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 9 

Isoquinolones are important structural motifs in synthetic and medicinal chemistry. Reported 10 

herein is highly atroposelective access to C-N axially chiral isoqionolones via rhodium-11 

catalyzed C-H activation of N-alkoxy benzamides and [3+3] annulation with imidoyl 12 

sulfoxonium ylides. The coupling system proceeded efficiently under mild and redox-neutral 13 

conditions with excellent functional group tolerance as a result of dynamic kinetic 14 

transformation of the ylidic coupling reagent (carbene precursor). Experimental and 15 

computational studies revealed a pathway of C-H activation, carbene insertion, and formal 16 

nucleophilic substitution-cyclization for this coupling system. In particular, the C-N cyclization 17 

is enantio-determining and occurs via an unusual rhodium-catalyzed -bond metathesis 18 

mechanism. The benzamide, the imidoyl sulfoxonium ylide, and the chiral catalyst each 19 

played a dual role. The amide functionality acts as a directing group as well as an electrophilic 20 

acylating group, and the imidoyl sulfoxonium ylide participated as a nucleophile-21 

functionalized carbene reagent. Applications of representative products as potentially useful 22 

chiral ligands have also been demonstrated. 23 

 24 

The past decade has witnessed the flourish of chemistry of axially chiral (hetero)biaryls, which 25 

have found widespread applications as chiral ligands and organocatalysts.1-8 Among the axial 26 

chirality family, C-N axially chiral heterobiaryls9-14 remain underexplored possibly due to their 27 

synthetic challenges in that the relatively short distance of the C-N bond may cause steric 28 

hindrance during proximal bond formation. Two synthetic strategies are typically adopted in 29 

construction of C-N axially chiral biaryls. In one category, functionalization of the peripheral 30 

groups in existing (hetero)aryl rings allows restriction of the C-N rotation by size-increasing 31 

effect.15-22 Alternatively, de novo construction of a new (hetero)aryl ring with incorporatation of 32 

the C or N atom into it may also restrict the conformation of the C-N axis.23-45 The latter strategy 33 

is particularly important because new chiral platforms are constructed with modularity, which 34 

allows exploitation of diverse chiral structures. In this context, C-N axially chiral indoles,32-35 35 

benziimidazoles,36-40 maleimides,41 and isoqionolones42-45 have been readily constructed by 36 

metal- or organocatalysis (Scheme 1a). The predominant chiral induction modes in these 37 

annulation reactions include Pd-catalyzed cyclization of bulky o-alkynylanilines,10,32 C-N 38 

reductive elimination,35,39,41,44,45 and CPA-catalyzed addition of NH nucleophiles to electrophiles 39 

(Scheme 1a).28,29,33,34,37-39 While significant progress has been made in CPA-catalyzed fabrication 40 



of axial chirality, the reaction patterns are restricted to the intrinsic Brønsted acidic properties of 41 

the catalyst and are mostly limited to formation of 5-membered heterocycles. Metal catalysis has 42 

provided privilidged approaches to cross-coupling reactions. Thus, these concepts of metal- and 43 

organocatalysis evolved indepenently. Thereofore, it is imporant to adopt a single metal catalyst 44 

in dual role to integrate both cross-coupling and subsequent nucleophilic addition/C-N 45 

cyclization for construction of C-N axially chiral biaryls, especially by a C-H activation strategy. 46 

Meanwhile, it is well-recognized that introduction of fluorine atoms into organics improved their 47 

lipophilicity and bioactivity, with no exception to axially chiral biarlys. However, synthetic 48 

examples are limited.37,40,46,47 49 

(a) de novo Ring Construction of C-N Axially Chiral Biaryls/Analogues
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 50 

Scheme 1 C-N Axial Chirality and the C-H Activation Approach (DG = directing group, DKT = dynamic 51 
kinetic transformation, CPA = chiral phosphoric acid). 52 

Indeed, C-H bond activation has been established as an increasingly important strategy in 53 

asymmetric synthesis of axially chiral biaryls,48-50 including de novo construction of rings in C-54 

N axially chiral biaryls (Scheme 1b). Recently, Zhou realized synthesis of isoqionolones via 55 

palladium-catalyzed Catellani reactions using bifunational and bulky aryl bromides.45 In 2022, 56 

the Shi51 group and the Niu52 group independently reported Co-catalyzed oxidative C-H 57 

activation of amides and [4+2] annulation with alkynes, affording isoquinolones via dynamic 58 

kinetic transformation (DKT) of the bulkyl directing group, where the C-N axis originates from 59 

the directing group. Our group previously applied bulky N-isoqinoline as a directing group to 60 

assist C-H activation of anilines and [3+2] annulation with internal alkynes, affording C-N axially 61 



chiral indoles.35 We have also extended the DKT concept to sterically hindered alkynes53-56 such 62 

as 1-indolylphenylacetylenes which coupled with nitrones via C-H activation-annulative 63 

coupling to give C-N axially chiral indoles.55 Despite the reports, the directing group is limited 64 

to bidentate chelation or bulky ones. On the other hand, although DKT of the coupling partner 65 

has been employed in C-H activation, it is restricted to alkynes. 66 

 67 

Reaction Design. Our design boils down to development of new coupling reagents that are 68 

both bulky and reactive. To reconcile these seemingly contradictive criteria, we employed a 69 

bifunctional carbene reagent such as CF3-imidoyl sulfoxonium ylides (TFISYs)57-65 bearing a 70 

proximal nucleophilic imine nitrogen as well as a bulkyl N-aryl group (Scheme 1c). Consequently, 71 

a secondary amide bearing an electrophilic directing group66-71 was applied as the C-H substrate. 72 

Thus, both the arene and the carbene reagent are bifunctional,72 and the polarity-matched 73 

cyclization affords the chiral isoquinolone. In fact, related [3+3] or [4+2] annulation systems 74 

have been extensively explored using sulfoxonium ylide as the carbene reagent in racemic 75 

synthesis.73-88 Regardless of the design, a formidable challenge exist that defies development of 76 

the asymmetric catalytic system. Following the C-H alkylation, the C-N cyclization process is 77 

enantio-determining, but this key process is generally proposed or assumed to be uncatalyzed or 78 

Lewis acid-promoted (Scheme 1c).89-92 These scenarios inevitably lead to no or poor 79 

enantioselectivity. We now report rhodium-catalyzed asymmetric C-H activation of N-alkoxy 80 

benzamides and [3+3] annulation with imidoyl sulfoxonium ylides, as a result of dynamic kinetic 81 

transformation of the ylidic carbene precursor. Most importantly, experimental studies revealed 82 

that the formal nucleophilic cyclization process is rhodium-catalyzed, and DFT studies suggest 83 

that C-N formation and the C-N cleavage take place in a concerted fashion via a unique -bond 84 

metathesis mechanism. 85 

Results 86 

Optimization Studies. With the design principle in mind, we applied secondary benzamide as 87 

the arene reagent (1), and the presence of a CF3 group in the TFISY (Table 1) activates the carbene 88 

species toward migratory insertion and it also serves to reduce the nucleophilicity of the imine 89 

nitrogen so that the background C-N cyclization is suppressed. The amide directing group in 1 90 

was initially screened using Cramer’s second-generation chiral rhodium catalyst93-96 (R)-Rh1 in 91 

the presence of a base (see Tables 1 and 2). The desired [3+3] annulation product isoquinolone 3 92 

was indeed obtained in good yield at 60 oC when an N-alkoxy group was employed, and the N-93 

OiPr group outperformed other secondary alkoxy groups in enantioselectivity (-63% ee). The 94 

employment of other N-substituents such as N-OPiv, -Ts, and -Ac all suppressed the rection, 95 

indicating significant electronic and steric effect of the N-directing group. 96 

 97 
Table 1. Initial Screening of the Amide Directing Group.a,b,c 98 

 99 



(a) Reactions were carried out using secondary benzamide (0.1 mmol), 2a (1.5 equiv), (R)-Rh1 (4 mol%), 100 

NaOAc (2.0 equiv) at 60 °C in DCE (2 mL) for 36 h under N2. (b) Isolated yield. (c) Negative ee refers to the (S)-101 

configured product. See Table 2 for the structure of (R)-Rh1 catalyst. 102 

 103 

Further screening was conducted using N-OiPr benzamide as the arene reagent (Table 2). It 104 

was found that the (R)-Rh(III) catalyst played a pivotal role. While no reactivity was found for 105 

the (R)-Rh2, switching to a spirocyclic (R)-Rh3 catalyst,97 which was originally developed by 106 

You, significantly improved the enantioselectivity (80% ee), and the inversed configuration is 107 

ascribed to the opposite spatial orientation of the chiral ligand (entries 1-3). Screening of solvent 108 

and base additive indicated that DCM and KOAc seemed to be better choices (entries 4-10). 109 

Further introduction of a carboxylic acid (1 equiv) slightly boosted the enantioselectivity when 110 

the reaction was performed at 50 oC (entries 11 and 12), and AcOH outperformed PivOH. Finally, 111 

inclusion of 4Å MS afforded the product 3 in excellent enantioselectivity (93% ee) and good 112 

efficiency (entry 13). 113 
Table 2. Further Optimization Studiesa,b 114 

 115 
Entry Rh cat. Base/Acid Solvent Ee (%) Yield (%) 

1 Rh1 NaOAc DCE -63 72 

2 Rh2 NaOAc DCE -- 0 

3 Rh3 NaOAc DCE 80 63 

4 Rh3 CsOAc DCE 72 58 

5 Rh3 AgOAc DCE 88 45 

6 Rh3 KOAc DCE 81 64 

7 Rh3 KOAc PhCl 78 25 

8 Rh3 KOAc MeOH 66 54 

9 Rh3 KOAc DCM 82 68 

10c Rh3 KOAc DCM 85 65 

11c Rh3 KOAc/PivOH DCM 89 68 

12c Rh3 KOAc/AcOH DCM 92 70 

13c,d Rh3 KOAc/AcOH DCM 93 74 

(a) Reactions were carried out using amide 1a (0.1 mmol), ylide 2a (1.5 equiv), (R)-Rh3 (4 mol%), base (2.0 116 

equiv) and acid (1.0 equiv, if any) at 60 °C in solvent (2 mL) for 36 h under N2. (b) Isolated yields. (c) At 50 °C. 117 

(d) 4Å MS (50 mg) was added. 118 

 119 

Reaction Scope. With the establishment of the optimal reaction conditions, we then 120 

extensively explored the scope and limitation of this coupling system under the standard reaction 121 

conditions (Scheme 2). The scope of the amide substrate turned out to be very broad when ylide 122 

2a was employed as a coupling reagent. Thus, introduction of various electron-donating (4-7), -123 

withdrawing (8-12), and halogen (13-15) groups into the para position of the benzamide substrate 124 



was fully tolerated, affording the desire product in good efficiency (56-85% yield), and excellent 125 

enantioselectivity was consistently observed within a small range of 93-97% ee. The same 126 

functional group compatibility was also observed for different classes of meta-substituted 127 

benzamide substrates (16-21, 91-95% ee). Pronounced steric and electronic effects of the ortho 128 

substituents were observed. Lower efficiency and slightly lower enantioselectivity was observed 129 

when an ortho-fluoro or -chloro group was present (22 and 23). The introduction of an ortho-Me 130 

group significantly reduced the enantioselectivity likely due to the steric effect. Fortunately, 131 

switching to the (R)-Rh1 catalyst improved the enantioselectivity to -80% ee ((S)-24). The 132 

coupling of disubstituted benzamides or several (hetero)arene-fused benzamides (25-27, 93-96% 133 

ee) proceeded smoothly with excellent enantioselectivity. A heteroarene-derived amide was also 134 

applicable as in the isolation of product 28 in attenuated enantioselectivity. Of note, our protocol 135 

is applicable to drug-related benzamides, and four functionalized benzamide substrates 136 

underwent efficient coupling all in excellent enantioselectivity (29-32, 92-99% ee), suggesting 137 

the potential importance in late-stage functionalization of related functional molecules. An 138 

acrylamide and other heteroarene-derived amides failed to undergo any coupling (65-67). 139 

The scope of the ylide reagent was also extensively examined. Introduction of a wide variety 140 

of substituents (alkyl, aryl, OMe, halogen, or OCF3) into the para or meta position of the N-(o-141 

phenyl) ring of the imidoyl sulfoxonium ylide was fully tolerated (33-42, 89-94% ee), and the 142 

bulky N-aryl group was also extended to an N-(o-(2-naphthyl)phenyl) group (50, 93% ee). In 143 

addition, disubstituted bulky N-aryl rings were also compatible (43-49, 88-94% ee), including 144 

several 1,6-disubstitited aryl rings (48 and 49). The ortho substituent in the N-aryl group was not 145 

limited to an aryl, and a surprisingly broad scope of ortho groups such as alkyl (51 and 52), 146 

alkynyl (53), CF3 (54), triflate (55), methylthio (56), sulfonyl (57), phosphoryl (58), and heavy 147 

halogen groups (59 and 60) were fully amenable to the reaction conditions (86-95% ee). The 148 

absolution configuration of product 51 has been confirmed to be (R) by X-Ray crystallography 149 

(CCDC2211789). The CF3 group in the imidoyl sulfoxonium ylide was also successfully 150 

extended to C2F5 and other difluoalkyls (61-64) with no loss of enantioselectivity (89-94% ee). 151 

In contrast, no reaction occurred when the CF3 was replaced by a Ph group, suggesting necessity 152 

of EWG-activation of the carbene reagent. The rotational barrier of representative products (3, 153 

51 and 59) along the C-N axis has been determined, with the ∆��ranging from 28.7 to > 37 154 

kcal/mol and a bulkier o-substituent results in higher barrier (Scheme 2). 155 

 156 

Synthetic Applications. Synthetic applications of representative products have been 157 

demonstrated (Scheme 3). Rh(III)-catalyzed oxidative olefination of product 51 with an arylate 158 

ester afforded product 68 with no erosion of the enatiopurity. Standard reduction of phosphine 159 

oxide 58 (95% ee) delivered the phosphine 69 in essentially the same optical purity. Phosphine 160 

69 (97% ee) has been extensively examined as a chiral ligand in asymmetric catalysis. Palladium-161 

catalyzed asymmetric allylic alkylation using diethyl malonate afforded 70 in excellent 162 

enantioselectivity (94% ee). In contrast, significantly lower enantioselectivity (28-52% ee) was 163 

reported for this reaction when the CF3 in the ligand was replaced by a methyl, highlighting the 164 

significance of the electronic/steric effect of CF3 group.98 Arylation of the same allyl acetate 165 

using an unprotected indole afforded 71 also in high enantioselectivity. Chiral ligand 69 was also 166 

applied to Ru-catalyzed nucleophilic addition between a benzaldehyde and phenyl boronic acid, 167 

affording diarylmethanol 72 in 73% ee. 168 
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Scheme 2. Reaction Scope of the [3+3] annulation.a,b (a) Reactions were carried out using 1 (0.1 mmol), 2 171 
(1.5 equiv), (R)-Rh3 (4 mol%), KOAc (2.0 equiv), AcOH (1.0 equiv) and 4Å MS (50 mg) at 50 °C in DCM (2 mL) 172 



for 36 h under N2. (b) Isolated yields. (c) The (R)-Rh1 catalyst was used. 173 
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Scheme 3. Synthetic Applications of Representative Products. 175 

Experimental Mechanistic Studies. N-alkoxybenzamdes99-116 are typical arene substrates that 176 

react via a C-H activation pathway through a concerted-metalation-deprotonation mechanism. 177 

The kinetic isotope effect (KIE) of the C-H cleavage was then determined using benzamides 1 178 

and 1-d5 in parallel coupling reactions with 2a (Scheme 4a). 1H NMR analysis of the 179 

isotopomeric products gave kH/kD = 1.5 at a low conversion, which indicates that the C-H 180 

cleavage may occur prior to the turnover-limiting step and hence is probably not involved in the 181 

turnover-limiting step. Based on various reports of catalytic C-H activation using the related 182 

sulfoxonium ylides as an acylmethylating reagent,117-123 the reaction likely proceeds through a 183 

closely analogous pathway, followed by C-N bond-forming cyclization. While we failed to isolate 184 

the C-H alkylated intermediate after many attempts, the expected intermediate (73, achiral) was 185 

isolated as a minor product during the synthesis of isoquinolone 22 (Scheme 4b), where the 186 

presence of an ortho-F group likely retarded the C-N cyclization that is turnover-limiting in this 187 

specific case. As expected, no background cyclization of 73 occurred in the absence of the chiral 188 

Rh(III) catalyst, while subjection of 73 into the standard catalytic conditions afforded the product 189 

22 in 86% ee in an acceptable yield. These control experiments highlighted the role of the Rh 190 

catalyst during cyclization, and either 73 or its Rh(III) enamido species is an intermediate with 191 

reversible N-coordination. To further explore the C-N cyclization process, an equimolar mixture 192 

of the achiral ([Cp*RhCl2]2) and the chiral Rh3 catalysts (2 mol% for each) was applied as the 193 

catalyst for the coupling of 1 and a 2-bromophenyl-substitited ylide reagent (Scheme 4c), from 194 

which essentially no change was detected in either the yield or the enantioselectivity (92% ee) of 195 

the product 59. This control experiment manifested that the chiral catalyst Rh3 overshadowed 196 

the achiral [RhCp*Cl2]2 during the cyclization event. To examine the role of the carboxylate 197 

during the cyclization, a chiral zinc carboxylate was introduced to replace the KOAc in the 198 

standard conditions (Scheme 4d). A non-negligible enantioselectivity (25%) was detected for 199 



product (S)-52 although the reaction suffered from poor conversion. These observations may 200 

suggest that the carboxylate is rhodium-bound during the enantio-determining cyclization. 201 

 202 

Scheme 4. Experimental Mechanistic Studies. 203 

Computational Mechanistic Studies. To gain deeper insights into the key C-N bond-forming 204 

cyclization step and the origins of the enantioselectivity, density functional theory (DFT) 205 

calculations were performed at the ωB97M-D4(SMD)/def2-QZVP//B3LYP-D3BJ/def2-SVP 206 

level of theory (see the Supporting Information for the computational details). The racemic 207 

system was first explored to establish the detailed mechanism using Cp*Rh(OAc)2 as the active 208 

catalyst species. The calculated most favorable pathway of the C-N bond forming cyclization is 209 

depicted in Figure 1a. The neutral intermediate IM1, which can be generated by the C-H 210 

activation followed by the carbene insertion, was selected as the starting point of the 211 

computations. The results show that intermediate IM1 first undergoes an isomerization step to 212 

give intermediate IM2, which is more stable than IM1 by 6.8 kcal/mol. Then, the C-N bond 213 

forming cyclization was found to proceed through transition state TS1, with an energy barrier of 214 

22.5 kcal/mol relative to IM2. The optimized geometry implies that transition state TS1 215 

corresponds to the -bond metathesis between the Rh-N and N-C(acyl) bonds (see the Supporting 216 

Information for details), with the formation and cleavage of the C-N bonds occurring in a 217 

concerted manner. Of particular note, the possible pathway from the cationic analogue formed 218 

by the dissociation of OAc was also considered, which was computed to be much higher in energy 219 

than that from IM1 (see the Supporting Information for details), in line with the experiments that 220 

the carboxylate is likely rhodium-bound during the C-N bond forming cyclization (Scheme 4d). 221 

This proposed mechanism is also in line with our optimization studies in that introduction of a 222 

Lewis acid additive (ZnII or ScIII) either had negligible influence or slightly increased the 223 

enantioselectivity (Supporting Information, Table S1). 224 



 225 
Figure 1. (a) Calculated most favorable pathway of the C-N bond forming cyclization in racemic system; (b) 226 

Optimized geometries of (R)-TS2 and (S)-TS2 in the Rh3-catalyzed system. Free energies and bond distances 227 

are given in kcal/mol and Å, respectively. 228 

To further shed light on the origins of the enantioselectivity, the -bond metathesis transition 229 

states corresponding to the (R)-Rh3 catalyst were evaluated (Figure 1b). It was found that 230 

transition state (R)-TS2 is lower in energy than (S)-TS2 by 3.0 kcal/mol, which corresponds to a 231 

calculated enantioselectivity of 98% ee at 50 °C, in accordance with the experimentally observed 232 

excellent enantioselectivity. The optimized geometries indicate the presence of - interactions 233 

between the N-(o-phenyl) ring and benzamide moiety in both (R)-TS2 and (S)-TS2 (3.54 and 234 

3.53 Å). However, in (S)-TS2, the steric repulsions of the N-aryl ring and OiPr group with the 235 

chiral ligand were found (2.32 and 2.16 Å, respectively). While in (R)-TS2, only the steric 236 

repulsion between the OiPr group and chiral ligand exists (2.26 Å). Moreover, the attractive H--237 

-F interaction was observed in the (R)-TS2 (2.46 Å), which is absent in (S)-TS2. The combination 238 

of the steric repulsions and H-F interaction results in higher energy of (S)-TS2 than the (R)-TS2, 239 

thus leading to the experimentally observed excellent enantioselectivity. In addition, the 240 

activation barrier for the cyclization to give the (R)-product was calculated to be 18.1 kcal/mol, 241 

which is 4.4 kcal/mol lower than in the RhCp*(OAc)2-catalyzed racemic coupling. These 242 

calculation data are consistent with our competitive studies using mixed rhodium catalysts 243 

(Scheme 4c). 244 

Conclusions 245 

We have developed a redox-neutral protocol to access to C-N axially chiral isoqionolones via 246 

rhodium-catalyzed C-H activation of N-alkoxy benzamides and [3+3] annulation with imidoyl 247 

sulfoxonium ylides that act as unusual carbene reagents. The coupling system proceeded 248 

efficiently under mild conditions with excellent functional group tolerance. The C-N chiral axis 249 

originates from the ylide reagent and the axial chirality was constructed via dynamic kinetic 250 

transformation of the ylide reagent. Experimental and computational studies revealed a pathway 251 

of C-H activation, carbene insertion, and formal nucleophilic substitution-cyclization for this 252 

coupling system. In particular, DFT studies suggest that this enantio-determining C-N cyclization 253 

occurs via an unusual rhodium-catalyzed -bond metathesis mechanism. The benzamide, the 254 

imidoyl sulfoxonium ylide, and the rhodium catalyst each plays a dual role, where the amide 255 



functionality acts as a directing group as well as an electrophilic acylating group, and the imidoyl 256 

sulfoxonium ylide participated as a nucleophile-functionalized carbene reagent. A representative 257 

coupled product has been demonstrated as a useful ligand in cross-coupling reactions. Further 258 

studies of atroposelective C-H activation via other underexplored mechanisms are underway in 259 

our lab and will be reported in due course. 260 

Methods 261 

Synthesis of 3-64. A screw-cap vial (8 mL) was charged with N-isopropoxybenzamide 1 (0.1 262 

mmol, 1.0 equiv), sulfoxonium ylide 2 (0.15 mmol, 1.5 equiv), (R)-Rh3 (4.4 mg, 4 mol%), KOAc 263 

(19.6 mg, 0.2 mmol, 2.0 equiv), AcOH (6.0 mg, 0.1 mmol, 1.0 equiv) and 4Å MS (50 mg) in 264 

DCM (2 mL) was stirred in a vial at 50 oC for 36 h. The reaction mixture was evaporated under 265 

vacuum and the residue was purified by preparative TLC (PE/EA 10/1)to give the corresponding 266 

product 3-64. 267 
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