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Abstract 

AQME, Automated Quantum Mechanical Environments, is a free and open-source Python package for 

the rapid deployment of automated workflows using cheminformatics and quantum chemistry. AQME 

workflows integrate tasks performed across multiple computational chemistry packages and data 

formats, preserving all computational protocols, data, and metadata for machine and human users to 

access and reuse. AQME has a modular structure of independent modules that can be implemented in 

any sequence, allowing the users to use only the desired parts of the program. The code is intended 

for researchers with basic familiarity with the Python programming language. The CSEARCH module 

interfaces to molecular mechanics and semi-empirical QM (SQM) conformer generation tools (e.g., 

RDKit and Conformer–Rotamer Ensemble Sampling Tool, CREST) starting from various initial structure 

formats. The CMIN module enables geometry refinement with SQM and neural network potentials, such 

ANI-1. The QPREP module interfaces with multiple QM programs, such as Gaussian, ORCA, and 

PySCF. The QCORR module processes QM results, storing structural, energetic, and property data 

while also enabling automated error handling (i.e., convergence errors, wrong number of imaginary 

frequencies, isomerization, etc.) and job resubmission. The QDESCP module provides easy access to 

QM ensemble-averaged molecular descriptors and computed properties, such as NMR spectra. 

Overall, AQME provides automated, transparent, and reproducible workflows to produce, analyze and 

archive computational chemistry results. SMILES inputs can be used, and many aspects of tedious 

human manipulation can be avoided. Installation and execution on Windows, macOS, and Linux 
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platforms has been tested, and the code has been developed to support access through Jupyter 

Notebooks, the command line, and job submission (e.g., Slurm) scripts. Examples of pre-configured 

workflows are available in various formats, and hands-on video tutorials illustrate their use. 

 

1. INTRODUCTION 

Continued improvements to computer hardware and algorithms have meant that quantum chemical 

studies are increasingly applied to study ever-larger and conformationally more flexible molecules and 

molecular datasets of increasing size. Computational high‐throughput screening, chemical space 

exploration and molecular optimization, and the construction of high-quality datasets to train emerging 

machine learning models rely on the ability to execute, analyze and store the results of large quantum 

chemistry campaigns.1-8 These tasks typically require more than one calculation per molecule. Instead, 

a sequence of molecule building, conformational analysis and refinement, optimization and 

thermochemical analysis, property prediction, and ensemble averaging is often performed. Each step 

may involve a different model chemistry (e.g., MM, SQM, QM, NN) executed by a distinct package. 

Further, these efforts are multiplied by the number of molecules. Automating these multi-step workflows 

minimizes manual effort and human error and enables the complex protocols and their associated data 

and metadata to be fully captured and reused.9-13 Automated workflows for QM calculations, including 

those that address the important challenge of transition state (TS) location and conformational analysis 

(e.g., Wheeler’s QChASM14 and Duarte’s autodE15), have emerged as powerful software tools, such as 

AARON,16 ACE,17 Aiida,18 Auto-QChem,19 CatVS,20 Chemistream,21 ChemShell,22 FireWorks,23 

molSimplify,24 PyADF,25 and QMflows,26 among others. In this work, we focus on the development of 

automated end-to-end workflow software to perform multi-step computational tasks spanning multiple 

programs and theoretical methods.  

The modular design of AQME provides opportunities for workflow customization, use in Jupyter 

notebooks, and integration into Python projects.27 Ready-to-use examples with different degrees of 

complexity are provided via GitHub,28 supplemented by hands-on video tutorials.29 Additionally, users 

can create workflows for new applications as desired, even in fields that are not considered in the 

existing examples. For example, a researcher can create a workflow to calculate a reaction energy 

profile and, afterwards, tune the module combination to generate QM molecular descriptors to use in 

machine learning (ML) models. 
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Currently, the program contains five modules designed for different tasks (Figure 1) that can be 

executed in any order; individual modules can be skipped if required. The input format can be a SMILES 

representation or many types of structure formats (SDF, PDB, XYZ, among others). The first module, 

CSEARCH, automates conformational analysis. This is Interfaced with molecular mechanics potentials 

through RDKit30 and semi-empirical potentials through xTB. Searches can be performed using RDKit 

or CREST,31 or using internally-coded systematic or Monte Carlo torsion sampling protocols. Then, 

CMIN is designed to refine the geometries and relative energies obtained in the initial conformer 

generation by using semi-empirical methods (xTB) 32 and ML potentials (ANI-1).33 However, this module 

can also be used to process multiple 3D input formats independently. The next module, QPREP, 

converts a wide variety of 3D formats into input files for QM calculations with several packages, such 

as Gaussian,34 ORCA,35 and PySCF.36 Tedious tasks such as creating Gen(ECP) sections or including 

final lines (i.e., NBO extra keywords) in the input files are handled automatically. QCORR is a cclib-

based37 module that detects issues and errors in QM output files, structures all output data, and creates 

ready-to-submit input files to correct those issues. User-specified criteria (i.e., spin contamination, 

isomerization, etc.) can be defined to filter output data. The last module, QDESCP, is designed to 

generate Boltzmann ensemble-averaged molecular QM properties or SQM descriptors, which can be 

readily used in ML models. Commonly used descriptors such as atomic charges, bond orders, dipole 

moment, and solvation energy are included. 

 

Figure 1. General workflow including the modules available in AQME and their connectivity with 

external programs. 
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INSTALLATION AND TECHNICAL DETAILS 

The program presented is a free, open-source Python-based software that can be installed via conda-

forge (conda install -c conda-forge aqme) or Python Package Index (pip install aqme). All the 

dependencies required to run AQME are installed automatically, except for RDKit and Openbabel when 

using pip install. Along with the software, we set up tests through Pytest, Circle CI, and Codecov, which 

allows us to ensure a correct functioning of a significant proportion of the code. Also, multiple code 

analyzers (CodeFactor, Codacy, and LGTM) were employed to improve the quality standards and 

readability of the deployed code. 

 

MODULES OF AQME  

AQME is divided into modules that can be called as part of a workflow or separately. Four main 

applications enclose these modules: i) conformer generation and geometry refinement (CSEARCH and 

CMIN), ii) generation of QM input files (QPREP), iii) post-processing of output files (QCORR), and iv) 

generation of Boltzmann weighted descriptors (QDESCP). In this section, the technical details of the 

modules are disclosed in more detail. 

 

Conformer Generation and Geometry Refinement: The CSEARCH and CMIN Modules 

The availability of numerous conformer generators for small molecules (i.e., ConfGen,38 OMEGA,39 

Frog2,40 etc.) highlights the central importance of this task. In the CSEARCH module, AQME gathers 

multiple types of conformational search tools. It can be used simply as an interface to the external 

conformer generation protocols available in RDKit or CREST, or to perform torsion-based sampling 

internally while making use of the MM or SQM potentials in those packages (Figure 2A). When starting 

from SMILES strings, CSEARCH attempts to derive molecular charge and multiplicity, although this can 

be manually overwritten (charge and mult options). The number of simultaneous processes is controlled 

by the max_workers option; the number of processors used by each process with the nprocs option. 
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Figure 2. Modules in AQME. (A) Methods and parameter options in CSEARCH and CMIN modules. 

(B) Recognition of atoms to include in the GenECP section of an example organometallic complex when 

using gen_atoms=[“Pd”]. (C) Outline of error fixed in the QCORR module. Additional creation of input 

files for calculations for properties such as NMR, NBO, or higher-level single point energy evaluation. 

(D) Generation of Boltzmann averaged molecular properties using the QDESCP module for conformer 

ensembles. 

 

The Grimme group’s CREST generates conformers by extensive metadynamics sampling using semi-

empirical methods (GFNn-xTB) or force fields (GFN-FF), with an additional genetic Z-matrix crossing 

step at the end. User-defined constraints for atom positions, bond distances, angles and dihedral angles 

enable approximate TS structures to be sampled. When starting from 1D and 2D structures, RDKit is 

used to generate the necessary 3D input for CREST. Before the sampling, two initial xTB optimizations 

are performed to avoid errors. During the first optimization, the calculations are performed with all the 

bonds frozen in addition to any user-defined constraints. This preparatory calculation avoids problems 

related to the superimposition of molecules when the input molecules are generated from 1D or 2D 

inputs. In the second optimization, only the user-defined constraints are included. Afterward, the CREST 

search is carried out, including any additional keywords specified in the crest_keywords option (i.e., 

crest_keywords=“--nci --cbonds 0.5”).  

MM-based searches are faster and may be necessary for large systems or large numbers of molecules. 

The first method (specified through program=“RDKit”) uses the ETKDG protocol, with various 



6 

 

parameters we have tuned based on experience to obtain the most significant conformers while 

reducing the number of duplicates. These protocols have been extensively benchmarked in studying 

flexible druglike compounds and natural products (see the ESI). When the initial conformational 

sampling fails, the program automatically tries to address the problems through a series of changes to 

its initial protocol (i.e., changing MMFF for UFF, using random coordinates for molecular embedding, 

etc.), making the protocol more robust. CSEARCH also tries to overcome other severe limitations in the 

conformational sampling of molecules that contain transition metals or atoms with uncommon 

hybridization (i.e., pentacoordinate P atoms). Additionally, common templates for organometallic 

compounds, such as linear, trigonal planar, and square-planar geometries, can be used. These 

geometries are not usually obtained with standard RDKit protocols (i.e., square-planar metal complexes 

lead to tetrahedral structures), which may then neglect an essential aspect of conformational behavior.  

Internal torsional sampling approaches are also implemented, such as the systematic unbounded 

multiple minimum (SUMM)41 and Monte Carlo Multiple Minimum (MCMM) algorithms.42,43 The SUMM 

approach surveys dihedral angles that are progressively varied by a user-specified increment, while 

MCMM applies random values to a random subset of the rotatable torsions. These two methods require 

more time than the standard RDKit sampling, but they might render more accurate results in cases with 

complex conformational spaces. Finally, the CMIN module refines the energies and geometries of the 

structures obtained with RDKit or other low-level methods before optimizing with more demanding levels 

of theory, such as density functional theory (DFT). xTB or ANI-1 methods typically result in a reordering 

of relative conformational stabilities closer to QM results and the removal of duplicate conformations.  

 

QM Input File Preparation: The QPREP Module 

The QPREP module is designed to convert multiple formats (SDF, XYZ, PDB, JSON, LOG/OUT) into 

input files for QM programs ready to be submitted without further modification. QPREP currently 

generates inputs for Gaussian, ORCA, and PySCF. One of the most convenient features of this module 

is that the Gen and GenECP specifications from Gaussian input files are automatically written. When 

the user specifies atom types to use in gen_atoms, QPREP detects the atom types of the molecule and 

separates them into two groups for the input GenECP section. For example, the users can set the 6-

31+G(d,p) basis set for C, H, N, and P atoms while using def2-SVP for Pd atoms (Figure 2B). This 

automated protocol avoids the tedious manual setup of all the types of atoms in the GenECP part, which 
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is especially helpful when working with different families of compounds or with big molecular datasets. 

The input keywords for the generated input files are specified through the qm_input option, and other 

parameters can be edited as preferred, such as charge, multiplicity, generation of CHK files, number of 

processors, and memory. Also, the user can include final lines after the molecular coordinates (i.e., 

NBO keywords). 

 

Post-processing of Output Files: The QCORR Module 

Typically, a tedious manual search and correction for error terminations, convergence issues, and extra 

imaginary frequencies is necessary after running QM calculations. Based on our experience with 

structure optimizations and frequency calculations for large databases (i.e., many thousands) of organic 

compounds, such occurrences are relatively common.44 QCORR structures output data and 

automatically detects issues or errors, creating new input files that try to correct those issues, a cycle 

that can be repeated several times (Figure 2C). Usually, only one QCORR analysis is necessary since 

the number of calculations with issues is reduced considerably.44 Structural isomerizations can be 

automatically detected and filtered. Also, calculations with spin contamination will be removed if ⟨S2⟩ 

differs from s(s+1) by more than 10%, as previously suggested.45 The filter can be disabled or adjusted 

to other thresholds with the s2_threshold option. QCORR uses the cclib Python library and stores all 

parsed data as JSON files since this format allows other Python tools to retrieve the information easily. 

By default, QCORR uses this information to detect all calculations for consistency in terms of calculation 

type and software version.  

 

Generation of Boltzmann Weighted Properties and Descriptors: The QDESCP Module 

Boltzmann-weighted values are generally advisable for molecules with multiple conformers when 

comparing computed results with experimental observables. AQME couples with xTB to generate 

molecular properties for large chemical databases. Starting from 3D geometries, atomic properties such 

as charges, fractional occupation densities, Fukui indices, D3-dispersion coefficients, and molecular 

properties including dipole moment, HOMO-LUMO gap, polarizability, energy are determined for every 

conformation of a molecule (Figure 2D). Then, Boltzmann averaged properties are calculated and 

stored separately. This protocol enables the generation of molecular descriptors as starting points for 

ML models. Additionally, QDESCP can be used to compute Boltzmann averaged nuclear magnetic 
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resonance (NMR) chemical shifts from DFT calculations. The user can specify slope and intercept to 

scale the results to the tetramethylsilane (TMS) scale using tools such as The Tantillo group’s 

CHESHIRE repository,46 rendering simulated spectra that can be compared directly with experimental 

spectra.  

 

END-TO-END WORKFLOWS 

In this section, we detail four illustrative workflows that have been adapted for different applications 

regularly carried out in our group, such as calculating energy profiles and generating molecular 

descriptors for ML models. These workflows are available on Figshare44 along with associated data and 

metadata, in three formats: Jupyter Notebook, SLURM script, and command-line script. Hands-on 

tutorials have been uploaded to YouTube.29 For large systems or datasets, we typically execute end-

to-end AQME workflows on a cluster using SLURM commands: the overall time taken is dominated by 

the QM calculation steps.  

 

The Conformational Distribution and 1H chemical Shifts of Strychnine from SMILES Input 

Strychnine is a natural alkaloid produced by different plants of the genus Strychnos, whose complexity 

and pharmacological properties have attracted many organic synthetic groups over time.47 Recently, 

John, Reinscheid, and coworkers reported two different conformers in a 97:3 ratio observed in NMR 

studies.48 The following AQME workflow aims to identify these two structures and simulate an averaged 

NMR spectra starting from a SMILES string, using a combination of i) RDKit conformer sampling, ii) 

Gaussian geometry optimization with B3LYP/6-31+G(d,p), iii) fixing errors and imaginary frequencies 

of the output files, iv) GoodVibes49 calculation of Boltzmann distributions using Gibbs free energies at 

298.15 K, and (v) Boltzmann averaged shielding tensor calculations (empirically-scaled to obtain 

chemical shifts) with B3LYP/6-311+G(2d,p), SMD = CHCl3 (Figure 3). Using the CSEARCH module 

with RDkit yields two conformers which are utilized further for DFT optimization. The calculated 

Boltzmann distribution for the two conformers is 99:1, which correlates well with the experimental 

observation of 97:3. Furthermore, the predicted 1H chemical shifts present a low mean average error 

(MAE, 0.14 ppm for nine known 1H signals) compared to the experimental values.50 This workflow did 

not require manual intervention and suggests that further applicability of AQME to automate NMR 

prediction and organic structure elucidation merits investigation. 
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Figure 3. End-to-end workflow to calculate the conformer distribution and scaled (TMS) 1H NMR 

chemical shifts of strychnine in CHCl3. 

 

Comparing Diels-Alder Activation Barriers from Multiple SMILES Inputs 

AQME can also be employed to generate energy profiles. Figure 4 summarizes a workflow where a 

CSV input containing a list of SMILES is used to generate the reaction energy profiles for the Diels-

Alder cycloadditions of multiple cyclic dienophiles, each reacting with cyclopentadiene.51 This workflow 

might be especially useful to calculate reaction energies between reagents and products from two lists 

of SMILES. TSs might also be included by specifying the corresponding atomic and structural 

constraints, with no limit in the number of TSs provided in the same reaction pathway. The approach 

represents a constraint-based complementary method to other more specialized tools that calculate 

energy profiles, such as autodE.15 

The workflow presented illustrates a somewhat typical multi-step combination of SQM conformer 

sampling, geometry optimizations and single point energy corrections with different levels of theory, and 

the generation of a potential energy surface diagram. AQME links together the following tasks: i) CREST 

conformer sampling, ii) Gaussian geometry optimization (B3LYP/def2-TZVP), iii) fixing errors and 

imaginary frequencies of the output files, iv) ORCA single point energy corrections using DLPNO-

CCSD(T)/cc-pV(DT)Z, and v) Boltzmann weighted thermochemistry calculation and PES generation 

with GoodVibes at 298.15 K. Manual intervention and the use of Spreadsheets is avoided. 
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Figure 4. End-to-end workflow to generate the energy profile of multiple Diels-Alder reactions using a 

CSV as the input file. 

 

Generating QM or SQM Molecular Descriptors for a Large Dataset 

Statistical and ML applications in chemistry are often enhanced by using feature vectors or parameters 

derived from QM calculations.52 For example, QM-derived atomic charges or populations are often used 

in multivariate linear regression or neural network models.53 Figure 5 shows a workflow that employs 

the SMILES-containing ESOL database54 to predict aqueous solubility with a message passing graph 

neural network model. There are 1128 datapoints available, which are split into training (1028), 

validation (50) and test (50) sets. The protocol includes i) RDKit conformer sampling, ii) xTB descriptor 

generation (Boltzmann weighted), and iii) neural fingerprint (nfp)55 based graph neural network (GNN) 

model creation. In the first step, the CSEARCH module creates 3D conformations using the SMILES 

strings of the database with RDKit. Then, QDESCP uses xTB to generate molecular and atomic 

properties such as dipole moments, charges, Fukui indexes, dispersion parameters, polarizability, and 

HOMO-LUMO gaps, among others. These properties are provided individually for each conformer and 

as Boltzmann averaged values.  

The Boltzmann weighted xTB parameters are then used as descriptors in a GNN model. The GFN2-

xTB atomic properties are encoded as node features and the molecular properties are passed as global 

features in the input graph structure. This graphical representation of the molecule with embedded 

atomic and molecular properties is used to build a message passing GNN. The GNN model utilized the 

AdamW optimizer, and model performance was assessed by measuring the mean absolute error during 

training for 500 epochs. The model showed an R2 and MAE of 0.8 in the held-out test set of 50 

molecules. Hyperparameter tuning can be performed along with feature selection to further improve this 
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accuracy. Other ML models, such as random forests can also be employed in this workflow instead of 

the GNN shown. 

 

Figure 5. End-to-end workflow to create and use molecular descriptors in a GNN model starting from a 

database of SMILES strings. 

 

Conclusion 

AQME is an open-source Python package for building computational workflows to perform multi-step 

protocols efficiently that combine different packages and model chemistries. The approach is well-

suited to general tasks incorporating conformational analysis, geometry refinement, QM optimizations, 

and ensemble-averaged property predictions. Representative examples of chemical shift prediction, 

reaction energy profile calculation, and dataset featurization are shown here, in each case operating as 

a fully automated (‘end-to-end’) workflow from the supplied inputs to desired Boltzmann-averaged 

outputs. Inputs can be supplied in SMILES or several 3D structure formats. This approach captures and 

preserves protocols used at every stage of the research process: there are no extraneous Spreadsheets 

involved and all steps can be reproduced by other researchers.  

The software consists of independent modules that can be combined in any order. The CSEARCH 

module performs conformational sampling or interfaces to external conformational analysis tools using 

MM (RDKit) or SQM (xTB, CREST) levels of theory. CMIN allows the refinement of conformer 

ensembles with xTB or ANI-1 methods. The QPREP module converts files with different 3D input 

formats into input files for external QM programs, such as Gaussian, ORCA, and PySCF. The QCORR 

module analyzes QM output data by systematically processing output files. Filters for e.g., convergence 

errors, imaginary frequencies, and undesired structural isomerization, can be implemented to create 

new inputs automatically. The QDESCP module produces Boltzmann-weighted descriptors and 

properties. The modular structure means AQME can be used in Jupyter notebook environments or 

reused and imported by other Python projects. 
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