

aggregation whereas it could interact more moderately with other molecules, depending on

their chemistry. Accounting for polydispersity in this characterization permits to limit this

risk. Besides, in order to be able to capture the action of an inhibitor on the polydisperse

mixture of asphaltenes, it is necessary to use a mixture which reaches significant level of

aggregation. Therefore, T2 is the most suited polydisperse mixture of asphaltenes for this

task and has been employed in the simulations presented in the next section.
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2.4 Showcase of inhibition simulation

Beyond the investigation of asphaltene aggregation and the effect of polydispersity on

this process, another objective of this work is to set up a robust protocol for the in-silico

characterization of the action of asphaltene inhibitors. To illustrate that the workflow imple-

mented in this study has permitted to reach this objective, a simulation of the aggregation

in heptane of the polydisperse mixture T2 in presence of a nonylphenol resin asphaltene

inhibitor, at a concentration of 1 wt %, has been performed. Due to Intellectual Property

restrictions, the exact form of the inhibitor cannot be published, but we show in Figure 6

its general structure, which is sufficient for the purpose of this showcase.

Figure 6: 2D representation of the molecular structure of the inhibitor.

The aggregation behavior of the mixture T2 in presence of the inhibitor (in black) is

compared in Figure 7 to the case without (in green) already discussed in the previous section.

To facilitate the comparison and avoid short term fluctuations, the 20ns moving averages are

presented for the aggregation number. Moreover, while in the aggregation number only the

asphaltene molecules are considered, the inhibitor molecules are included in the calculation

of the radius of gyration of the cluster they belong to, in order to avoid drawing erroneous

conclusions from artificially low aggregation numbers resulting from the limits of this metrics.

An example of this type of artefact would be the following case: if two clusters of asphaltene

were connected by one or two inhibitors in between while not interacting directly with each
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Figure 7: Aggregation number gn (top left) from simulations of polydisperse mixture T2 in
heptane with (in black) and without (in green) inhibitor molecules. 20ns moving averages are
used to filter short term fluctuations of the aggregation dynamics. The distributions of the
properties of the asphaltene clusters from these simulations are also represented (using the
same color code), namely the radius of gyration (top right), the estimated density (bottom
left) and the relative shape anisotropy (bottom right), accumulated over the last 40ns of the
simulations.
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other, the aggregation number would be low whereas there would actually be a very large

cluster of asphaltene and inhibitors. On the other hand, the inclusion of the inhibitors in the

calculation of the radius of gyration would yield large values, thus revealing the limitation of

the inhibitor performance. The nonylphenol resin inhibitor manages to limit the aggregation

of the T2 mixture to gn = 23.0 ± 1.9, which is less than half the aggregation number

of the case without inhibitor, as summarized in Table 4. The average radius of gyration

is also reduced, which confirms the very good performance of this inhibitor. Considering

that the concentration of inhibitor is only 1 wt %, we can conclude that the nonylphenol

resin inhibitor is qualitatively (a different definition of the aggregation number was used) a

better performing asphaltene inhibitor than n-Octylphenol,27 which needed 7 wt % to limit

the aggregation of less aggregating asphaltenic systems. Nevertheless, it is worth noting

that such concentration, namely 1 wt %, is still two orders of magnitude larger than usual

operating conditions. However, further decreasing the concentration of the inhibitor would

require to perform the simulations on much larger systems, yielding a computational cost

far beyond the reach of any systematic study.

Table 4: Summary of the polydisperse simulations of T2 with and without inhibitor. For the
aggregation number, g240n , we report the 20ns average window at the end of the simulation.
For the radius of gyration, Rg (in Å), the estimated density and the relative shape anisotrpy,
κ2, we report the average value over the last 40ns of the simulations.

mixture asph. models inhibitor solvent g240n av. Rg av. density av. κ2

T2 A3 A29 A85 No heptane 52.6 ± 1.3 27.2 ± 3.7 0.3 ± 0.0 0.3 ± 0.1
T2 A3 A29 A85 1 wt % heptane 23.0 ± 1.9 18.5 ± 2.4 0.4 ± 0.0 0.2 ± 0.1

3 Conclusion

In this study, the combination of unsupervised machine learning and molecular dynamics

simulation has permitted to thoroughly investigate the role of asphaltene polydispersity on

the aggregation process. Indeed, we first performed an upfront selection, via unsupervised

machine learning, of a series of asphaltene model molecules representative of a broad and
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diverse catalogue specifically designed for the purpose of molecular dynamics simulations.

Then, we have studied the aggregation of these molecules via monodisperse simulations in

toluene and heptane solvents. At the exception of the most strongly aggregating molecule,

namely A29, aggregation in toluene has been weak. In heptane, monodisperse simulations—

in agreement with recent simulation works—have shown that even though π−π interactions

can be a very strong driver for asphaltene aggregation other molecular features such as polar

aliphatic chains and heteroatoms significantly contribute to this process. Furthermore, the

different aggregation behavior of the representative asphaltene model molecules in heptane

have confirmed their ability to capture the diversity of asphaltene. Afterwards, the effect of

asphaltene polydispersity on the aggregation process has been investigated by simulations

of ternary and quaternary polydisperse mixtures of these molecules. Overall the effect of

asphaltene polydispersity is complex, difficult to disentangle and diverse: depending on the

composition of the mixture both antagonistic, synergistic and seed effects have been observed.

These findings illustrate again the necessity to account for polydispersity when studying the

asphaltene aggregation process and its inhibition. Finally, this work has also permitted

to deploy a robust simulation protocol for the in-silico evaluation of the performance of

asphaltene inhibitors, as demonstrated by the case study presented with the nonyphenol

resin inhibitor. In future works we intend to build on the developments presented here to

investigate and compare the behavior of a series of asphaltene inhibitors.

4 Computational methods

4.1 Unsupervised machine learning

The first step to select a series of representative asphaltene model molecules from the

catalogue of Law et al.38 was to generate digital molecular structures of the model molecules

released in the form of 2D and 3D molecular representations. To accelerate the digitalization,

we have used an open-source optical chemical structure recognition (OCSR) Java-based
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tool called MolVec.46 Despite such tool, this is still a cumbersome process, but it is worth

pointing out that OCSR tools have been reviewed recently,47 and that many developments

are currently under process in this field. Additional comments on the information of the

original catalogue of 100 molecules are presented in the Supporting Information. SMILES

codes (Simplified Molecular Input Line Entry System)48 of the model molecules have been

obtained via MolVec and their 3D molecular structures have been generated using RDKit.49

The 3D molecular structures have been used as input for the calculation of 3D molecular

descriptors by the free software Mordred,50 and later on to perform MD simulations when

deemed relevant.

Figure 8: Representation of the catalogue of 100 molecules from Law et al.38 after 3D prin-
cipal component analysis and Kmeans clustering analysis. Each point represents a molecule
and colors reflect cluster assignation. The labels of the molecules are consistent with the
original work.38

At this point, each of the 100 molecules from the catalogue of Law et al.38 is described

by 1826 3D molecular descriptors. Then, this highly multidimensional representation of the

chemical space of asphaltene is reduced to three dimensions via principal component analysis

(PCA),51 a linear dimensionality reduction method, using the implementation of the scikit-

learn library.52,53 In order to identify groups of similar molecules, an unsupervised cluster

analysis has been performed, using the standard Kmeans algorithm of scikit-learn. Figure 8

25



displays the 3D PCA representation of the catalogue of 100 molecules using one color per

cluster. It is worth mentioning that the first 3 PCA components account for 37.5%, 21.9%

and 8.8% of the explained variance ratio, respectively, hence a total of 68.2%. In this case

the Kmeans algorithm had been set up to identify 7 clusters, and it is interesting to point

out that the 11 resin molecules have correctly been assigned to a cluster of their own, namely

cluster #3 in Figure 1, leaving 6 clusters of asphaltene. More details, such as the effect of the

dimensionality reduction method (either using PCA or the uniform manifold approximation

and projection method, UMAP, which is an non-linear method54), the difference between

performing the dimensionality reduction before or after the cluster analysis, and the effect

of the parameters of the clustering analysis (choice of number of clusters and choice of

clustering algorithm) are reported in the Supporting Information (Figure S1 to Figure S4

and Table S1 and Table S2). However, it is important to mention that we have verified that

such details only affected the cluster assignation of a few molecules at the frontier between

clusters. When large numbers of molecules are considered in cluster analysis, the closest

molecule to each cluster centroid is often chosen as representative for the cluster. In our

specific case, the number of molecules is moderate, and therefore we have looked at all the

assignations and have chosen the molecules represented in Figure 1 as representative of their

clusters, ensuring that none of these was at the frontier between clusters and affected by

the setup of the clustering analysis. These molecules have subsequently been used in the

MD simulations. The approach reported here is general and can be extended to include

future developments of asphaltene models. As shown in Figure 1, the 6 molecules selected

as representative are very diverse, with 4 island and 2 archipelago asphaltenes. In particular

the island models have very different structural features: A3 has long side-chains, A54 has a

many heterocycles and A29 is very bulky. The detailed composition of each cluster is given

in Supporting Information.
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4.2 Simulation details

While a variety of force fields (FF), both all atoms, united-atoms, and coarse-grained,

have been used for the simulation of asphaltene aggregation,27 overall any modern and well-

validated FF can be considered a reasonable choice, as pointed out by Headen et al.31 Indeed,

by way of comparison, there are still uncertainties about larger issues, such as asphaltene

structures and the exact composition of their systems. In this work, we have used the GAFF

force field55 in combination with AM1-BCC atomic partial charges, as validated by Glova et

al.44 Besides, the GAFF force field had already been used in asphaltene simulations.56–58 The

topologies of the simulated molecules (available in Supporting Information additional files)

were generated using the ACPYPE tool,59 which builds on Antechamber.60 GPU-accelerated

MD simulations were performed with the GROMACS simulation code (version 2020.4),61–64

which also served to construct the simulation boxes via random insertion of molecules (both

for position and orientation). Monodisperse simulations with 40, 100 and 200 asphaltene

molecules served as benchmark, before settling on 100 molecules as the best compromise

between system size and simulation cost. The number of solvent molecules (toluene and

heptane) in each cubic simulation box was defined such as to ensure an asphaltene concen-

tration of 7 wt % for each system. Therefore, the largest simulated system, namely 200

molecules of asphaltene model A3 in heptane, contained 621,082 atoms. When the aggrega-

tion inhibitor, a nonylphenol resin, was included in the simulations, its number of molecules

was obtained from the 7:1 targeted ratio between asphaltenes and inhibitor. Then the num-

ber of solvent molecules was tuned to adjust the concentration of the inhibitor at 1 wt %.

The adopted simulation protocol can be summarized as follow. After construction of a

cubic periodic simulation system, a steepest decent energy minimization is performed un-

til all forces decrease below 100kJ/mol/nm. Then, a 3ns MD equilibration simulation in

the isobaric-isothermal (NPT ) ensemble is run using GROMACS’ velocity rescaling thermo-

stat65 and a Berendsen barostat.66 Afterwards, production MD simulation are carried out

for 240ns with Nosé-Hoover thermostat67,68 and Parrinello-Rahman barostat.69,70 All simu-

27



lations are performed at a temperature of 300K and a pressure of 1bar. Equations of motion

are integrated using the leapfrog algorithm71 with a timestep of 2ps while keeping hydrogen

bonds rigid via the LINCS algorithm.72 To account for long-range electrostatic interactions

the particle-mesh Ewald (PME) algorithm73 is employed, whereas a plain cut-off (PME can-

not be used with GPU yet) with standard correction for energy and pressure is adopted for

long-range dispersion interactions, in both cases with a cutoff value of 1.25nm.

4.3 Aggregation observables

The aggregation number captures the aggregation state of asphaltenic systems by count-

ing the number of asphaltene molecules constituting an aggregate (also called cluster). In this

study, two molecules are considered to belong to the same aggregate if the shortest distance

between atoms of the two molecules is inferior to a threshold value of 3.5 Å. This definition

follows the findings of Headen et al.,31 who showed that, when asphaltene molecules are

clustered, their shortest distance clearly decreases below 3.5 Å. Moreover, Ghamartale et

al.,27 who studied the same asphaltene molecules, argued that such threshold is applicable

because the range of hydrogen bond length is between 2.70 and 3.30 Å. Furthermore, they

provided an interesting discussion about the different possibilities for defining such criterion,

with a focus on the effect of using distances calculated between the center of mass between

molecules (instead of interatomic distances) which can be less suited to properly account for

irregular packing of aggregates. Both number-average aggregation number, gn and z-average

aggregation number, gz have been used in asphaltene publications. Even though some prefer

using gz
18,27 over gn,31 no compelling argument was found in the papers nor in the original

reference74 that actually contains three definitions, namely, apart from the two presented

here, the weight-average aggregation number gw, which can all be obtained from different ex-

perimental techniques: gn via membrane osmometry, gw via static light scattering and gz via

intrinsic viscosity measurements. As this study relies on MD simulations, we have followed

– as for other observables – the definitions from Headen et al.,31 and used gn as aggregation
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number, which is strictly the average number of asphaltene molecules per aggregate:

gn =

∑
i nigi∑
i ni

(1)

with ni the number of aggregates of gi molecules. It is important to precise that the sums

of (1) start from 2, thus the monomers are excluded. To quantify the size of polymers or

macromolecules in solution,75 the radius of gyration (Rg) is defined as:

R2
g =

1

N

N∑
i

(ri − rcm)2 (2)

with ri the position vector of atom i and rcm the position vector of the center of mass of the

aggregate. Furthermore, information relative to the shape of the aggregate can be extracted

from the gyration tensor (S):76

S =
1

N


∑

i(xi − xcm)2
∑

i(xi − xcm)(yi − ycm)
∑

i(xi − xcm)(zi − zcm)∑
i(yi − ycm)(xi − xcm)

∑
i(yi − ycm)2

∑
i(yi − ycm)(zi − zcm)∑

i(zi − zcm)(xi − xcm)
∑

i(zi − zcm)(yi − ycm)
∑

i(zi − zcm)2

 (3)

in which the sums run over all atoms i of the aggregate and cm again refers to the center of

mass. The diagonalization of the gyration tensor, S = diag(λ1, λ2, λ3), permits to obtain the

eigenvalues (principal moments) ordered as λ1 ≥ λ2 ≥ λ3. Alternatively to (2), the radius of

gyration can directly be obtained from the sum of the eigenvalues: R2
g = λ1 +λ2 +λ3. From

these eigenvalues, an estimation of the dimensionality and the symmetry of the aggregates

can be provided by κ2, the relative shape anisotropy:

κ2 = 1 − 3
(λ1λ2 + λ2λ3 + λ3λ1)

(λ1 + λ2 + λ3)2
(4)

κ2 values span between 0, for a perfectly spherical cluster, and 1, for a linear chain. Still

from the eigenvalues, it is possible to estimate the density of the asphaltene aggregates. The
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volume of each aggregate is approximated by the volume of an hypothetical effective ellipsoid

having the same principal moments as the gyration tensor. Hence the axes a, b and c of such

ellipsoid would be equal to
√

53λn(n = 1 − 3) and the volume encompassing the aggregate

is:

Vcluster =
4

3
π
√

53λ1λ2λ3 (5)

The mass of the aggregate is calculated as the sum of the mass of each asphaltene molecule

populating the cluster. Therefore, the estimated density writes as:

ρcluster =

∑
imi

Vcluster

(6)

where mi is the mass of the ith molecule of the aggregate. In this work, the atomic positions

have been written out each 10ps (5,000 time steps), and thus all observables of the aggrega-

tion state of the system, namely the aggregation number, radius of gyration, relative shape

anisotropy and density estimate, have been computed for trajectory frames each 10ps. The

aggregation number is represented with both 5ns and 20ns moving average to better guide

the eye. Additionally, in order to describe the equilibrium state of the asphaltenic systems,

the average of the other observables in each recorded trajectory frame and their distributions

are calculated during the last 40ns of each run (from 200 to 240ns of MD simulation).
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(67) Nosé, S. A molecular dynamics method for simulations in the canonical ensemble.

Molecular Physics 1984, 52, 255–268.

38



(68) Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev.

A 1985, 31, 1695–1697.

(69) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular

dynamics method. Journal of Applied Physics 1981, 52, 7182–7190.
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