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We show that one of the tris(carbene)borate (TCB) ligands, namely PhB(tBuIm)3 (PhB(tBuIm)3 = phenyltris(3-tert-

butylimidazol-2-ylidene)borato), is capable of stabilizing an unprecedented nucleophilic Sn(II) cation salt. Unlike known Sn(II) 

cations, the strong electron-donating ability of PhB(tBuIm)3 makes the cationic tin atom electron-rich, σ-donating yet slightly 

π-accepting, which allows for the ensuing facile oxidation with o-chloranil and S8 as well as coordination with coinage metals. 

The former oxidations give rare Sn(IV) cation salts, while the latter reactions produce novel metal complexes. The electronic 

structures of these species are thoroughly probed by quantum chemical computations. These results unravel an added role 

for TCB ligands in isolating unprecedented p-block species. 

Introduction 

Low-valent group 14 (poly)cations have garnered much 

attention over the past few decades.1-8 Among them, (di)cations 

of [R–E]+ and E2+ (E = heavier group 14 elements) have been of 

paramount interest due to not only the fundamental 

significance of their electronic structure and bonding but also 

the associated reactivity for synthetic chemistry.1-8 As a result 

of the high s-character of the lone pair orbital at low-valent tin 

centers,9-12 stannylenylium cations [R–Sn]+ and Sn2+ dications 

are in their ground-state singlet (Figure 1a).8,13 The former 

compounds possess a monocoordinated Sn atom featuring a 

lone pair of electrons and two vacant p orbitals, isoelectronic 

with group 13 neutral metallylenes,14-16 while Sn2+ contains an 

electron pair and three vacant p orbitals. These electronic 

characteristics render such species extremely reactive, so much 

so they cannot be isolated in their free state. However, these 

unfilled valence orbitals where shown to be stabilized by Lewis 

basic ligands, leading to isolable Sn(II) cation salts. On the basis 

of coordination modes at Sn, these species can be classified into 

three broadly defined categories, namely Cp-ligated Sn(II) 

cations I (Cp = cyclopentadienyl),17-21 base-stabilized [R–Sn]+ 

cations II,22-43 and base-stabilized Sn2+ dications III (Figure 1b).44-

54 Archetypical examples involve Jutzi’s [Cp*Sn]+ A (Cp* = 

pentamethylcyclopentadienyl),17 Jones’ arene-stabilized 

amido-Sn(II) cation B,27 Nicholson’s crown ether complex of Sn2+ 

C,44 and Krossing’s [(MeCN)6Sn]2+ D (Figure 1c).52 Significant to 

note is that the electrophilic tendency of these cationic Sn 

centers dominates because of the energetically low-lying 5s2 

lone pair at Sn.17-54 Even for neutral stannylenes without donor-

stabilization, they usually function as a Lewis acid with high 

electrophilicity, and almost all their reactivity is initiated by the 

nucleophilic reaction of the reagents toward the vacant p 

orbital albeit behaving overall ambiphilicity.12 This points out 

the challenges for isolating a nucleophilic Sn(II) cation as the 

cationic nature further diminishes the energy of the Sn 5s2 lone 

pair. In fact, free Sn(II) cations with predominant nucleophilicity 

are hitherto unknown. None of the Sn(II) cations have been 

utilized as a free nucleophilic Sn ligand for the synthesis of 

transition metal (TM) complexes although a handful of  

 

 

 

examples of TM-bound Sn(II) cations have been prepared 

exclusively via a halide abstraction method.55-58 

Ligand design plays a central role in modern synthetic 

chemistry, providing access to various isolable compounds with 

unusual properties. Among the most prevalent organometallic 

ligands are 6-electron aromatic anionic Cp groups (Figure 1d).59-

61 Similarly as an anionic 6-electron donor, ligands based on 

tris(pyrazolyl)borate (Tp)62-64 and tris(carbene)borate (TCB)65-66 

architectures (Figure 1d) have proven to be superior in 

stabilization of low-valent compounds. To our surprise, while 

TCB ligands were first documented by Fehlhammer as early as 

199667 and have been extensively employed in TM chemistry,68-

69 such ligands are completely absent from the chemistry of low-

valent p-block compounds. 

In the present work, we demonstrate that one of the TCB 

ligands originally reported by Smith, namely PhB(tBuIm)3 

(PhB(tBuIm)3 = phenyltris(3-tert-butylimidazol-2-

ylidene)borato),70 is able to stabilize an elusive nucleophilic Sn(II) 

cation salt (Figure 1e). This cation is isoelectronic with 

phosphines R3P and amines R3N. Most strikingly, the strong 

electron-donating ability of PhB(tBuIm)3 enables an umpolung 

characteristic of the cationic Sn atom with predominant 

nucleophilicity. 



  

  

 

 

 
Figure 1. (a) Singlet stannylenylium cation [R–Sn]+ and Sn2+ dication. (b) 

Representations of Cp-ligated Sn(II) cations I, base-stabilized stannylenylium 

cations II, and base-stabilized Sn(II) dications III. (c) Selected examples of 

isolable Sn(II) cations A and B and dications C and D. (d) Electronic analogy of 

Cp, Tp and TCB ligands. (e) This work. 

Results and discussion 

Isolation of a Nucleophilic Sn(II) Cation Salt 

In targeting a nucleophilic Sn(II) cation, we sought to install Sn2+ 

with a strong electron-donating tripodal TCB ligand that can not 

only increase the energy of the Sn lone pair but also enhance 

the directionality of the lone pair.8, 37, 71-74 By analogy with the 

synthesis of transition metal TCB complexes,70, 75-78 compound 

1 was deprotonated by lithium diisopropylamide (LDA), 

followed by a salt metathesis reaction with SnCl2 (Scheme 1). 

After workup, 2[OTf] (OTf = triflate) was obtained as a white 

solid in 45% yield. This species exhibited 119Sn, 11B and 19F NMR 

chemical shifts at -429.4, 1.1 and -78.1 ppm, respectively. The 
119Sn NMR signal is low-frequency shifted in comparison with 

those of three-coordinate Sn(II) cations supported by a 

bis(oxazoline) ligand (-389.2 and -377.1 ppm).29 The 1H NMR 

spectrum displayed a singlet for the tBu groups at 1.8 ppm, and 

the carbene carbon resonance at 170.4 ppm was observed via a 
13C NMR spectroscopic study. These data reveal the C3 

symmetric nature of 2.  

 

Scheme 1. Synthesis of 2[OTf]. 

Single crystals of 2[OTf] suitable for X-ray crystal structure 

determination were grown by slow evaporation of a 

concentrated THF solution at -35 oC. The crystallographic data 

confirmed the formulation of 2[OTf] as [PhB(tBuIm)3Sn][OTf] 

(PhB(tBuIm)3 = phenyltris(3-tert-butylimidazol-2-ylidene)borato) 

(Figure 2a). In the asymmetric unit of the crystal lattice of 2[OTf], 

two independent molecules are included as a monomer. The 

Sn(1) atom is supported by the tripodal TCB ligand. In contrast 

to neutral species TpSnX (X = Cl, OTf) bearing a Sn–X bond,79-82 

the solid-state structure of 2[OTf] clearly demonstrates its ionic 

nature as the oxygen atoms of the triflate anion are over 7.0 Å 

away from Sn(1). This is attributed to the stronger electron-

releasing ability of TCB over that of Tp83 and indicates the 

electron-rich character of Sn(1) in 2[OTf]. The average length of 

Sn–C bonds (2.240 Å) is longer than the Pyykkö standard value 

for a Sn–C single bond (2.15 Å),84 whereas slightly shorter than 

those found in IDippSnCl2 (2.341(7) Å) (IDipp = 1,3-bis(2,6-

diisopropylphenyl)imidazol-2-ylidene)85 and LSnCl2 (2.323(9) 

and 2.309(9) Å) (L = chelating dicarbene ligand).86 Of note, 

species 2[OTf] is the first example of a p-block complex with a 

TCB ligand.86-88 

 

Electronic Structures and Bonding 

The electronic structure of 2 was investigated by quantum 

chemical calculations (M06-2X/def2-SVP). The HOMO of 2 (-

10.1 eV) is mainly the non-bonding electron pair at Sn, while the 

LUMO (-2.7 eV), LUMO+1 (-2.4 eV), LUMO+4 (-1.3 eV) and 

LUMO+5 (-1.2 eV) are highly delocalized with contributions 

from the Sn atom and TCB ligands (Figure S33). For comparison, 

the assumed analogous species [PhB(tBuPy)3Sn]+ (PhB(tBuPy)3 = 

phenyltris(3-tert-butylpyrazolyl)borato) and known species 

[Cp*Sn]+ are predominantly electrophilic as their HOMOs do not 

involve the lone pair at Sn and LUMOs primarily comprise the 

vacant p orbitals at Sn (Figures S34 and S35). Moreover, natural 

bond orbital (NBO) calculations of 2 shows a less positively 

charged Sn atom (0.98 a.u.) compared to those in 

[PhB(tBuPy)3Sn]+ (1.42 a.u.) and [Cp*Sn]+ (1.34 a.u.). The NBO 

charge of the TCB ligand is 0.02 a.u., in which each 3-tert-

butylimidazol-2-ylidene unit carries the negative charge of 

approximately -0.26 a.u. This charge distribution is in 

agreement with the observations from the electrostatic 

potential analysis of 2 (Figure S37). These are also in accordance 

with the PhB(tBuIm)3 ligand being a much stronger 6e donor 

than PhB(tBuPy)3 and Cp*.83  



  

  

 

 

Intrinsic bond orbital (IBO) calculations, which has been proven 

to give an exact representation of any Kohn–Sham density 

functional theory (DFT) wave function,89-90 clearly reveal the 6e 

donations from the ligand to Sn (Figures 2c-2e) as well as a lone 

pair of electrons at Sn (Figure 2b). 

The dual descriptor (DD) from conceptual DFT calculations,91 

which typically provide an overall description of reactivity 

behaviors for molecules (positive value: electrophilic; negative 

value: nucleophilic), give a highly negative value of the dual 

descriptor at Sn (-0.44) in 2 (Figure 2f). The DD values for 

[Cp*Sn]+ and [PhB(tBuPy)3Sn]+ are 0.51 and 0.34, respectively 

(Figures 2g and S36). Combined with aforesaid results, 2 should 

exhibit predominant nucleophilicity. 

 

Figure 2. (a) Solid-state structure of 2[OTf]. Hydrogen atoms and the non-

interacting triflate anion are omitted for clarity. Thermal ellipsoids are set at the 

40% probability level. (b-e) Selected IBOs of 2 with enclosing 80% of the density 

of the orbital electron. (f) The condensed values of the dual descriptor (DD) that 

corresponds to the difference between frontier molecular orbitals (FMOs) electron 

densities. Positive values correspond to atomic sites where electrophilicity is 

predominant, and negative values refer to atomic sites where nucleophilic 

tendencies dominate. (g) DD of Sn for [Cp*Sn]+, [PhB(tBuPy)3Sn]+ and 2. 

 

Isolation of Sn(IV) Cation Salts 

In line with the computational results, no reaction was observed 

upon combining 2[OTf] with Lewis bases such as PMe3 and 4-

dimethylaminopyridine in DCM. We thus envisioned that the 

electron-rich Sn center of 2[OTf] should have a high propensity 

for oxidation reactions. Treatment of 2[OTf] with 3,4,5,6-

tetrachloro-1,2-benzoquinone (o-chloranil) or S8 in DCM gave 

rise to 3[OTf] (119Sn NMR: -375.3 ppm) or 4[OTf] (119Sn NMR: -

201.5 ppm) in 85 or 65 % yield, respectively (Scheme 2). 

Characterization that included X-ray diffraction showed the 

formation of two novel Sn(IV) cation salts (Figure 3). In both 

cases, Sn(1) forms two new chemical bonds and the PhB(tBuIm)3 

ligand remains completely intact. This contrasts with the facile 

hapticity shifts of the Cp ring in [Cp*Sn][OTf].22 The bond length 

of Sn(1)–S(1) (2.246(2) Å) in 4[OTf] correlates favorably with 

those seen for (CyNC(tBu)NCy)2Sn=S (2.280(5) Å)92 and 

Bbt(Titp)Sn=S (2.221(3) Å)93 (Bbt = 2,6-bis[bis(trimethylsilyl)-

methyl]-4-[tris(trimethylsilyl)methyl]phenyl; Titp = 2,2’’,4,4’’-

tetraisopropyl-m-terphenyl-2’-yl). While neutral compounds 

featuring a Sn=S double bond have been known for decades,92-

96 cationic Sn=S species are extremely rare. It was reported 

recently by Ghadwal that oxidation of a cationic 

distannabarrelene with S8 yielded a cationic Sn=S species.41 

4[OTf] represents a scarce example of this sort of species. These 

results showcase the potential of TCB ligands for stabilization of 

hitherto unknow main group species, as well as the potent 

synthetic ability of 2[OTf] for Sn(IV) cations. 

 
Scheme 2. Oxidations of 2[OTf] leading to tin(IV) salts 3[OTf] and 4[OTf]. 



  

  

 

 

 
Figure 3. Solid-state structures of 3[OTf] (a) and 4[OTf] (b). Hydrogen atoms and 

the non-interacting triflate anion each are omitted for clarity. Thermal ellipsoids 

are set at the 40% probability level. 

 

Coordination Behavior toward Coinage Metals 

Whereas numerous TM stannylene complexes have been 

documented,97 coinage metal complexes ligated with a Sn(II) 

cation are hitherto unknown. We thus examined the 

nucleophilic behavior of Sn(1) in 2[OTf] towards coinage metals 

(Scheme 3). The combination of 2[OTf] and (tht)AuCl (tht = 

tetrahydrothiophene) in DCM immediately led to a ligand 

exchange reaction, in which 5[OTf] (119Sn NMR: -118.8 ppm) 

was isolated as a white powder in 73% yield. Further structural 

authentication of 5[OTf] as a rare monomeric gold complex with 

a cationic Sn(II) ligand was established by X-ray diffraction 

(Figure 4a). The Sn(1)−Au(1) bond length at 2.4904(3) Å is 

comparable to that of stannylene gold complexes L1(Cl)SnAuCl 

(2.4848(3) Å) (L1 = 2,6-(Me2NCH2)2C6H3)73 whereas slightly 

shorter than that in [L2SnAuSnL2][OTf] (2.555(8) Å, av.) (L = (2,6-

diisopropylphenyl)(1-(pyridin-2-yl)vinyl)amide).37 It is 

noteworthy that TM-bound Sn(II) cations have been seldom 

encountered; they are exclusively prepared via a halide 

abstraction route.55-58 Previous attempts by Inoue for 

coordination of a bisNHCP Sn(II) cation (bisNHCP = ferrocene-

bridged N-heterocyclic carbene stabilized bis-phosphinidenes) 

with CuCl only gave a transmetalation product.98 The group of 

Majumdar attempted to establish nucleophilic behavior of a 

bis(a-iminopyridine)-stabilized Sn2+ toward TMs but they were 

unsuccessful as well.53 The success in isolating 5[OTf] 

demonstrates a straightforward synthetic method for coinage 

metal Sn(II) cation complexes. 

The reaction of 2[OTf] with AgBF4 in DCM followed by 

crystallization in THF gave rise to 6[BF4] in 43% yield (Scheme 3). 

We observed, via 11B (0.1 and -1.2 ppm) and 19F NMR (-150.9 

and -155.8 ppm) spectroscopies, two magnetically inequivalent 

[BF4]- anions in 6[BF4]. The monomeric structure of 6[BF4] is 

elucidated by crystallographic studies (Figure 4b). Ag(1) adopts 

in a tetrahedral coordination geometry and is bound not only to 

Sn(1) with the Sn(1)−Ag(1) bond length of 2.5809(4) Å, but also 

to two THF molecules and a fluoride of [BF4]-. The second [BF4]- 

anion is away from the cation 6. 

Upon adding AgOTf to a DCM solution of 2[OTf], we isolated 

a neutral species 7 in 51% yield (Scheme 3). Similar to the 

tetrahedral geometry of Ag(1) in 6[BF4], to fulfill four 

coordination sites at Ag 7 appears to be a dimeric structure 

(Figure 4c), featuring a Ag2S2O4 eight-membered ring with two 

bridging OTf anions. Each Ag center bears a cationic ligand of 2 

and an additional OTf anion. The average Ag−O bond length in 

the ring is computed to be 2.369 Å, which is similar to those of 

exocyclic Ag(1)−O(1) (2.367(3) Å) and Ag(2)−O(2) bonds 

(2.371(3) Å). The isolation of 5[OTf], 6[BF4], and 7 demonstrates 

the nucleophilic ligand behavior of 2[OTf] for coordination 

chemistry. 

 
Scheme 3. Synthesis of gold and silver complexes 5[OTf], 6[BF4] and 7. 



  

  

 

 

 
Figure 4. Solid-state structures of 5[OTf] (a), 6[BF4] (b) and 7 (c). Hydrogen atoms 

and the non-interacting anions are omitted for clarity. Thermal ellipsoids are set 

at the 40% probability level. 

DFT calculations were carried out to understand the ligand 

features of 2[OTf]. We selected 5[OTf] as an example. The 

presence of the donor-acceptor interaction between the 

cationic ligand 2 and [AuCl] is suggested by means of energy 

decomposition analyses with natural orbitals for chemical 

valence (EDA-NOCV)99-101 (Figure S38). The electrostatic 

interaction term (ΔEelstat) is dominant with -113.1 kcal mol-1, 

while the orbital interaction term (ΔEorb) is -55.2 kcal mol-1. 

Investigations of the deformation density plots enable 

visualization of the donor-acceptor interaction (Figure 5), in 

which the Sn-to-Au σ-donation (-37.5 kcal mol-1, 67.9%) plays a 

major role in contributions to ΔEorb, and twofold Au-to-Sn π-

backdonation contributes minorly (-10.2 kcal mol-1, 18.5%). 

Furthermore, principal interacting orbital (PIO)102-103 analysis, 

which has provided a clear illustration for donor-acceptor 

interactions, agrees well with the EDA-NOCV results. The first 

PIO pair suggests a σ-bonding interaction between the Sn(1) 

and the Au(1) atoms (Figure S39a), whereas the second and 

third PIO pairs represent Au(1)-Sn(1) π-backdonation (Figures 

S39b and S39c). Taken as a whole, these imply strong σ-

donating and weak π-accepting ligand features of 2[OTf]. 

 

 
Figure 5. The strong pairwise orbital interactions (< -5.0 kcal mol-1) in 5. (a) Sn-

to-Au σ-donation (-37.5 kcal/mol). (b) Au-to-Sn π-backdonation (-5.1 kcal mol-1). 

(c) Au-to-Sn π-backdonation (-5.1 kcal mol-1). The direction of charge flow is red 

to blue. 

Conclusions 

To conclude, we have introduced Smith’s PhB(tBuIm)3 ligand for 

the chemistry of p-block elements, with the isolation of a 

nucleophilic Sn(II) cation salt. This anionic TCB ligand features 

stronger 6e donating ability with respect to those of the well-

established Tp and Cp ligands. Unlike the previous electrophilic 

Sn(II) cations, we have shown the nucleophilic cationic Sn(II) 

ligand behavior of 2[OTf] for coinage metals. Experimental and 

theoretical results unveil σ-donating and π-accepting ligand 

features of 2[OTf]. Given that p-block compounds ligated with 

Cp and Tp ligands are pervasive, we believe that the present 

work has a significant impact on the future synthesis of unusual 

p-block species based on these TCB frameworks. Development 

of novel TCB ligands and their usage in main group chemistry 

are subjects of ongoing work in our laboratory. 
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