Synthesis of 3-alkyl oxazolidines, derived from 2-hydroxymethyl piperidine, as analytical standards for the analysis of volatile aldehydes in the workplace

Amadou R. Yaya†, Martin Girard†, Karima Belkhadem\textsuperscript{†,X}, Rémi Piard, Dr. Andreas Decken≠, Catherine Choinière§, Pierre Luc Cloutier§, Jacques Lesage† and Livain Breau†,*.

† Laboratoire de Synthèse Organique Appliquée. Département de chimie, Université du Québec à Montréal, CP. 8888, Succ. Centre-Ville, Montreal (PQ), H3C 3P8, Canada.

¥ Department of Chemistry University of Sciences and Technology Mohamed Boudiaf, P.O.Box 1505 El-M’naouer, 31000, Oran, Algeria.

≠ Department of Chemistry University of New Brunswick P.O. Box 45222 Fredericton, NB E3A 6E2

§ Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505 Ouest De Blvd Maisonneuve, Montréal, Québec, Canada, H3A 3C2

σ: A.R.Y and M.G. contributed equally to this paper

* Corresponding Author: email: breau.livain@uqam.ca

Abstract: Hexahydro-3-alkyl-3H-oxazolo[3,4-a]pyridines 4-15 for the quantitative analysis of various aldehydes were obtained in good yield via the condensation reaction of 2-hydroxymethylpiperidine (2-HMP) with aldehydes under mild conditions. When acrolein is used, the bicyclic 17 was obtained. This novel compound has suitable physical characteristic for an analytical standard. The hexahydro-3-vinyl-3H-oxazolo[3,4-a]pyridine 16 can be achieve at higher temperature. Using specific conditions, a diastereomeric mixture of 18/19 and pure 18, which are both bisadducts of 2-HMP with acrolein, can be obtained. Mechanistically, a thorough 1H-NMR study did not show any evidence that the condensation reaction proceeded via an enamine. The reaction probably proceeds through an elusive hemiaminal and fleeting iminium ion, which underwent subsequent cyclisation to gave hexahydro-3-alkyl-3H-oxazolo[3,4-a]pyridines 4-16. The reaction pathways for the preparation of 4-18 are described.

Key word: 2-hydroxymethylpiperidine (2-HMP); Heterocycle; Oxazolidine; Hexahydrooxazolopyridine; Octahydro-oxazepanol; Analytical standard; Addition 1,2/1,4-\(\alpha/\beta\)-unsaturated aldehyde.
1. Introduction:
The condensation of an aldehyde or ketone with a β-amino alcohol is of considerable interest in synthetic organic. The cycladducts produced, i.e., oxazolidines are useful in drug development and can act as chiral auxiliaries in various asymmetric transformations such as prodrugs, improving the pharmacokinetic profile of β-amino alcohol pharmacophores. They are also known biocides, used to prevent the growth of undesirable algal, barnacle or fungal growth on submerged or partially submerged structures in aquatic environments and to inhibit fungal growth in hydrocarbon fuels. The bicyclic octahydro-3H-pyrido[2,1-c][1,4]oxazepan ring system (similar to 17) is an important component of the skeleton of some interesting natural products, for example, the neurotoxin batrachotoxin as well as glycosidase enzyme inhibitors.

These heterocycles are also of analytical interest. Indeed, volatile aldehydes are reactive in the air and require stabilization via chemisorption during sampling for occupational exposure assessment or air quality, and to ensure a reliable quantification through instrumental analysis. One of the options to efficiently stabilise aldehydes in air was developed by the National Institute for Occupational Safety and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA) using 2-piperidinemethanol (better known as: 2-hydroxymethyl piperidine or 2-HMP) derivatives. The second most common option is with the use of 2,4-dinitrophenylhydrazine derivatives. However, some authors reported concerns with unsaturated aldehydes, such as acrolein and crotonaldehyde, due to the presence of by-products and stability issues. As with any reliable analytical method, the availability or information regarding the preparation of stable analytical standards with high purity is imperative, which is actually lacking in the methods using 2-piperidinemethanol.

Even though bicyclic oxazolidines are well-known five-membered nitrogen-oxygen heterocycles, a comprehensive review of their generation and mechanism has not been reported. Indeed, conflicting reports of the capture of aldehydes by 2-HMP were found in the literature. Notably, Kennedy and Ashley reported the formation of oxazolopiperidine using 2-HMP and proposed, based on IR studies, that the reaction proceeded via an enamine intermediate while other authors, rather, reported to proceed via an iminium intermediate. Thus, we were prompted to reinvestigate the reaction involving 2-HMP with a series of
substituted aldehydes in order to gain a deeper understanding of its mechanism and to establish optimal conditions for the generation of analytical standards 4-15 and 17.

2. Results and discussion

2.1 Synthesis: A potentially attractive approach for the detection of volatile aldehydes would be to capture the aldehyde in question with a binucleophilic agent such as 2-HMP, producing a 1,3-oxazolidine.\(^{22-24}\) Therefore, we investigated the condensation of various aldehydes with 2-HMP and obtained the corresponding hexahydro-3-alkyl-1,3-oxazolopiperidines 4-15 in high yields (see Table 1). Optimization of the reaction conditions was explored, changes in: solvent (hexane, benzene, toluene, xylene, DCM and MeOH); acid present (PPTs, p-TsA and BF\(_3\)OEt); dehydrating agent (MgSO\(_4\), 4 Å molecular sieves and Dean-Stark trap) and temperature were considered. The condensation occurs best at neutral pH. Indeed, in the case of acetaldehyde, the use of BF\(_3\)OEt (5% mole) resulted exclusively in the acetaldehyde trimer (paracetaldehyde). The reaction involving the diethylacetal derivative of acetaldehyde and acrolein in the presence of p-TsA or PPTs in toluene or benzene did not provide the corresponding products 5 nor 16. Ultimately, the mildest conditions for the condensation reaction were: anhydrous MgSO\(_4\) in dichloromethane (DCM), or toluene at room temperature. The other solvents investigated led to lower yields (THF, MeOH: Table 1 entries 13 - 14); or were more difficult to remove (xylene, Table 2 entry 13).

The temperature was critical from low to high boiling solvents in the reaction involving acrolein, see Scheme 1 and Table 2. Contrary to that previously reported, the reaction of acrolein with 2-HMP at room temperature in toluene does not give compound 16.\(^{23}\) Instead, under these conditions, either in DCM, hexane or toluene, the reaction provides mostly octahydro-3\(H\)-pyrido[2,1-c][1,4]oxazepin-3-ol 17 with trace of 18-19. The use of hexanes at reflux for 1 hour gave an almost 50/50 mixture of 16 and 17. Increasing the reflux time pushed the reaction toward 16, while toluene at reflux produced the oxazolopiperidine 16 in 85% yield.
Scheme 1. Reactions of 2-HMP with different aldehydes

4: R = H; 5: R = -CH₃; 6: R = -CH₂CH₃; 7: R = -(CH₂)₂CH₃; 8: R = -CH(CH₃)₂; 9: R = -C=CHCH₃; 10: R = -(CH₂)₃CH₃; 11: R = -C(CH₃)₃; 12: R = -CH₂CH(CH₃)₂; 13: R = -(CH₂)₄CH₃; 14: R = -(CH₂)₃CH₃; 15: R = furyl

Table 1. Reaction summary of 4-15 from the condensation of aldehydes 2 with 2-HMP 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde 2 (-R)</th>
<th>Ratio*†</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Product No</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- H</td>
<td>1.1</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>2</td>
<td>4</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>- CH₃</td>
<td>2.0</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>2</td>
<td>5</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>- CH₂CH₃</td>
<td>1.0</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>2</td>
<td>6</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>-(CH₂)₂CH₃</td>
<td>1.0</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>3</td>
<td>7</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>CH(CH₃)₂</td>
<td>1.0</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>3</td>
<td>8</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>CH=CH-CH₃</td>
<td>1.2</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>3</td>
<td>9</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>-(CH₂)₃CH₃</td>
<td>1.35</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>4</td>
<td>10</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>C(CH₃)₃</td>
<td>1.5</td>
<td>CH₂Cl₂</td>
<td>40</td>
<td>6</td>
<td>11</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>-CH₂CH(CH₃)₂</td>
<td>1.0</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>4</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>-(CH₂)₄CH₃</td>
<td>1.0</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>4</td>
<td>13</td>
<td>77</td>
</tr>
<tr>
<td>11</td>
<td>-(CH₂)₅CH₃</td>
<td>1.0</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>4</td>
<td>14</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>-Furyl</td>
<td>1.2</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>10</td>
<td>15</td>
<td>78</td>
</tr>
<tr>
<td>13</td>
<td>-Furyl</td>
<td>1.2</td>
<td>THF</td>
<td>RT</td>
<td>10</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>-Furyl</td>
<td>1.2</td>
<td>MeOH</td>
<td>RT</td>
<td>10</td>
<td>15</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>-Furyl</td>
<td>1.2</td>
<td>Toluene</td>
<td>RT</td>
<td>10</td>
<td>15</td>
<td>86</td>
</tr>
</tbody>
</table>

* A ratio of 5g of MgSO₄ was used for 1g of HMP for formaldehyde at 30% while a mass ratio of MgSO₄ : HMP of 1:1 was used for the other aldehydes
† Ratio of aldehyde to HMP
Table 2. Reaction summary of 16-19 from the condensation of acrolein 3 with 2-HMP 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ratio equiv (Acrolein:HMP)</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>Product No (Purity ratio %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>DCM</td>
<td>0</td>
<td>1</td>
<td>93</td>
<td>17 (96)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>DCM</td>
<td>RT</td>
<td>4</td>
<td>82</td>
<td>17 + 18/19 (90:10)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Toluene</td>
<td>RT</td>
<td>1</td>
<td>85</td>
<td>17 + 18/19 (90:10)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Hexane*</td>
<td>69</td>
<td>1</td>
<td>ND</td>
<td>16 + 17 (50:50)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Hexane*</td>
<td>69</td>
<td>2</td>
<td>80</td>
<td>16 + 17 (85:15)</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Hexane*</td>
<td>69</td>
<td>4</td>
<td>50</td>
<td>16 + 17 (85:15)</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>Toluene*</td>
<td>111</td>
<td>1</td>
<td>95</td>
<td>18/19 (97)</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>Toluene*</td>
<td>111</td>
<td>1</td>
<td>ND</td>
<td>16 + 18/19 (90:10)</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Toluene*</td>
<td>111</td>
<td>0.25</td>
<td>80</td>
<td>16 + 18/19 (95:5)</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Toluene*</td>
<td>111</td>
<td>0.5</td>
<td>85</td>
<td>16 + 18/19 (95:5)</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Toluene*</td>
<td>111</td>
<td>1.5</td>
<td>85</td>
<td>16 + 18/19 (95:5)</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Toluene*</td>
<td>111</td>
<td>1</td>
<td>90</td>
<td>16 (97)</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>Xylene*</td>
<td>139</td>
<td>1</td>
<td>70</td>
<td>16 + 18/19 (85:15)</td>
</tr>
</tbody>
</table>

* A mass ratio of MgSO₄ : HMP of 1:1 was used.
"¹H-NMR Ratio of products. Diastereoisomers 18/19 were obtain in various proportion. Overall yield undetermined.

As illustrated in Scheme 1 and Tables 1, 2, various oxazolopiperidines 4-16 and/or an octahydro-3H-pyrido[2,1-c][1,4]oxazepin-3-ol 17 were obtained as mixtures of diastereomers in good yields (avg 80%) from racemic 2-HMP. However, several difficulties were encountered. For example, all the condensation products derived from unsaturated aldehydes (acrolein, crotonaldehyde and furaldehyde) slightly hydrolyse (aldehyde peaks were detected in the ¹H-NMR) and thus were difficult to purify. In some cases, a modification of the isolation procedure was required. Furthermore, chromatographic purification must be avoided since some products may undergo hydrolyses or isomerisation, for instance, using silica gel in DCM, compound 16 was transformed progressively into compound 17. The products of the condensation using formaldehyde, 4, or acetaldehyde, 5, were first vacuum distilled in a Kulgelrohr apparatus to remove undesired low boiling impurities and then vacuumed redistilled.
from diphenylether. The latter acts as a heat dispersant, suppressing local overheating and decomposition during distillation. All products from 4-16 were purified using vacuum distillation while compounds 17 and 18 were crystalized. 19 could not be isolated in pure form (Table 2). Very high degree of purity for all synthesized compounds was achieved. Products 4-18 were rigorously characterised by 1H-NMR and GC-MS. In some cases, further characterization: COSY (4, 5, 9, 15-17-19), DEPT-HSQC (18, 18/19), NOE (15, 17-19), and X-ray analysis (17, 18) were performed. In the case of 19, a partial (1H and 13C) characterization was deduced from the differential analysis of mixture of 18/19.

2.1.2 Analytical standards: The products 4-15 were obtained (avg yield 80%) in high degree of purity (>98%) and were suitable as analytical standards. In the case of acrolein derivatives 16-18, the relative GC-MS response were equivalent. However, the relative standard deviation was higher for both 16 (10.81%) and 18 (4.63%) than that of 17 (2.73%) (see analytical data for detailed information). Furthermore, while 16 undergoes degradation via slow polymerisation even at -20 °C, compound 17 was found to have the best properties as an analytical standard (i.e. ease of synthesis, crystalline state at RT, good stability, etc). Consequently, these results show that the method proposed by Kennedy and Ashley for the determination and the quantification of acrolein in the air must be validated based on the derivatization into 17 at room temperature and not based upon the presumed in-situ formed derivative 16 (i.e. UIPAC: 9-vinyl-l-aza-8-oxabicyclo[4.3.0]-nonane).19,23

2.2 Mechanistic aspects: The reaction of various substituted aldehydes with 2-HMP and other β-amino alcohols was first studied by McCarty in 1957, then by Craab and Newton in 1966 and followed by Kennedy and Ashley in 1992.25-26,19 Based on the interpretation of FT-IR data, Kennedy and Ashley assumed that reaction proceeded via the formation of an enamine intermediate (Scheme 2a); that is, leading to an oxazolidine after the reaction was exposed to ultrasound. However, recent work by Gschwind and others, proposed the involvement of an iminium intermediate during the first step of the condensation.20,21 In an attempt to distinguish between one of these two pathways, we decided to carry out a series of 1H-NMR studies of the condensation reaction involving 2-HMP or piperidine with the following aldehydes: propanal-, pentanal-, isobutyral-, pival-, furfural- and cinnamal-. These aldehydes were chosen because propanal and pentanal were first used in the IR condensation study, propanal was used in a more recent NMR study and the last three do not have a tautomiserable α-proton.19,21a Isobutyraldehyde was studied because it is less sterically encumbered than pivaldehyde.
2.2.1 Enamine: Key reference signals for the enamine protons, obtained from the reaction of piperidine with propanal in DMSO-d$_6$, were at 5.79 ppm (d, N-CH=CH-CH$_3$) and 4.23 ppm (hex-ap, N-CH=CH$_3$) respectively. Similarly, when piperidine was reacted with the more encumbered isobutyraldehyde in CDCl$_3$, over 24hrs at RT, only a progressive increase of an enamine signal at 5.28 ppm (hept-app, N-CH$_3$) could be observed. It is important to know that a previous study involving prolinol, instead of 2-HMP, with propanal required a polar aprotic solvent such as DMSO-d$_6$ to allow the observation of low amount of the enamine.21a The HMP-propanal (6) and HMP-pivaldehyde (11) adducts displayed characteristic H-3 protons of the oxazolopiperidine ring system (Scheme 1) at 3.81 ppm (t) and 3.51 ppm (s) respectively. 2-HMP was mixed with propanal directly in an NMR tube containing DMSO-d$_6$ at ambient temperature and the progress of reaction was monitored by 1H-NMR spectroscopy, taking measurement every 5 minute at first and then at every double time interval (up to 3 hrs). In this specific experiment, beside from the initial aldehyde proton and the final oxazolidine 6 proton, the reaction was mostly completed within 20min, we did not observe the above characteristic signals for the enamine intermediate throughout the reaction. In contrast to previous work, the use of ultrasound for the reaction of 2-HMP with one of the following aldehydes: formaldehyde, crotonaldehyde, pivaldehyde and furfuraldehyde, was not required.$^{19, 22-23}$ Even though, there is no possibility for enamine intermediate formation, the corresponding oxazolopiperidines (4, 9, 11, 15) were obtained at room temperature in DCM. Together, these experiments clearly exclude the necessity of the intermediacy of an enamine (Scheme 2a).

Scheme 2: a) Reaction of enamine, b) 1,3-N,N-bis-piperidyl-3-phenylpropene and c) 2-furyl aminal.

2.2.2 Iminium/hemiaminal/Aminal: Key signal at 9.2 ppm for the iminium intermediate derive from proline with 3-methylbutanal was reported by Gschwind while others key iminium peaks were found from 8.4 to 9.3 ppm.$^{19, 28}$ The iminium 13C were reported at 166 to 171 ppm.28 In the reaction of 2-HMP with propanal in DMSO-d$_6$, we did not observe any signal at
8.6-9.3 ppm expected for an iminium intermediate 6'' (Scheme 3). This suggests that the elusive iminium is more rapidly converted into oxazolidine, which is consistent with some previous studies.21a

![Scheme 3](image)

Scheme 3: Proposed mechanism for the formation of the oxazolidine (6, 10 and 11) based on 1H-NMR monitoring.

Key values for the 1H and 13C (R2N-CH(OH)-R) signals for hemiaminal intermediates, similar to that of (Scheme 2a), but derived from pyrrole/imidazole, were reported at 5.6-6.6 ppm and 77-83 ppm respectively.20, 30 In the case of 2-HMP with pentanal or pivaldehyde in C6D6, we could not observe in the 1H-NMR an iminium intermediate 10’’ and 11’’ nor an hemiaminal intermediate 10’ and 11’ during these reactions (Scheme 3). While for the reaction of 2-HMP with pentanal, we do observe (from 45 sec up to 80 min) new minor signals at 5.75 (vbr s), 3.50 (dd), 3.34-3.28 (br s), 2.94 (br d) and 2.20 (t) ppm, which is probably due to an aminal intermediate (Scheme 2c). Further investigations of the reaction of piperidine with cinnamaldehyde or furfuraldehyde were carried out in CDCl3. Two new key proton signals at 3.52 ppm and 3.58 ppm were observed, while the corresponding 13C signals were observed at 72 ppm and 83 ppm. The NMR values are consistent with those reported for the aminal 4,4'-(furan-2-ylmethylene)dipiperidine derive from morpholine31 and 1,3-N,N-bis-piperidyl-3-phenylpropene via a 1,2- and 1,4- bis-addition of piperidine on cinnamaldehyde (Scheme 2b,c).32-33

In line with recent literature, we propose that the condensation reaction of 2-HMP with aldehydes first proceeds via an elusive open hemiaminal such as 10’ or 11’, which proceed through a fleeting iminium intermediate 10’’ or 11’’ to give the corresponding oxazolidines (Scheme 3).20-21, 27, 34 In the absence of a proximal hydroxymethyl nucleophile and with a tautomerisable α-proton, it will rearrange rapidly into the more stable enamine structure (Scheme 2a).
2.2.3 Oxazolidine formation: In the presence of an intramolecular proximal nucleophile, such as the alcohol function in 2-HMP, it immediately undergoes a rapid nucleophilic attack on the more reactive carbon of the transient iminium ion to form the cyclic oxazolidine as in 6, 10 or 11 (Scheme 3). This can theoretically lead to two diastereomers depending on whether the C-3 substituent is in a pseudo-equatorial or –axial position. Thus, the procedure allows a facile synthesis of a diastereomeric mixture of oxazolopiperidines as oils, for which generally the thermodynamically more stable C-3 pseudo-equatorial diastereomer was observed by NMR. In most cases, except for 9, two diastereomeric products were obtained (distinguishable by ¹H-NMR spectroscopy analysis of the oxazolopiperidine H-3 protons and or GC-MS, generally in a 95:5 ratio and 15 in an 80:20 ratio). The following isomers 15_M/15_m and 18/19 were characterised by key nOes experiments (Figure 1). Products 15 had relaxation issues and required mix nOes and rOes.

![Diagram](image)

Figure 1: Summary of selected nOes observed for compounds 15_M/15_m and 18/19 consistent with the pseudo-equatorial orientation of the C-3 substituents as shown.

The separation of these diastereomeric compounds was not feasible due to equilibration (via oxazolidine ring opening and closing) and hydrolysis. Some of the compounds, particularly, 9 and 16 (Scheme 1) with an alkene functional group, can easily undergo polymerisation. During this investigation, we observed no formation of 3-vinyl-oxazolopiperidine product 16, from the similar reaction involving acrolein with 2-HMP at room temperature even after prolonged reaction time (78h). Indeed, none of the characteristic chemical shifts for the proton H-3 or for the alkene protons were observed. Instead, new signals at 5.21 (dd) and 2.62-2.78 (br-s) ppm were present, which we attributed to the C-3 hemiacetal and OH group protons respectively. ¹H
and 13C NMR analysis of the white crystalline product 17 thus obtained, was consistent with an octahydro-3H-pyrido[2,1-c][1,4]oxazepin-3-ol, ring structure formed by a hemiacetal function. The IR spectrum supported the presence of an alcohol by the presence of an absorption band at 3063 cm$^{-1}$. Furthermore, the structure of 17 was established by an X-ray crystal structure analysis (Figure 2). Thus, the reaction at room temperature proceeds via a highly regioselective Michael 1,4-addition of 2-HMP on acrolein and leads, in one step, to a seven-membered oxazepan cycle 17 (Scheme 1). Other syntheses of 1,4-oxazepanol involving 2-3 steps were reported.\(^{35}\) The direct formation of 17 only occurs with acrolein. Indeed, when crotonaldehyde was allowed to react with 2-HMP in the same conditions as above, the 3- (propenyl)-oxazolopiperidine 9 was exclusively obtained as pale-yellow oil. The 1H-NMR displayed the anticipated H-3 signal at 4.0 ppm and the vinyl protons were observed at 5.85 and 5.43 ppm. The formation of oxazolopiperidine in this case (i.e. a 1,2-addition on the carbonyl) is due to the combined steric and electronic factors of the methyl group at C-4 position.

Another benefit as an analytical standard, was the GC-MS behavior of 17 for which the key fragment mass peak was identical to one observed for 16 and 18. The capture of volatile aldehydes using standard air sampling procedure, involving 2-HMP impregnated on Amberlite XAD-2, is usually done at room temperature.\(^{10}\) The derived product obtained is extracted and directly analysed by GC-MS. Therefore, in the case of acrolein, the derivative that will most likely be generated is the octahydro-3H-pyrido[2,1-c][1,4]oxazepin-3-ol, 17. When pre-absorbed 2-HMP onto amberlite XAD-2 was allowed to react with acrolein in toluene at room temperature for 1 hr, the relative proportion of compounds observed by 1H-NMR was 17 (52%) along with new side products 18/19 (48%). However, upon refluxing in toluene for 1 h, the adduct 17 underwent partial conversion into the corresponding 3-vinyl-oxazolopiperidine 16 (52%), 18/19 (40%), unreacted 17 (7%) and some trace of acrolein (~1%). Furthermore, if 1 eq of acrolein is added to 17, the conversion leads to almost pure 16 (95%). When the latter was further subjected to column chromatography, it reverts partially to 17 (only 20-30% yield at best), which indicates that 17 is the thermodynamic product. When neat 17 was heated in vacuum (0.2 mmHg, 120°C), the diastereomeric mixture of bis-adducts 18/19 (70%) is initially obtained as a viscous yellow oil (Scheme 4). This mixture slowly crystalizes quantitatively into 18 over 2-3 days. When the latter is melted, it isomerises again into an equal mixture of 18/19, which reverts slowly to 18 at room temperature as above. Thus, proving that 18/19 are diastereomers. We rationalise the formation of 18/19 by first an opening of the hemiacetal 17 to the corresponding ring open aldehyde intermediate. Half of it undergoes a reverse Michael
addition generating *in situ* the starting materials 2-HMP of which the volatile acrolein was lost in the vacuum. The residual 2-HMP immediately undergoes a 1,2-addition onto the aldehyde function of the ring open intermediate thus generating 18/19. These can also be generated by the stoichiometric addition of 2-HMP to 16 (RT 8h or after 1hr reflux in toluene). Compounds 18/19 are best obtained starting with 2eq of 2-HMP with acrolein (Table 2 entry 7, Scheme 5).

Scheme 4: Proposed mechanism for the conversion of 17 to 18/19 when heated in vacuum

The 1H-NMR of 18 displayed key signals at 3.44(dd), 3.37(dd) 2.90-3.00(m) and 2.45(ddd) ppm and the 13C displayed a doubling of the signals related to 2-HMP. A follow up by 1H-NMR of a solution of 18 in CDCl$_3$ at -20 °C, over a period 3 months, shows a slow, but cleaner, isomerisation of up to 75% of 19. The following distinct signals of the latter were deduced from the enriched mixture of 19/18 and were observed at 3.97(dd), 3.50(dd), 3.26(dd), 3.15(ddd) and 3.01-3.06(m). Furthermore, the structure of 18 was confirmed by X-ray crystallography analysis (Figure 2) and establishes a bisadduct of 2-HMP with acrolein. Both configuration at C3 of 18 (S) and 19 (R) in solution were supported by nOes experiments (Figure 1). The flip-flap of C-3 oxazolidine envelope allows the substituent at C-3 to maintain a pseudo-equatorial position.

Scheme 5: Reaction summary for 16-19 involving 2-HMP with acrolein in various conditions

3. X-Ray crystal determination of structure 17 and 18.

The X-ray crystal-structure of 17 is consistent with that anticipated for an oxazepane ring system (Figure 2). Information for the positional and equivalent thermal isotropic parameters for non-hydrogen atoms, bond distances and angles as well as selected torsional angles can be found in supplementary information and the complete data in the CCDC database.
Figure 2: Thermal ellipsoid plot of 17. Displacement ellipsoids are drawn at the 50% probability level.

The geometry of 17 presents a fused 7,6-membered ring structure with a ring junction essentially trans. The alcohol function is in the pseudo axial position to minimize the repulsion between the oxygen lone pairs (anomeric effect).

The X-ray crystal-structure of 18 is shown in Figure 3. Information for the positional and equivalent thermal isotropic parameters for non-hydrogen atoms, bond distances and angles as well as selected torsional angles can be found in supplementary information and the complete data in the CCDC database.

Figure 3 Thermal ellipsoid plot of 18. Displacement ellipsoids are drawn at the 50% probability level.

The X-ray structure of 18 shows a chair configuration for the six-member ring with a trans ring junction for the 5,6-fused rings. The five-membered ring is in an envelope conformation with atoms C(8A), C(1), O(2) and C(3) in the plane and N(4) forming the flap of the envelope. The C(3) substituent is held in a pseudo equatorial position relative to the fused chair. The other HMP ring is linked on the ethyl C(9)-C(10) in an antiperiplanar fashion.
4. Conclusion

In conclusion, an expedient high yielding route for HMP-aldehydes derivatives as 2-substituted 1,3-oxazolo[4,3-a]piperidines with a high degree of purity suitable for analytical standards was developed. The reaction proceeds even for aldehydes which can’t isomerise to an enamine. In the case of acrolein, the path of the reaction is highly temperature dependant and leads to the hemiacetal octahydro-3H-pyrido[2,1-c][1,4]oxazepin-3-ol 17 at room temperature or to the 3-vinyl-1,3-oxazolopiperidine 16 at 111 °C. When further heated under vacuum, compound 17 is transformed into 18/19 which are bisadduct of 2-HMP with acrolein. The diastereomer 18 can be obtained in pure crystalline form. Both structures 17 and 18 were investigated by X-ray crystal analyses. All attempt to observe the hemiaminal or iminium intermediate, lead instead to the observed 2-HMP oxazolidine or aminal derived from piperidine with furfural.

5. Experimental Section

5.1. Equipment and Methods: Melting points were determined in open capillary tube using a Gallenkamp melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1600 FT/IR instrument at 25°C. All glassware for reactions under anhydrous conditions was flame-dried prior to use. Heat source was an oil bath. Vacuum distillation was performed using a Kugelrohr apparatus or using a distillation apparatus with a Vigraux Column. For thin layer chromatographies (TLC), silica gel 60 F254 plates from Merck were used with detection visualized under UV light and/or iodine chamber. A solution of 5% w/v sulfuric acid in EtOH followed by heat was used as well. Organic phases were dried over anhydrous sodium and magnesium sulphate (Anachemia) and rotary evaporated under reduced pressure. Nuclear magnetic resonance 1H-NMR spectra were recorded using a Varian Gemini 300 BB ~300.1 MHz and a Bruker 600 MHz spectrometers. 13C-NMR spectra were recorded at 75 or 125 MHz, respectively. Chemical shifts for observed signals are reported in parts per million downfield from tetramethylsilane. 1H chemical shifts were referenced to the solvents (CDCl$_3$, 7.27 ppm, 77.16 ppm; C$_6$D$_6$ 7.16 ppm, DMSO-d$_6$ 2.50 ppm or CD$_3$OD, 3.30 ppm); 13C chemical shifts were referenced to the solvents (CDCl$_3$, 77.03 ppm or CD$_3$OD, 49.00 ppm). The structure assignment of proton and carbon signals was achieved using NMR methods (1H, 13C and in some cases: nOe, H-COSY and HSQC). The assignments of 1H and 13C NMR chemical shifts for the other compounds were attributed by comparison with those fully characterised. GC-MS were recorded on a Hewlett-Packard - HP G1800A GCD Series II with a
5% Me Ph silicon (30m x 0.25mm x 0.25µm HP part no 19091 J-433). The MS detection mode was EI.

5.2. X-ray Crystallography: For compounds 17 and 18 crystallization was obtained from minimum amount of diethylether and by cooling the solution at -15 to -18°C. Another way to induce crystallization as leaflet on the side walls of the vial is from slow evaporation of an ether solution at room temperature.

Single crystals were coated with Paratone-N oil, mounted using a 20-micron cryo-loop and frozen in the cold nitrogen stream of the goniometer. A hemisphere of data was collected on a Bruker AXS P4/SMART 1000 diffractometer using ω and 0 scans with a scan width of 0.3° and 10s (17) and 60s (18) exposure times. The detector distance was 5 cm. The data were reduced (SAINT) and corrected for absorption (SADABS). The structure was solved by direct methods and refined by full-matrix least squares on F²(SHELXTL). All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were found in Fourier difference maps and refined using isotropic displacement parameters.

Data for both compounds have been deposited with the Cambridge Crystallographical Data Centre, CCDC 2212006 for 17 and 2212007 18. Structural data is accessible via the CCDC web site https://www.ccdc.cam.ac.uk/.

5.3. Chemicals: Common solvents were obtained from Aldrich and used as received. Hydroxymethylpiperidine (2-HMP, from Aldrich 97% or from TCI 98%) and formaldehyde (Aldrich 37% Aqueous solution) were used without further purification. Other aldehydes were obtained from Aldrich or Anachemia and were distilled prior to use. Amberlite XAD-2 BDH Chemical.

5.4.1 Preparation of hexahydro-3H-oxazolo[3,4-a]pyridine (4)

Formaldehyde (0.72 mL, 37% aqueous solution, 9.67 mmol) was added dropwise via syringe to a solution of 2-HMP (1.00 gr., 8.68 mmol) in DCM (10 mL), the whole mixture was stirred for 10 min at room temperature, anhydrous MgSO₄ (5 gr) was added, and the mixture was stirred for 2h while being monitored by TLC (CH₂Cl₂:MeOH (9:1)). The reaction mixture was filtered, and the solvent was removed under reduced pressure to afford a crude product which was then treated with solution of sodium hydroxide (5%). The aqueous solution was extracted with ether (3x20 mL). The combined organic phases were washed with brine and dried over
MgSO₄. Filtration and removal of solvents afforded 1.056 gr. (96%) of product. Vacuum fractional distillation using a Vigreux column under reduced pressure (1.2 torr.) gave a colorless liquid. A wood splint was placed vertically in the flask in order to prevent material bumping and decomposition. A fractional collector (cow) was used, which allowed four fractions to be collected without disturbing the vacuum.

B.p. = 65 °C (1.2 torr). GC: Rₜ = 3.22 min. MS (EI, 70 eV, m/z): 127 (M⁺, 32%), 126 (M⁺-H, 47%), 97 (M⁺-H₂C=O, 100%). ¹H-NMR (300MHz, CDCl₃): Peaks assignments were supported by a COSY spectrum. 1.26-1.52 (m, 2H, H-7ax, H-8ax), 1.58-1.78 (m, 3H, H-6eq, H-6ax, H-7eq), 1.82-1.92 (dq app, J=12.7, J=3.2 Hz, 1H, H-8eq), 2.25-2.36 (ddd, J=11.1, J=6.3, J=4.9Hz, 1H, H-5ax), 2.56-2.65 (tdd, J=10.4, J=6.9, J=3.5 Hz, 1H, H-9), 2.87-2.95 (dt, J=10.5, J=5.3 Hz, 1H, H-5eq), 3.50 (dd, J=10.2, J=7.2 Hz, 1H, H-1ax), 3.86 (t, J=6.9 Hz, 1H, H-1eq), 3.99 (d, J=3.0 Hz, 1H, H-3ax), 4.56 (d, J=3.0 Hz, 1H, H-3eq). ¹³C-NMR (75MHz, CDCl₃): 22.08 (C-7), 24.80 (C-6), 25.35 (C-8), 47.56 (C-5), 60.51 (C-9), 68.69 (C-1), 86.83 (C-3).

5.4.2 General procedure for the preparation of hexahydro-3-alkyl-3H-oxazolo[3,4-alpyridines]

Freshly distilled aldehyde (1-2 equiv. see table 1) was stirred with a solution of 2-HMP (1eq) in DCM (1 mL per mmole of 2-HMP) for 30 min. Anhydrous MgSO₄ (a mass ratio of 1:1 with HMP) was added and the mixture was stirred for the time indicated in table 1 (generally 2 to 10 hours). The reaction mixture was filtered, and the solvent was removed under reduced pressure to afford a crude product which was then added to a solution of sodium hydroxide (5%, 2 mL). The aqueous mixture was extracted with ether (3x20 mL). The combined organic phases were dried with brine and over MgSO₄. Filtration and removal of solvents afforded a crude product. The product was purified by vacuum fractional distillation using a Vigreux column under reduced pressure (1.2 torr.), usually gave a colorless or pale-yellow liquid. A fractional collector (cow) was used, which allowed four fractions to be collected without disturbing the vacuum.

5.4.3 Synthesis of hexahydro-3-methyl-3H-oxazolo[3,4-alpyridine (5).

Using the general procedure, freshly distilled acetaldehyde (1.46 mL, 26.1 mmol, 2 equiv.) was added to a cooled (0°C) solution of 2-HMP (1.50 gr., 13.0 mmol), DCM (12 mL) and anhydrous MgSO₄ (1.5g) gave 1.7 gr. (93%) of crude mass. The product was first vacuum (3 Torr) distilled in a Kulgelrohr apparatus in order to remove undesired low boiling impurities.
and 2-HMP. A subsequent vacuum (2 Torr) distillation from diphenylether (which acts as a
heat dispersant) using a Vigraux column gave a colorless liquid. A wood splint was also placed
vertically in the flask in order to prevent material bumping and decomposition.

B.p. = 85 °C (2 torr). GC: \(R_f = 3.17 \) min major isomer; 3.54 min minor isomer. MS (EI, 70 eV, m/z): 141 (M+, 5%), 140 (M+-H, 13%), 126 (M+-CH3, 100%), 98 (M+ -H3C=O, 18%). \(^1\)H
NMR (300MHz, CDCl3): Peaks assignments were supported by a COSY spectrum. 1.17 (4%,
d, \(J^2=6 \) Hz, 3H, H-10), 1.24 (96%, d, \(J^3=5.4 \) Hz, 3H, H-10), 1.22-1.35 (m 2H, H-7ax, H-8ax),
1.51-1.65 (qt app, \(J^{2,3}=12.0, J^3=4.3 \) Hz, 1H, H-6ax), 1.65-1.71 (m, 1H, H-6eq), 1.72-1.84 (m,
2H, H-7eq, H-8eq), 1.96 (96%, td, \(J^{2,3}=11.0, J^3=3.2 \) Hz, 1H, H-5ax), 2.23-2.33 (96%, tdd,
\(J^3=9.7, 6.0, 2.8 \) Hz, 1H, H-9), 2.59-2.72 (4%, m, 1H, H-5ax), 2.78-2.88 (4%, m, 1H, H-9), 2.96
(96%, dt, \(J^3=10.3, J^2=3.3 \) Hz, 1H, H-5eq), 3.05-3.20 (4%, m, 1H, H-5eq), 3.37-3.44 (4%, m,
1H, H-1), 3.46 (96%, dd, \(J^3=10.2, J^2=6.7 \) Hz, 1H, H-1ax), 3.52-3.61 (4%, m, 1H, H-1), 3.85
(96%, q, \(J^3=5.4 \) Hz, 1H, H-3), 3.90 (96%, t, \(J^3=6.7 \) Hz, 1H, H-1eq), 4.80 (4%, q app, \(J^3=
6.6 \) Hz, 1H, H-3). \(^1\)C-NMR (75MHz, CDCl3): 18.62 (96%, C-10), 18.90 (4%, C-10), 22.38 (4%,
C-7) 23.42 (96%, C-7), 23.62 (4%, C-6) 24.79 (96%, C-6), 25.49 (4%, C-8), 26.73 (96%, C-8),
46.35 (4%, C-5), 47.69 (96%, C-5), 56.31 (4%, C-9), 63.12 (96%, C-9), 69.03 (4%, C-1), 69.88
(96%, C-1), 90.61 (4%, C-3), 91.71 (96%, C-3).

5.4.4 Synthesis of hexahydo-3-ethyl-3H-oxazolo[3,4-alpyridine (6).

Using the general procedure, an equimolar mixture of freshly distilled propionaldehyde (1.00 g,
17.2 mmol), 2-HMP (2g, 17.4 mmol) in DCM (20 mL) and anhydrous MgSO4 (2g) afforded
1.4g (52%) of a crude oil. Fractional vacuum distillation gave pure 6 (1.04g) as a colorless liquid.

B.p. = 89 °C (1.5 torr). GC: \(R_f = 3.73 \) min major isomer; 4.15 min minor isomer. MS (EI, 70
eV, m/z): 154(M+H, 2.5%), 126(M+-C2H5, 100%), 98(M+-C2H5C=O, 7.5%). \(^1\)H-NMR
(300MHz, CDCl3): 0.73 (6%, t, \(J=7.5 \) Hz, 3H, H-11), 0.96 (94%, t, \(J=7.5 \) Hz, 3H, H-11),
1.12-1.31 (m, 2H, H-7ax, H-8ax), 1.46 (sex app, \(J=7.2 \) Hz, 2H, H-10), 1.50-1.64 (qt app, \(J=12,
3.9 \) Hz, 1H, H-6ax), 1.64-1.84 (m, 3H, H-6eq, H-7eq, H-8eq), 2.00 (94%, td, \(J^{2,3}=11, J^3=3 \) Hz,
1H, H-5ax), 2.23-2.38 (94%, tdd, \(J^3=10.2, 6.3, 2.4 \) Hz, 1H, H-9), 2.59-2.70 (6%, td, \(J^{2,3}=11,
J^3=3 \) Hz, 1H, H-5ax), 2.70-2.85 (6%, m, 1H, H-9), 2.94 (94%, dt, \(J=10.5, J^3=3.5 \) Hz, 1H, H-
5eq), 3.14-3.24 (6%, m, 1H, H-5eq), 3.39 (94%, dd, \(J^{2,3}=10.2, 6.6 \) Hz, 1H, H-1ax), 3.55 (6%, t,
\(J^{2,3}=7.3, 1H, H-1ax), 3.71 (94%, dd, \(J=7.5, J^3=2.5 \) Hz, 1H, H-3), 3.84 (6%, t, \(J^{2,3}=6.7 \) Hz,
1H, H-1eq), 3.90 (94%, t, \(J^3=6.5 \) Hz, 1H, H-1eq), 4.48 (6%, dd, \(J=7.5, J^3=4.2 \) Hz, 1H, H-3).
\(^13\)C-NMR (75MHz, CDCl3): 8.83 (95%, C-11), 9.65 (5%, C-11), 22.03, (5%, C-7 or 6), 23.48,
(5%, C-6 or 7), 23.55 (95%, C-7), 24.89 (95%, C-6), 25.06, (5%, C-10 or 8), 25.81 (95%, C-10), 26.47 (5%, C-8 or 10), 26.75 (95%, C-8), 46.92 (5%, C-5), 47.83 (95%, C-5), 56.68 (5%, C-9), 63.09 (95%, C-9), 68.45 (5%, C-1), 70.11 (95%, C-1), 96.23 (5%, C-3), 96.44 (95%, C-3).

5.4.5 Synthesis of hexahydro-3-propyl-3H-oxazolo[3,4-a]pyridine (7).

Using the general procedure, an equimolar mixture of freshly distilled butyraldehyde (1.56 mL, 1.25g, 17.3 mmol), 2-HMP (2.00g, 17.4 mmol) in DCM (15 mL) and anhydrous MgSO₄ (2.0 g) was stirred for 3h. Usual work-up afforded 1.92 g (65.5%) of crude product. Subsequent fractional distillation under reduced pressure (1.2 torr) gave 7 as a colorless liquid.

B.p. = 94 °C (1.2 torr). GC: Rₜ = 4.41 min major isomer; 4.81 min minor isomer. MS (EI, 70 eV, m/z): 168(M+H, 2.5%), 126(M+C₃H₇, 100%), 98(M+C₃H₇C=O, 12%). ¹H-NMR (300MHz, CDCl₃): 0.91 (6%, t, J= 7. 5 Hz, 3H, H-11), 0.92 (94%, t, J= 7.1 Hz, 3H, H-12), 1.15-1.33 (m, 2H, H-7ax, H-8ax), 1.34-1.85 (m, 8H, H-6eq, H-6ax, H-7eq, H-8eq, H-10, H-11), 1.98 (96%, td, J=3.2Hz, 3H, H-5ax), 2.23-2.34 (96%, tdd, J=10.1, 6.7, 2.6 Hz, 1H, H-9), 2.60-2.84 (6%, m, 2H, H-5ax, H-9), 2.95 (94%, dt, J=10.5, J=3.8 Hz, 1H, H-5eq), 3.11-3.24 (6%, m, 1H, H-5eq), 3.41 (94%, dd, J=10.0, J=7.5 Hz, 1H, H-1ax), 3.54 (6%, t, J=7.5, 1H, H-1ax), 3.74 (96%, dd, J=7.5, J=1.5 Hz, 1H, H-3), 3.81 (6%, dd, J=7.2, J=6.3 Hz, 1H, H-1eq), 3.87 (94%, t, J=7.5 Hz, 1H, H-1eq), 4.54 (6%, t, J=4.5 Hz, 1H, H-3). ¹³C-NMR (75MHz, CDCl₃): 14.15 (6%, C-12), 14.34 (94%, C-12), 18.73 (94%, C-11), 18.75 (6%, C-11), 22.06 (6%, C-7), 23.54 (94%, C-7), 24.87 (94%, C-6), 25.00 (6%, C-6), 26.75 (C-8), 35.22 (94%, C-10), 35.84 (6%, C-10), 46.98 (6%, C-5), 47.84 (94%, C-5), 56.59 (6%, C-9), 63.07 (94%, C-9), 68.29 (6%, C-1), 70.05 (94%, C-1), 95.04 (6%, C-3), 95.42 (94%, C-3).

5.4.6 Synthesis of hexahydro-3-isopropyl-3H-oxazolo[3,4-a]pyridine (8).

Using the general procedure, an equimolar mixture of freshly distilled isobutyraldehyde (1.19mL, 0.940g, 13.0 mmol), 2-HMP (1.50g, 13.0 mmol) in DCM (10 mL) and of anhydrous MgSO₄ (1.5 g). The mixture was stirred for 3h and a general workup afforded a crude yellow oil. Fractional vacuum distillation gave 8 (1.54g, 70%) as a colorless liquid.

B.p. = 91 °C (1.2 torr). GC: Rₜ = 4.05 min major isomer; 4.48 min minor isomer. MS (EI, 70 eV, m/z): 168(M+H, 1.25%), 126(M+C₃H₇, 100%), 98(M+C₃H₇C=O, 6.25%). ¹H-NMR (300MHz, CDCl₃): 0.83 (95 %, d, J= 7.1 Hz, 3H, H-11a or 11b), 0.85 (5 %, d, J= 7.0 Hz, 3H, H-11a or 11b), 0.87 (5 %, d, J= 7.0 Hz, 3H, H-11b or 11a), 0.94 (95 %, d, J= 7.1 Hz, 3H, H-11b or 11a), 1.14-1.31 (m, 2H, H-7ax, H-8ax), 1.43-1.58 (qt app, J=12.1, 4.3 Hz, 1H, H-6ax),
1.58-1.66 (dt, J=13.2, 2.7 Hz, 1H, H-6eq), 1.69-1.74 (dt app, J=14.1, 2.4 Hz, 1H, H-7eq), 1.71-1.78 (dd app, J=14.7, 3.0 Hz, 1H, H-8eq), 1.67-1.81 (m, 1H, H-10), 1.96 (td, J=3= 10.5, J= 3 Hz, 1H, H-5ax), 2.28 (tdd, J= 10.2, 6.3, 2.4 Hz, 1H, H-9), 2.73 (5%, m, 2H, H-5eq, H-9), 2.87 (95%, dt, J= 11, J= 3.8 Hz, 1H, H-5eq), 3.28 (95%, dd, J= 10.2, J= 7.5 Hz, 1H, H-1ax), 3.54 (5%, t, J= 7.5, 1H, H-1ax), 3.64 (95%, d, J= 2.4 Hz, 1H, H-3), 3.71 (5%, dd, J= 7.5, J= 6 Hz, 1H, H-1eq), 3.84 (95%, t, J= 6.3 Hz, 1H, H-1eq), 4.15 (5%, d, J= 6.6 Hz, 1H, H-3). 13C-NMR (75MHz, CDCl3): 14.84 (95%, C-11b or 11a), 17.13 (5%, C-11b or 11a), 18.77 (95%, C-11a or 11b), 19.29 (5%, C-11a or 11b), 21.72 (5%, C-7 or 6), 23.08 (5%, C-6 or 7), 23.68 (95%, C-7), 25.09 (95%, C-6), 24.35 (5%, C-8), 26.79 (95%, C-8), 29.67 (95%, C-10), 31.90 (5%, C-10), 47.72 (5%, C-5), 47.84 (95%, C-5), 56.65 (5%, C-9), 62.87 (95%, C-9), 67.94 (5%, C-1), 70.59 (95%, C-1), 98.82 (95%, C-3), 100.37 (5%, C-3).

5.4.7 Synthesis of hexahydro-3-(1-propenyl)-3H-oxazolo[3,4-a]pyridine (9).
Using the general procedure, an mixture of the freshly distilled crotonaldehyde (0.84 mL, 10.22 mmol, 1.2 eq), 2-HMP (1.00g, 8.68 mmol), DCM (10mL) and anhydrous MgSO4 (1.0 g) was added and stirring was continued for 3 h. A general workup, afforded a crude yellow oil. Fractional vacuum distillation over sodium carbonate (100mg) and using a vigraux column using a wood boiling stick to avoid formation of froth during distillation, afforded 9 (1.18g, 82%) as a colorless oil.

B.p. = 126 °C (2 torr). GC: Rf = 4.65 min. MS (EI, 70 eV, m/z): 167 (M+, 11%), 166 (M+-H, 53.75%), 152 (M+-CH3, 8.75%), 126 (M+-C3H5, 100%), 98 (M+ -C3H2O, 20%), 84 (C3H8O+, 3.75%), 69 (C4H8O+, 18.75%). IR/TF (NaCl): 2939 (F, ν(C-H des CH2); 2782 (m, ν(C-H de CHO)); 1546 (F, ν(C-C)); 1256 (m, ν(C-O)). 1H-NMR (300MHz, CDCl3): Peaks assignments were supported by a COSY spectrum. 1.22-1.38 (m, 2H, H-7ax, H-8ax), 1.50-1.64 (m, 2H, H-6), 1.64-1.88 (m, 2H, H-7eq, H-8eq), 1.74 (dd, J=6.6, J= 1.6 Hz, 3H, H-12), 1.96 (td, J= 10.5, J= 3.0 Hz, 1H, H-5ax), 2.22-2.38 (tdd, J=10.2, 6.5, 2.7 Hz, 1H, H-9), 2.93 (dt, J= 10.4, J=3.3 Hz, 1H, H-5eq), 3.39 (dd, J= 10.2, J= 6.6 Hz, 1H, H-1ax), 3.95 (t, J=3= 6.6 Hz, 1H, H-1eq), 3.99 (d, J= 7.1 Hz, 1H, H-3), 5.45 (ddq, J= 15.2, J= 7.1 Hz, J= 1.6 Hz, 1H, H-10), 5.82 (dq, J= 15.2, J= 6.6 Hz, 1H, H-11). 13C-NMR (75MHz, CDCl3): 17.64 (C-12), 23.60 (C-7), 24.74 (C-6), 27.04 (C-8), 47.41 (C-5), 62.76 (C-9), 70.59 (C-1), 96.59 (C-3), 129.90 (C-10), 132.51 (C-11).

5.4.8 Synthesis of hexahydro-3-butyl-3H-oxazolo[3,4-a]pyridine (10).
Using the general procedure, a mixture of the freshly distilled valeraldehyde (2.019 g, 23.4 mmol, 1.35), 2-HMP (2.003 g, 17.4 mmol), DCM (15mL), anhydrous MgSO₄ (2.00 g) was added and stirring was continued for 4 h. A usual workup afforded a crude product 10. Fractional vacuum distillation using a Vigreaux column and a wood boiling stick to avoid formation of frothing during distillation, gave pure 10 (2.81g, 88%) as a colorless oil.

B.p. = 105 °C (1.5 torr). GC: Rₜ = 5.05 min major isomer; 5.46 min minor isomer. MS (EI, 70 eV, m/z): 182 (M+-H, 2.5%), 126 (M+-C₄H₉, 100%), 98 (M+-C₄H₉C=O, 7.5%). ¹H-NMR (300MHz, CDCl₃): 0.90 (t, J= 7.5 Hz, 3H, H-13), 1.18 -1.54 (m, 7H, H-6ax, H-7ax, H-8ax, H-11, H-12), 1.55-1.85 (m, 5H, H-6eq, H-7eq, H-8eq, H-10), 2.00 (93%, td, J=10. J= 3.2 Hz, 1H, H-5ax), 2.23-2.36 (93%, tdd, J=10.0, 6.6, 2.4 Hz, 1H, H-9), 2.72-2.84 (7%, m, 2H, H-5ax, H-9), 2.97 (93%, dt, J=10.3, J= 3.3 Hz, 1H, H-5eq), 3.17-3.26 (7%, m, 1H, H-5eq), 3.43 (93%, dd, J=12, J= 6.8 Hz, 1H, H-1ax), 3.56 (7%, t, J=3.5= 7.5Hz, 1H, H-1ax), 3.75 (93%, dd, J= 7.5, J= 2.5 Hz, 1H, H-3), 3.84 (7%, dd, J= 7.2, J=3.3, Hz, 1H, H-1eq), 3.90 (93%, t, J= 6.6 Hz, 1H, H-1eq), 4.55 (7%, dd, J= 6.9, J= 4.2 Hz, 1H, H-3). ¹³C-NMR (75MHz, CDCl₃): 14.02(C-13), 22.06, (7%, C-12 or 11), 22.77 (7%, C-11 or 12), 22.92 (93%, C-12), 23.53 (93%, C-11), 24.86 (93%, C-7), 24.99 (7%, C-7), 26.73 (93%, C-6), 26.95 (93%, C-8), 27.62 (7%, C-8 or 6), 32.74 (93%, C-10), 33.38 (7%, C-10), 46.93 (7%, C-5), 47.82 (93%, C-5), 56.58 (7%, C-9), 63.06 (93%, C-9), 68.30 (7%, C-1), 70.02 (93%, C-1), 95.19 (7%, C-3), 95.59 (93%, C-3).

5.4.9 Synthesis of hexahydro-3-t-butyl-3H-oxazolo[3,4-a]pyridine (11)

Using the general procedure, a mixture of the freshly distilled pivaldehyde (0.70 mL, 0.56 g, 6.4 mmol, 1.5 eq), 2-HMP (0.500 g, 4.34 mmol, 1eq), DCM (10mL), anhydrous MgSO₄ (0.50 g) were stirred and heated to reflux for 6 h. A general workup afforded a crude product 11 as a yellow oil. Fractional vacuum distillation using a Vigreaux column and a wood boiling stick to avoid formation of frothing during distillation gave pure 11 (0.59, 81%).

B.p. = 95 °C (1.2 torr). GC: Rₜ = 4.42 min major isomer; 4.97 min minor isomer (ratio 96.4% :3.6%). MS (EI, 70 eV, m/z): 168 (M+-CH₃, 1.2%), 126 (M+-C₄H₉, 100%), 98 (M+-C₄H₉C=O, 5%). ¹H-NMR (300MHz, CDCl₃): 0.68 (s, 9H, H-11), 0.98-1.15 (m, 2H, H-7ax, H-8ax), 1.16-1.20 (m, 1H, H-6ax), 1.27-1.50 (m, 3H, H-6eq, 7eq, 8eq), 1.84 (td, J= 11.0, J= 3.0 Hz, 1H, H-5ax), 2.02-2.12 (96%, tdd, J=10.4, 5.6, 2.0 Hz, 1H, H-9), 2.50-2.59 (4%, m, 1H, H-9), 2.95 (96%, dt, J= 10.4, J= 3.0 Hz, 1H, H-5eq), 3.00-3.06 (4%, m, 1H, H-5eq), 3.19 (96%, dd, J= 10.3, J= 6.5 Hz, 1H, H-1ax), 3.33 (4%, t, J= 7.5, Hz, 1H, H-1ax), 3.50 (4%, dd, J= 10.3, J= 4.8 Hz, 1H, H-1eq), 3.53 (96%, s, 1H, H-3), 3.62 (96%, dd, 1H, J= 6.5, J= 5.8 Hz, 1H, H-
1eq), 3.98 (4%, s, 1H, H-3). 13C-NMR (75MHz, CDCl$_3$): 21.25 (4%, C-7, or 6 or 8), 23.68 (4%, C-6 or 7 or 8), 23.85 (94%, C-7 or 6), 24.05 (4%, C-8 or 6 or 7), 25.60 (C-6 or 7), 25.76 (96%, 3C, C-11), 25.89 (4%, 3C, C-11), 27.03 (C-8), 36.45 (96%, C-10), 36.81 (4%, C-10), 50.25 (4%, C-5) 51.76 (96%, C-5), 64.75 (96%, C-9), 66.47 (4%, C-9), 68.12 (4%, C-1), 70.52 (96%, C-1), 101.50 (96%, C-3), 104.65 (4%, C-3).

5.4.10 Synthesis of hexahydro-3-isobutyl-3H-oxazolo[3,4-a]pyridine (12).

Using the general procedure, an equimolar mixture of the freshly distilled isovaleraldehyde (1.42 mL, 1.11 g, 12.9 mmol), 2-HMP (1.50 g, 13.0 mmol), DCM (12mL), anhydrous MgSO$_4$ (1.50 g) was added and stirring was continued for 4 h. A general workup afforded a crude product 12. Fractional vacuum distillation using a Vigreaux column and a wood boiling stick to avoid formation of froth during distillation gave 12 (1.61g, 68%) as a colorless oil.

B.p. = 99 °C (1.2 torr). GC: $R_T = 4.81$ min major isomer; 5.17 min minor isomer. MS (EI, 70 eV, m/z): 182 (M+-H, 2.5%), 126 (M+-C$_4$H$_9$, 100%), 98 (M+-C$_4$H$_9$C=O, 9.5%). 1H-NMR (300MHz, CDCl$_3$): 0.87 (d, J= 7.5 Hz, 3H, H-12a), 0.97 (d, J= 7.5 Hz, 3H, H-12b), 1.19 – 1.35 (m, 2H, H-7ax, H-8ax), 1.41-1.85 (m, 7H, H-6, H-7eq, H-8eq, H-10, H-11), 1.99 (93%, td, J=10.5, J= 4 Hz, 1H, H-5ax), 2.27 (93%, tdd, J=10.2, 6.5, 2.7 Hz, 1H, H-9), 2.69-2.78 (7%, m, 1H, H-9), 2.93 (93%, dt, J=10.4. J= 3.4 Hz, 1H, H-5eq), 3.22-3.32 (7%, m, 1H, H-5eq), 3.41 (93%, dd, J= 10.1, J= 6.8 Hz, 1H, H-1ax), 3.55 (7%, t, J= 7.5, Hz, 1H, H-1ax), 3.67 (7%, dd, J= 10.5, J= 4.5 Hz, 1H, H-1eq), 3.81 (93%, dd, J= 7.3, J= 2.9 Hz, 1H, H-3), 3.91 (93%, t, J= 6.6 Hz, 1H, H-1eq), 4.61 (7%, dd, J= 8.0, J= 4.3 Hz, 1H, H-3). 13C-NMR (75MHz, CDCl$_3$): 21.87 (7%, C-11 or 12 or 13), 22.25, (7%, C-12 or 11 or 13), 22.45 (93%, C-11), 22.66 (7%, C-13 or 12 or 11), 23.54 (93%, C-12), 23.87 (93%, C-13), 24.66 (7%, C-7 or 6 or 8), 24.81 (93%, C-7), 24.85 (93%, C-6), 26.75 (93%, C-8), 42.14 (93%, C-10), 42.45 (7%, C-10), 47.05 (7%, C-5), 47.82 (93%, C-5), 56.37 (7%, C-9), 63.04 (93%, C-9), 67.94 (7%, C-1), 69.92 (93%, C-1), 94.00 (7%, C-3), 94.26 (93%, C-3).

5.4.11 Synthesis of hexahydro-3-pentyl-3H-oxazolo[3,4-a]pyridine (13).

Using the general procedure, an equimolar mixture of the freshly distilled of hexanal (1.07mL, 0.87g, 8.69mmol), 2-HMP (1.000g, 8.68mmol), DCM (10 mL), anhydrous MgSO$_4$ (1.0g) was added and stirred for 4h. A usual workup afforded 1.67g of a crude pale-yellow oil. Fractional vacuum distillation using a Vigreaux column gave the pure 13 (1.31, 77%) as a colorless liquid.

B.p. = 111 °C (1.2 torr). GC: $R_T = 5.74$ min. MS (EI, 70 eV, m/z): 196 (M+-H, 1.3%), 126 (M+-C$_5$H$_{11}$, 100%), 98 (M+-C$_5$H$_{11}$C=O, 7.5%). 1H-NMR (300MHz, CDCl$_3$): 0.88 (t, J= 7.5
Using the general procedure, an equimolar mixture of freshly distilled heptanal (1.22 mL, 5 mmol) was added and stirred for 4 h. A usual workup afforded a crude pale-yellow oil. Fractional vacuum distillation using a Vigreux column gave 14 (1.31 g, 72%) as a colorless liquid.

B.p. = 126 °C (2 torr). GC: Rf = 6.39 min. MS (EI, 70 eV, m/z): 210 (M+-H, 1.3%), 126 (M+-C₆H₁₃, 100%), 98 (M+-C₆H₁₃C=O, 8.75%). ¹H-NMR (300 MHz, CDCl₃): 0.86 (t, J= 7.5 Hz, 3H, H-15), 1.19-1.53 (m, 11H, H-6ax, H-7ax, H-8ax, H-11, H-12, H-13, H-14), 1.53-1.83 (m, 5H, H-6eq, H-7eq, H-8eq, H-10), 1.98 (94%, td, J= 10.7, J= 3.3 Hz, 1H, H-5ax), 2.22-2.35 (94%, tdd, J=10.2, 6.5, 2.7 Hz, 1H, H-9), 2.65-2.85 (6%, m, 2H, H-5ax, H-9), 2.95 (94%, dt, J= 10.6, J= 3.5 Hz, 1H, H-5eq), 3.15-3.25 (6%, m, 1H, H-5eq), 3.41 (94%, dd, J= 10.5, J= 7.5 Hz, 1H, H1ax), 3.54 (6%, t, J= 7.5, 1H, H-1ax), 3.73 (94%, dd, J= 7.5; 3.0 Hz 1H, H-3), 3.82 (6%, t, J= 7.5 Hz, 1H, H-1eq), 3.88 (94%, t, J= 7.5 Hz, 1H, H-1eq), 4.53 (6%, dd, J= 7.5, J=4.5 Hz, 1H, H-3). ¹³C-NMR (75 MHz, CDCl₃): 14.11 (C-15), 22.09 (6%, C-11 or 14), 22.61 (94%, C-11), 23.55 (94%, C-14), 24.81 (94%, C-7), 24.88 (94%, C-6), 25.02 (6%, C-7 or 6), 25.45 (6%, C-6 or 7), 26.75 (94%, C-8), 29.40 (6%, C-12), 29.55 (94%, C-12), 31.84 (C-13), 33.09 (94%, C-10), 33.72 (4%, C-10), 46.96 (6%, C-5), 47.85 (94%, C-5), 56.61 (6%, C-9), 63.08 (94%, C-9), 68.33 (6%, C-1), 70.04 (96%, C-1), 95.21 (6%, C-3), 95.63 (94%, C-3).

5.4.12 Synthesis of hexahydro-3-hexyl-3H-oxazolo[3,4-a]pyridine (14).

Using the general procedure, an equimolar mixture of freshly distilled heptanal (1.22 mL, 0.99g, 8.69 mmol), 2-HMP (1.000g, 8.68 mmol), DCM (10 mL), anhydrous MgSO₄ (1.0g) was added and stirred for 4h. A usual workup afforded a crude pale-yellow oil. Fractional vacuum distillation using a Vigreux column gave 14 (1.31g, 72%) as a colorless liquid.

5.4.13 Synthesis of hexahydro-3-(2-furyl)-3H-oxazolo[3,4-a]pyridine (15).

Using the general procedure, a mixture of freshly distilled furfural (0.86 mL, 0.998g, 10.4 mmol), 2-HMP (1.000g, 8.68 mmol), toluène (15 mL, for other solvents see Table 1),
anhydrous MgSO₄ (1.0 g) was added and stirred for 10h. A usual workup afforded 1.44g of a crude yellow oil. Fractional vacuum distillation using a Vigreaux column gave 15 (1.39g, 86%) as a pale-yellow oil.

B.p. = 90 °C (2 torr). GC: R₇ = 6.25 min. MS (EI, 70 eV, m/z): 193 (M⁺, 33%), 192 (M⁺-H, 100%), 163 (M⁺-CH₂O, 60%), 126 (M⁺-C₅H₃O-furanyl, 23%). ¹H-NMR (300MHz, CDCl₃): Peaks assignments were supported by a COSY spectrum. 1.21-1.39 (m, 1H, H-5ax), 1.42-1.57 (m, 1H, H-8ax), 1.60-1.73 (m, 2H, H-6), 1.80-1.90 (m, 2H, H-7eq, H-8eq), 2.08 (td, J=10.7, J=3.8 Hz, 1H, H-5ax), 2.34-2.40 (20%, m, 1H, H-5ax), 2.47 (80%, tdd, J=10.2, 6.0, 2.3 Hz, 1H, H-9), 2.82 (20%, m, 1H, H-5eq), 2.85 (80%, dt, J=10.2, J=3.3 Hz, 1H, H-5eq), 3.14-3.23 (20%, m, 1H, H-9), 3.63 (20%, t, J=7.4 Hz 1H, H-1ax), 3.65 (80%, dd, J=10.0, J=6.7 Hz, 1H, H-1ax), 4.05 (80%, t, J=6.5 Hz, 1H, H-1eq), 4.10 (20%, t, J=6.6 Hz, 1H, H-1eq), 4.71 (80%, s, 1H, H-3), 5.58 (20%, s, 1H, H-3), 6.32 (20%, dd, J=3.3; J=1.8 Hz, 1H, H-4''), 6.34 (20%, dd, J=3.8; J=1.1 Hz, 1H, H-3''), 6.36 (80%, dd, J=3.2; J=1.8 Hz 1H, H-4''), 6.47 (80%, dd, J=3.2, J=0.7 Hz, 1H, H-3''), 7.40 (20%, dd, J=1.7, J=0.8 Hz, 1H, H-5''), 7.46 (80%, dd, J=1.6, J=1.0 Hz, 1H, H-5'). ¹³C-NMR (75MHz, CDCl₃): 22.43 (20%, C-7), 23.54 (80%, C-7), 24.10 (20%, C-6), 24.69 (80%, C-6), 25.77 (20%, C-8), 26.71 (80%, C-8), 46.29 (20%, C-5), 47.83 (80%, C-5), 56.90 (20%, C-9), 62.83 (80%, C-9), 70.05 (20%, C-1), 70.92 (80%, C-1), 88.79 (20%, C-3), 89.69 (80%, C-3), 108.45 (20%, C-3''), 109.63 (80%, C-3''), 109.87 (20%, C-4''), 110.09 (80%, C-4''), 142.52 (20%, C-5''), 143.32 (80%, C-5''), 151.83 (80%, C-2''), 153.51 (20%, C-2').

5.4.14 Synthesis of hexahydro-3-(ethyl)-3H-oxazolo[3,4-a]pyridine (16).

Freshly distilled acrolein (1.74mL, 1.46g, 26mmol, 3eq) in toluene (10 mL) was added (approx. 2mL/min) to a solution of 2-HMP (1.00g, 8.68mmol, 1eq) in toluene (10 mL), anhydrous MgSO₄ (1.0g), and the mixture heated at reflux for 1h, then was cooled to an ambient temperature. The reaction mixture was filtered, and the solvent was removed under rotary evaporation at 30-35°C to afford a crude pale-yellow oil. ¹H NMR analysis show to be mainly (> 95%) of both isomers of 16. The latter can be further purified by a vacuum distillation to give pure (16) as a colorless oil, 1.17 g, 90% recovery yield.

B.p. = 65°C (0.05 torr). GC: R₇ = 3.67 min major isomer; 4.11 min minor isomer; purity 98%. MS (EI, 70 eV, m/z): 153(M⁺, 15%), 152 (M⁺-H, 36%), 126 (M⁺-C₅H₃, 100%), 98 (M⁺-C₅H₃O, 17%). ¹H-NMR (300MHz, CDCl₃):1.20-1.38 (m, 2H, H-7ax, 8ax), 1.45-1.62 (qt app, J=12.2, 4.4 Hz, 1H, H-6ax), 1.63-1.75 (dt app, J=13.4, 1.1 Hz, 1H, H-6eq), 1.78-1.88 (tl app, J=9.5 Hz, 2H, H-7eq, H-8eq), 1.99 (90%, td, J=11.8, J=10.7, J=3.0 Hz, 1H, H-5ax), 2.31
(90%, tdd, \(J^z = 10.2, 6.6, 3.2 \) Hz, 1H, H-9), 2.62 (10%, ddd, \(J^z = 13.1, J^z = 8, 4 \) Hz, 1H, H-5ax), 2.84 (10%, dt, \(J^z = 13.2, J^z = 5 \) Hz, 1H, H-5eq), 2.94 (90%, dt, \(J^z = 10.7, J^z = 3.3 \) Hz, 1H, H-5eq), 3.06-3.16 (10%, m, 1H, H-9), 3.51 (90%, ddd, \(J^z = 10.2, J^z = 6.8 \) Hz, 1H, H-1ax), 3.58 (10%, t, \(J^z = 6.8 \) Hz, 1H, H-1ax), 3.85 (10%, t, \(J^z = 6.8 \) Hz, 1H, H-1eq), 3.97 (90%, t, \(J^z = 6.6 \) Hz, 1H, H-1eq), 4.01 (90%, d, 1H, \(J^z = 7.5 \) Hz, 1H, H-3), 4.85 (10%, d, 1H, \(J^z = 6.6 \) Hz, 1H, H-3), 5.22 (10%, ddd, \(J^z = 10.0, J^z = 1.7, J^z = 0.8 \) Hz, 1H, H-11c), 5.29 (10%, ddd, \(J^z = 17, J^z = 1.7, J^z = 0.8 \) Hz, 1H, H-11t), 5.32 (90%, ddd, \(J^z = 10.0, J^z = 1.6, J^z = 0.5 \) Hz, 1H, H-11c), 5.38 (90%, ddd, \(J^z = 17.3, J^z = 1.6, J^z = 0.5 \) Hz, 1H, H-11t), 5.76 (90%, ddd, \(J^z = 17.3, J^z = 10.0, J^z = 7.7 \) Hz, 1H, H-10), 5.78 (10%, m, 1H, H10). 13C-NMR (75MHz, CDCl3): 22.37 (10%, C-7), 23.55 (90%, C-7), 23.80 (10%, C-6), 24.76 (90%, C-6), 25.51 (10%, C-8), 26.86 (90%, C-8), 46.20 (10%, C-5), 47.36 (90%, C-5), 56.71 (10%, C-9), 62.73 (90%, C-9), 69.46 (10%, C-1), 70.84 (90%, C-1), 94.65 (10%, C-3), 96.64 (90%, C-3), 118.13 (10%, C-10), 120.45 (90%, C-10), 136.17 (10%, C-11), 136.79 (90%, C-11).

5.4.15 Synthesis of bicyclic octahydro-3H-pyrido[2,1-c][1,4]azepin-3-ol (17)

A solution of freshly distilled acrolein (0.875g, 1.043 mL, 15.6mmol, 1.2 eq) in toluene was added dropwise, via syringe, to a solution of 2-HMP (1.50 g, 13.0mmol) in toluene (10 mL) and the mixture was stirred at 0 °C. The reaction was monitored by 1H-NMR. Once completed after 1hr, the solvent was removed under reduced pressure at room temperature to afford 17 as a crude thick oil. Ether (1 mL) and a few drops of hexane were added, and the solution was again evaporated, which induced solidification to afford 2.07g (17, 93%). The crude pale-yellow product was taken up in a minimal volume of ether, transferred into a small, tall vial and the ether was allowed to slowly evaporate at room temperature until a residual volume was left. The white crystals on the walls of the vial were washed with small portions of cool ether. The mother liquor at the bottom of the vial was transferred into another vial to be recrystallized. The crystals thus obtain were again recrystallized once more using this process to finally give 2.00g of 17 as pure frostlike crystals (90%) suitable for X-ray analysis.

M.p: 77-78°C. GC: \(R_T = 5.85 \) min, purity 99%. MS (EI, 70 eV, m/z): 84 (C₅H₁₁N⁺, 100%).

IRTF \(\nu_{max} \) (KBr)/cm⁻¹: 3063 (OH), 2940, 2838, 2797, 1310 (C-O), 1279(m), 1125, 1089 and 1033 (C-O). 1H-NMR (300MHz, CDCl3): Peaks assignments were supported by a COSY and nOe spectrum. 1.02-1.20 (qd, \(J^z = 11.8, 3.6 \) Hz 1H, H10ax), 1.20-1.34 (m, 1H, 8ax), 1.45 (br d, \(J^z = 12.6 \) Hz 1H, H10eq), 1.48-1.68 (m, 2H, H8eq + H9ax), 1.76 (br d, \(J^z = 12.6 \) Hz 1H, H9eq), 1.98-2.08 (br. td, \(J^z = 10.2, J^z = 2.2 \) Hz, 1H, H11ax), 2.10-2.24 (m, 3H, 2H4, H7ax), 2.48 (ddd, \(J^z = 13.1, J^z = 9.4, J^z = 2.3 \) Hz, 1H, H5ax), 2.58 (ddd, \(J^z = 13.0 J^z = 6.7, J^z = 2.6 \) Hz, 1H, H5eq),
2.82 (br.d, \(J^2 = 11.2 \) Hz, 1H, H7eq), 3.30 (dd, \(J^2 = 13.4, J^3 = 1.8 \) Hz, 1H, H1eq), 3.94 (dd, \(J^2 = 13.4, J^3 = 9.2 \) Hz, 1H, H1ax), 5.21 (dd, \(J^3 = 8.4, 6.2 \) Hz, 1H, H3). \(^{13}\)C-NMR (75MHz CDCl\(_3\)): 24.07 (C-9 or 10), 25.92 (C-5), 28.64 (C-10 or 9), 35.92 (C-4), 52.88 (C-5), 56.99 (C-7), 65.98 (C-11), 66.52 (C-1), 95.34 (C-3).

5.4.16 Synthesis of hexahydro-3-[2-N-(2-hydroxymethyl)piperidyl]-1-ethyl]-3H-oxazolo[3,4-alpyridine (18).

Freshly distilled acrolein (48.6mg, 58\(\mu \)L, 0.87mmol, 1eq) in toluene (1 mL) was added (approx. 1min) to a solution of 2-HMP (200mg, 1.74mmol, 2eq) in toluene (1 mL), anhydrous MgSO\(_4\) (200mg), and the mixture heated at reflux for 1h, then was cooled to an ambient temperature. The reaction mixture was filtered, and the solvent was removed under rotary evaporator at 30-35°C to afford a crude thick yellow oil (222mg, 95%). \(^1\)H-NMR analysis shows this to be an equal mixture of both diastereoisomers 18 and 19 having the characteristic ddd at 2.45 ppm for 18 and the ddd at 3.10 ppm for 19. The mixture can be further completely converted into 18 by allowing the thick oil to solidify over a period of 2 days at 4°C. The \(^1\)H-NMR analysis of the pale-yellow solid thus obtained showed only the characteristic ddd 2.45 ppm. The latter was washed with minimal amount of precooled ether and then dissolved in a minimum amount of ether at room temperature and cooled to 4°C overnight to finally give pure white solid (18) as an analytical standard (175 mg, 75%) of which an X-ray structure was obtained.

Alternatively

The solid (17) (200 mg, 1.17 mmole) was then vacuumed distilled in a Kugelrohr apparatus (0.3 torr, 125 °C) to afford 107 mg of a colorless thick liquid. A \(^1\)H-NMR analysis showed this to be a mixture of both isomers 18 and 19. This thick oil slowly and partly crystallized into colorless crystals of isomeric 18 (ddd, 2.45 ppm). Crystals were further purified as described above to give a pure white solid (18), 68 mg, 43%.

M.p. 94-95°C. GC: RT=8.33 min. MS (EI, 70 eV, m/z) 267 (M\(^+\)-H, 0.5%), 207 (C\(_{12}\)H\(_{19}\)N\(_2\)O\(_2\), 2%), 152 (C\(_{9}\)H\(_{14}\)NO\(^+\), 47%), and 126 (C\(_{7}\)H\(_{12}\)NO\(^+\), 100%). HRMS calcd for C\(_{15}\)H\(_{28}\)N\(_2\)O\(_2\): m/z 268.2151; found 268.2152. IRTF \(v_{\text{max}} \) (KBr)/cm\(^{-1}\): 3440, 3150 (OH), 2931, 2849, 2792, 1274(s, C-N), 1130 (C-O) and 1044 (C-O). \(^1\)H-NMR (600MHz, CDCl\(_3\)): Peaks assignments were supported by a COSY, DEPT-HSQC and nOe spectrum. 1.20-1.35 (m, 3H, H-7ax, H-8ax, H-15ax), 1.37-1.50 (qt app, J=11.8, 3.7 Hz, 1H, H-16ax), 1.53-1.61 (m, 5H, H-6ax, H-10a, H-14ax, H-14eq, H-16eq), 1.63-1.70 (m, 2H, H-6eq, H-15eq), 1.72-1.80 (m, 2H, H-7eq, H-8eq), 24
The following distinct signals attributed to 19 were deduced from an enriched mixture of 19/18 (75:25) obtained from a solution of 18 in CDCl₃ at -20 °C over a 3-month period.

1H-NMR (600MHz, CDCl₃): Partial peaks assignments were supported by a COSY, DEPT-HSQC and nOe spectrum. 1.98 (td, J²=11.6, J³=11.6 J⁴=2.6 Hz, 1H, 17ax), 2.01 (td, J²=13.1, J³=9.6 J⁴=4.1 Hz, 1H H11a), 2.10 (dq, J³=10.5, J⁴=3.8 J⁵=2.4 Hz, 1H, H13ax), 3.02-3.06 (m, 2H, H17eq, H5eq), 3.16 (ddd, J²=13.1, J³=8.8 J⁴=4.4 Hz 1H, H11b), 3.26 (dd, J²=11.7, J³=2 Hz, 1H, H18a), 3.50 (dd, J²=10.4, J³=6.7 Hz, 1H, H1ax), 3.80-3.85 (dd J³=9.0, J⁴=3.0, 1H, H3), 3.86-3.91 (dd J²=11.6, J³=3.2, 1H, H1eq), 3.98 (dd, J²=11.7, J³=3.5 Hz 1H, H18b). 13C-NMR 19 (150MHz, CDCl₃): 23.46 (C-7 or 8) 24.08 (C-15) 24.50 (C-16) 25.56 (C-6) 25.82 (C-8 or 7) 27.82 (C-14) 28.90 (C-10) 45.58 (C-11) 47.56 (C-5) 52.38 (C-17) 62.12 (C-13) 62.91 (C-9), 62.95 (C-18), 69.95 (C-1), 93.99 (C-3)

Supporting information

Experimental procedures and the NMR spectral data of all the products can be found free of charge in the supplementary information...

Corresponding author

Breau, Livain* – Laboratoire de Synthèse Organique Appliquée. Département de chimie, Université du Québec à Montréal, Canada; Email breau.livain@uqam.ca

Authors

Amadou R. Yaya* – Laboratoire de Synthèse Organique Appliquée. Département de chimie, Université du Québec à Montréal, Canada.
Martin Girard – Laboratoire de Synthèse Organique Appliquée. Département de chimie, Université du Québec à Montréal, Canada.

Karima Belkhadem – Laboratoire de Synthèse Organique Appliquée. Département de chimie, Université du Québec à Montréal, Canada. Department of Chemistry University of Sciences and Technology Mohamed Boudiaf, Algeria.

Rémi Piard – Laboratoire de Synthèse Organique Appliquée. Département de chimie, Université du Québec à Montréal, Canada.

Dr. Andreas Decken – Department of Chemistry University of New Brunswick, Canada

Catherine Choinière – Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Canada.

Pierre Luc Cloutier – Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Canada.

Jacques Lesage – Laboratoire de Synthèse Organique Appliquée. Département de chimie, Université du Québec à Montréal, Canada.

σ: Both authors contributed equally.

Acknowledgments

We thank Simon Aubin and Marielle Carrier, for the preliminary determination of purity of 4-15. This work was partially supported by the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). Also, A.R. Yaya acknowledges the financial contribution of UQAM for a fellowship. Several 600MHz spectra were recorded via the NanoQAM. Special thanks to K. Walsh for providing assistance with the editing of the manuscript.

References:

(1) Scolastico, C. Asymmetric synthesis via nor-ephedrine derived 2-alkenylxazolidones, Pure Appl. Chem. 1988, 60, 1689-1698.

(7) Grinsteiner, T. J.; Kishi, Y. Synthetic studies towards batrachotoxin 1. A furan-based intramolecular diels-alder route to construct the a-d ring system, Tetrahedron letter 1994, 45, 8333-8337

(10) National Institute for Occupational Hygiene (NIOSH), Aldehydes, Screening - Method 2539 1994

(11) Occupational Safety and Health Administration (OSHA), Acrolein, Formaldehyde - Method 52 1989

(14) ASTM. D5197-16 Standard Method for Determination of Formaldehyde and Other Carbonyl compounds in Air, Active Sampler Methodology, 2016

(16) Compendium Method TO-11A, Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology], 1999

(30) Anna Kwiecień, Maciej Barys and Zbigniew Ciunik, *Stable hemiaminals with a cyano group and a triazole ring*, Molecules 2014, 19, 11160-11177
(37) SAINT 7.23A, 2006, Bruker AXS, Inc., Madison, Wisconsin, USA.
(40) Andrew G. Brewster, Simon Broady, Catherine E. Davies, Thomas D. Heightman et al.
Enantiopure bicyclic piperidinones: stereocontrolled conjugate additions leading to substituted