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ABSTRACT: The construction of alkyl–alkyl bonds is a powerful tool in organic synthesis. Redox inversion–defined as the radical 
analog of polarity inversion–is used as a strategy for C(sp3)–C(sp3) coupling. Herein is reported a base and metal-free photocatalytic 
coupling of carboxylic acids to form biologically relevant bibenzyls through a radical-radical coupling. Mechanistic insight is gained 
through control reactions that implicate this new redox inversion strategy. In this work, the previously unexplored redox-opposite 
relationship between a carboxylic acid and its in situ activated redox active ester is implemented in catalysis.

   The construction of C(sp3)–C(sp3) bonds is a critical chal-
lenge in organic synthesis.1–3 Beyond the retrosynthetic discon-
nections enabled by this transformation, its value lies in the pro-
found impact on a molecule’s biological activity.4,5 Although 
metal-catalyzed alkyl–alkyl cross-coupling has dominated this 
field, challenges still remain in the use of bench stable coupling 
partners that do not generate stoichiometric metal (Sn, Mg, Zn, 
B, etc.) and halide waste. 1–3 Baran, MacMillan, and others have 
popularized transition-metal catalyzed C(sp3)–C(sp3) coupling 
reactions using carboxylic acid derivatives paired with a tradi-
tional coupling partner such as alkyl Zn reagents and alkyl hal-
ides (Figure 1a).6–19 In their work, carboxylic acids are com-
monly used as alkyl radical precursors via oxidative decarbox-
ylation (acting as a single electron donor), and redox active N-
hydroxyphthalimide (NHPI) esters typically utilized as alkyl 
precursors via reductive decarboxylation (acting as a single 
electron acceptor).6,20–24 However, to the best of our knowledge, 
the contrasting redox characteristics of these carboxylic acid-
derived substrates have not been exploited in conjunction for 
radical-radical coupling to form C(sp3)–C(sp3) bonds.  
   To explore this redox-opposite relationship between the two 
carboxylic acid-derivatives for radical-radical coupling, we 
were inspired by the use of polarity inversion (also known as 
umpolung) in benzoin condensation, one of the oldest known 
C–C bond forming reactions in organic chemistry (Figure 
1b).25–28 In this transformation, one equivalent of benzaldehyde, 
an electrophile, is converted to a nucleophile via an in situ func-
tionalization, inverting its polarity. Subsequently, another 
equivalent of the electrophilic aldehyde reacts with the newly 
formed nucleophile to form benzoin.  
   Herein we report redox inversion–defined as switching the re-
dox profile of a functional group–as the radical analog of polar-
ity inversion to form C(sp3)–C(sp3) bonds (Figure 1c). We hy-
pothesized that through in situ activation, we could obtain a 
mixture of carboxylic acids and their redox-active ester deriva-
tives in one-pot, which could allow for alkyl–alkyl coupling via 
a net redox-neutral single electron transfer. In this reaction de-
sign, the starting material acts as both the oxidant and the 

reductant, analogous to the role of benzaldehyde as both the nu-
cleophile and the electrophile in benzoin condensation.  
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Figure 1. a) Previous examples of radical generation for C(sp3)–
C(sp3) coupling. b) Benzoin condensation as a representative po-
larity inversion reaction. c) C(sp3)–C(sp3) coupling as a representa-
tive redox-inversion reaction. 



 

 
   To enable this strategy, we envisioned employing two equiv-
alents of carboxylic acid and in situ functionalizing only one 
equivalent with N-hydroxyphthalimide to enable the generation 
of a single electron donor-acceptor pair (Figure 2). Single elec-
tron transfer would then be aided by an organic photocatalyst, 
followed by decarboxylative radical coupling to form C(sp3)–
C(sp3) products in a metal-free process. To explore this concept, 

we focused on the use of C(sp3)–C(sp3) bond formation in the 
context of bibenzyl synthesis, which are prevalent across phar-
maceuticals and natural products.29–33 We hypothesized that the 
homocoupling of long-lived, stabilized benzylic radicals, would 
be an ideal proof-of-concept system for this new approach. To 
begin, acid 1a was selected for optimization due to its precedent 
for undergoing light-induced one-electron decarboxylation 
(Figure 3).6 Notably, the isolation of the pre-functionalized 
NHPI ester was not required. Instead, one equivalent of the 
NHPI ester is generated in situ by addition of DIC, N-hydroxy-
phthalimide, and catalytic DMAP without further workup. First, 
the identity of the photocatalyst (PC) was explored. Multiple 
well-established PCs were screened including acridinium salt 
PC1 (Entry 1), iridium photocatalyst PC2 (Entry 2), and cy-
anoarene 4-CzIPN PC3 (Entry 3).34–37 We were pleased to dis-
cover that the organic photocatalyst PC3 provided the highest 
yield, thus precluding the need for less sustainable metal-based 
photocatalysts from our reaction conditions. Next, we investi-
gated the amount of base necessary to deprotonate the carbox-
ylic acid. Although 1.5 eq. of Cs2CO3 was preferred over 1.0 
and 2.0 eq. (Entry 3-5) in standard acetonitrile conditions, ex-
citingly, we discovered that external base could be omitted from 
the reaction, and still provide moderate yield (Entry 6). We hy-
pothesized that the reaction could be run without external base, 
due to the basic phthalimide byproduct formed upon the reduc-
tion of the NHPI ester. To incorporate this additional layer of 
cooperativity between the acid and its NHPI ester, multiple sol-
vents were screened in external base-free conditions (Entry 8-
10), with DCM proving to be the best for this transformation 
(70%, Entry 10). Increasing the loading of PC from 2.5% to 5% 
and increasing the reaction time to 16 hours, gave the final op-
timized yield of 73%, with no metal catalyst or external base 
required (Entry 11). Finally, exclusion of the light or photocata-
lyst (Entries 12-13) from standard conditions formed trace to no 
yield of 2a, demonstrating their crucial roles in the single elec-
tron transfer between the donor and the acceptor. 

Next, the occurrence of redox inversion was probed. Control 
reactions demonstrated that both the electron donor and electron 
acceptor are necessary for the reaction to proceed (Figure 4). 
When 2.0 eq. of the acid 1a was irradiated with photocatalyst 
without redox inversion, only 7% yield of 2a was generated, 
likely due to a lack of electron acceptor (an NHPI ester) in the 
reaction (Figure 4). Likewise, when a pre-synthesized and iso-
lated NHPI ester 1a’ was irradiated without an additional elec-
tron donor (a carboxylic acid), a diminished yield of 20% was 
obtained.  This latter reaction (Figure 4) likely provided more 
product than the former, as side reactions of NHPI esters re-
ported in the literature often involve hydrolysis of their acid 
counterparts.38 This hydrolyzed phenylacetic acid could turn 
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over the photocatalytic cycle, further alluding to the  role of 
the acid as a single-electron donor. Regardless, the lower yields 
provided by the independent control reactions of 1a and 1a’ em-
phasize the necessity of both the acid and the NHPI ester as do-
nor-acceptor pairs in the reaction. With these results, as well as 
literature precedent, a proposed mechanism is depicted in Fig-
ure 2.6 

     To demonstrate the potential extension of this methodol-
ogy beyond homocoupling, a reaction using two different 
carboxylic acids was carried out (Figure 5). The cross-cou-
pled product of biphenylacetic acid and fluorophenylacetic 
acid (2lo) was produced in moderate isolated yield. This 
transformation highlights the potential of redox inversion to 

access efficient radical cross-coupling of carboxylic acids. 
However, to understand the complementarity of functional 
group tolerance to metal-catalyzed processes, we turned 
back to homocoupling reactions which are higher yielding 
and do not require an excess of one carboxylic acid. 

   With optimized conditions, the scope of this transformation 
was found to be successful across a variety of carboxylic acids 
(Figure 6). Substrates with electron-rich substituents per-
formed best (2a-i), likely due to the stabilizing effect of elec-
tron-donating groups on radical intermediates.39 Additionally, 
ortho-substituted phenylacetic acid derivatives gave high yield-
ing bibenzyl formation (2b, d) likely due to increased radical 
persistence in a more hindered environment.40 A variety of het-
eroatoms (oxygen, sulfur, and nitrogen) provided good yields 
of the homocoupled products (2a-c, f-i), with the electron-do-
nating para-thiophenol derivative giving the highest yield of 
79% (2f). Unlike in traditional metal-mediated transformations, 
bromine substituents were well-tolerated across substitution 
patterns (2i-j). Similarly, boronic esters, typically non-innocent 
in coupling reactions, gave clean product formation in moderate 
yield, with no deprotected boronic acid detected (2k). This 
demonstrates, along with the bromine containing substrates, a 
versatile and flexible strategy to install sensitive functionality, 
and a simple approach for efficiently building molecular cores 
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Figure 6. Substrate scope of bibenzyls 
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with potential for further functionalization and diversification. 
Fluorine-containing substrates reacted smoothly, demonstrating 
facile access to valuable fluorine-containing motifs (2l-m). 
These results, along with the methyl-ester substituted bibenzyl, 
also demonstrate the ability to couple electron-deficient radical 
intermediates (2n). Finally, substrates typically challenging or 
unreactive in radical-radical transformations due to sterics can 
be employed as well.13 Excitingly, secondary-secondary (2p) 
and tertiary-tertiary homocoupling (2q) can be achieved in 
moderate yields under these mild photocatalytic conditions 
(Figure 6).  
   After probing the scope of redox inversion, we wanted to ap-
ply the method to more complex, biologically relevant carbox-
ylic acids. First, the secondary radical resulting from decarbox-
ylation of flurbiprofen can be homocoupled in moderate yield 
(2r, Figure 6). Likewise, ibuprofen can undergo clean decar-
boxylation and radical combination (2s). The natural product 
Brittonin A can be accessed through this homocoupling in good 
yield as well (2t). Finally, Zaltoprofen, another medicinally rel-
evant carboxylic acid, provides the desired product in moderate 
yield, demonstrating the ability to couple functionally dense 
carboxylic acids via redox inversion and metal-free photocatal-
ysis (2u). Ultimately, the scope of this transformation highlights 
the versatility of the method, and its potential use as a strategy 
to rapidly build molecular complexity under mild conditions, 
using readily available carboxylic acids.  
   Finally, to further support that a radical-radical coupling was 
involved in the reaction, the enantiopure anti-inflammatory 
drug, (S)-Naproxen was subjected to the optimized conditions 
(Figure 7). The reaction resulted in racemization of the stereo-
center, giving a 1.0 : 1.3 diastereomeric ratio of the homocou-
pled products.  

   In summary, we have developed redox inversion as a mecha-
nistic strategy to access opposing redox characteristics from a 
single functional group. Specifically, this strategy was imple-
mented to photocatalytically generate two radicals from readily 
available carboxylic acids in a redox-neutral process. These 
radicals can couple to produce biologically relevant bibenzyls 
at good to moderate yields, with no metal or external base. It 
was also demonstrated that by utilizing two different acids, un-
symmetric bibenzyls can be formed, emphasizing potential for 
efficient C(sp3)–C(sp3) cross-coupling. Ultimately, this work 
serves as an early utilization of the unexplored redox-opposite 
relationship of carboxylic acids and their redox-active esters for 

alkyl-alkyl bond formation. Ongoing work will investigate the 
cross-selectivity of this coupling process and an expansion of 
this radical-radical coupling to a wider range of substrates.  
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