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ABSTRACT: We report a direct catalytic enantioselective hydrophosphonylation of N-unsubstituted ketimines that affords N-un-
protected α-tetrasubstituted α-aminophosphonates without protection/deprotection steps. The reaction is suitable for N-unsubstituted 
isatin-derived ketimines and N-unsubstituted trifluoromethyl ketimines, affording products in high yields with excellent enantiose-
lectivity. Applications of the reaction and a proposed transition state model are also described. 

Direct catalytic enantioselective hydrophosphonylation of 
ketimines effectively synthesizes enantioenriched α-tetrasubsti-
tuted α-aminophosphonates, which are usable α-amino acid an-
alogs.1–4 N-Substituted ketimines realize the reaction with both 
high yield and high enantioselectivity (Scheme 1, eq 1).5,6 The 
requisite protection/deprotection steps for derivatizing the 
amino group, however, limit the greenness of the overall reac-
tion sequence. 
Scheme 1. Hydrophosphonylation of Ketimines 

 

N-Unsubstituted ketimines are attractive substrates because 
they directly afford N-unprotected α-tetrasubstituted α-amino-
phosphonates without protection/deprotection steps.7–14 Despite 
several reports of hydrophosphonylation reactions that directly 
affording N-unprotected products have been reported in a race-
mic form (eq 2),15–18 the use of N-unsubstituted ketimines in cat-
alytic enantioselective hydrophosphonylation has not, to the 
best of our knowledge, been reported.19 Herein we report the 
first direct catalytic enantioselective hydrophosphonylation of 
N-unsubstituted ketimines (eq 3).20 The unprecedented reac-
tions can be realized using chiral bifunctional squaramide or-
ganocatalysts,21–23 and high yield and excellent enantioselectiv-
ity were realized for a broad range of substrates. 

To realize the catalytic enantioselective hydrophosphonyla-
tion of N-unsubstituted ketimines, we first selected isatin-de-
rived ketimine 1a.24–27 Screening of chiral bifunctional organo-
catalysts revealed that thiourea organocatalysts C1–C3, previ-
ously used for related hydrophosphonylation reactions,25 gave 
the product 3a in moderate yields with moderate enantioselec-
tivities (Tables S1). On the other hand, squaramide catalysts 
C4–C10 gave 3a in high yield with high enantioselectivity, and 
we selected catalyst C10 for further optimization. Additional 
screening of the solvent and desiccant revealed that chloroben-
zene and molecular sieves 13X were optimal (Table S3). Finally, 
phosphite 2a was reduced to 1.1 equivalents without affecting 
the reactivity and selectivity (Scheme 2, eq 4). Analogous opti-
mizations using the pseudo-enantiomer catalysts C11–C14 
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(Tables S2 and S4) revealed that catalyst C14 was optimal to 
give ent-3a in high yield with high enantioselectivity under 
comparable reaction conditions (eq 5). 
Scheme 2. Optimized Reaction Conditions 

 
The scope of N-unsubstituted isatin-derived ketimines 1 was 

explored using the optimized reaction conditions and catalyst 
C10 (Scheme 3). Electron-withdrawing and -donating substitu-
ents at position 5 did not affect the selectivity of 3b–f, and the 
substituents at positions 6 and 7 also maintained both the high 
yield and high enantioselectivity of 3g–k. Product 3l was an ex-
ception; while enantioselectivity was excellent, the yield was 
low. Several substituents at the nitrogen of the isatin were tol-
erated to give products 3m–p. The absolute configuration of 3a 
was determined to be (R) by comparing HPLC spectra with the 
authentic sample of (R)-3a prepared by deprotection of a known 
Boc-protected product24 (see the Supporting Information for de-
tails). 
Scheme 3. Scope of N-Unsubstituted Isatin-Derived 
Ketiminesa 

 
aConditions: Ketimine 1 (0.10 mmol), phosphite 2a (1.1 equiv), 

catalyst C10 (5.0 mol %), and MS 13X (50 mg) in PhCl (0.10 M) 
at 25 °C for 1 h. Isolated yields are reported. Ee was determined by 
HPLC analysis with chiral stationary phases. bFor 3 h. 

An advantage of the above reaction is that catalyst loading 
can be reduced to 0.5 mol % while maintaining the high enan-
tioselectivity of 3a (Scheme 4 (a)). N-Unprotected product 3a 
was directly transformed into amide 4 without deprotection of 
the protective group. The one-pot catalytic transformation of N-
benzylisatin to 3a via in-situ generation of N-unsubstituted 
ketimine 1a was realized using catalyst C5 (Scheme 4 
(b)).14,28,29 Catalyst C5 was essential to promote the generation 
of 1a, likely due to efficient activation of the carbonyl group by 
hydrogen bonding. 
Scheme 4. Applications of the Hydrophosphonylation of N-
Unsubstituted Isatin-Derived Ketimines 
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A transition state model explaining the observed enantiose-

lectivity is proposed as shown in Figure 1.30 Phosphite 2 is 
deprotonated with bifunctional organocatalysts to give an ion 
pair. The ammonium part of the catalyst activates the N-unsub-
stituted ketimine, and the squaramide moiety holds the phos-
phite anion through hydrogen-bonding interactions, promoting 
the addition from the Re face of the ketimine to preferentially 
give (R) products. Density functional theory calculations sup-
ported the proposed transition state model using catalyst C10 
with isatin-derived N-unsubstituted ketimine 1a and diphenyl 
phosphite (2a) (see the Supporting Information for details). The 
transition state energy for the major (R) isomer was 5 kcal/mol 
lower than that for the minor (S) isomer, consistent with the 
high enantioselectivity of isatin-derived N-unprotected prod-
ucts 3. 

 
Figure 1. Proposed transition state model for the synthesis of 3. 

Finally, the scope was extended to N-unsubstituted trifluoro-
methyl ketimines 5 (Scheme 5).31,32 After optimizing the reac-
tion conditions (Tables S5 and S6), hydrophosphonylation ad-
duct 6 was obtained in high yield with high enantioselectivity 
using catalyst C8 and bis(2,2,2-trifluoroethyl) phosphite (2b),33 
and various electron-donating and -withdrawing substituents 
were tolerated. The reaction was also applicable for diphenyl 
phosphite (2a) to give product 6j. The absolute configuration of 
6j was determined to be (R) by X-ray crystallographic analysis, 
and the transesterification of 6j established the absolute 

configuration of 6a to be (R) (see the Supporting Information 
for details). 
Scheme 5. Scope of N-Unsubstituted Trifluoromethyl 
Ketiminesa 

 
aConditions: Ketimine 5 (0.10 mmol), phosphite 2 (1.1 equiv), 

catalyst C8 (5.0 mol %), and MS 4A (50 mg) in PhCl (0.25 M) at 
25 °C for 24 h. bWith 2.5 mol % of C8. cFor 48 h.dWith 10 mol % 
of C8 for 72 h. 

In conclusion, we developed a catalytic enantioselective hy-
drophosphonylation reaction of N-unsubstituted ketimines. The 
reaction was uniformly applicable for isatin-derived ketimines 
and trifluoromethyl-substituted ketimines, giving the desired 
products with excellent enantioselectivity. Advantages of the 
reaction are reduced catalyst loading, transformation of the 
product, and one-pot synthesis from the parent carbonyl com-
pound. A transition state model explaining the observed enanti-
oselectivity is also proposed. Detailed mechanistic studies and 
efforts to expand the scope to other N-unsubstituted ketimines 
are ongoing in our laboratory. 
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