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Abstract 
Designing solvent systems is the key to achieving the facile synthesis and separation of desired products 
from chemical processes. In this regard, many machine-learning models have been developed to predict 
the solubilities of given solute-solvent pairs. However, breakthroughs in developing predictive models for 
solubility are needed, which can be accomplished through a remarkable expansion and integration of 
experimental and computational solubility databases. To maximize predictive accuracy, these two 
databases should not be separately trained when developing ML models. In addition, they should not be 
simply combined without reconciling the discrepancies between different magnitudes of errors and 
uncertainties. Here, we introduce self-evolving solubility databases and graph neural networks developed 
through semi-supervised self-training approaches. Solubilities from quantum-mechanical calculations are 
referred to during semi-supervised learning, but they are not directly added to the database. Such 
methodologies enable the augmentation of databases while correcting the discrepancy between 
experiments and computation and improving the predictive accuracy against experimental solubilities. 
The resulting model was successfully applied to two practical examples relevant to solvent selection in 
organic reactions and separation processes: (i) linear relationship between reaction rates and solvation 
free energy for three organic reactions, and (ii) partition coefficients for lignin-derived monomers and drug-
like molecules. 
 
Introduction 

Solubility has been touted as the key molecular property to consider in designing various chemical 
reactions and processes. It provides the control of reactivity, catalytic activity, separation ability, and other 
molecular properties. In chemical synthesis, solvent selection controls the solubilities of chemical species 
involved in reactions and determines their catalytic activity and product selectivity. It is one of the crucial 
factors in designing homogeneous catalytic reactions pertinent to pharmaceutical synthesis in the solution 
phase, such as the functionalization of organic molecules through C-H activation.1-6 In this regard, linear 
relationships have been elucidated between solvent properties (permittivity, polarity, etc.) and stability of 
reactants/products, and thus reaction rates for various organic reactions in different solvents.7-9 Such 
linear solvation energy relationships (LSERs) inform the solvent selection, leading to the maximal yield of 
target products.  

In the pharmaceutical industry, solubilities in water and organic solvents are essential properties to 
consider during the entire process development, including screening and synthesis of drug candidates.10, 

11 The candidates having sufficient water solubility should be identified to achieve high bioavailability in 
oral administration.12 Water solubility is also relevant to the toxic effects of drugs and pesticides on human 
health and the environment.13-15 Solubilities in organic solvents have to be measured as well as water 
solubilities, especially for assessing in vivo efficacy and safety of intravenous drugs dissolved in non-toxic 
organic solvents.11, 16, 17 Specifically, solubilities of drug-like molecules in chloroform and diethyl ether 
have been investigated for the simplified modeling of the polar environment around proteins, and 
membranes.18, 19 In addition, solubility plays a critical role in emerging research areas to confront the 
challenges of climate change, such as sustainable chemistry and renewable energy. For instance, the 
solvent selection is conducted in biomass upgrading to biofuels and renewable polymers to maximize 
catalytic activity.20-22 The optimal water-organic solvent systems enhance not only the conversion to target 
products but also their extraction from separation processes.20, 21 Meanwhile, developing organic redox 
flow batteries is another promising research area for renewable energy storage, and it is important to 
design electrolytes highly soluble in water or organic solvents for high charge densities.23-25 
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To date, the solubilities of various solutes in water and organic solvents have been measured 
experimentally, and databases of experimental solubilities have been released. The available databases 
include AqSolDB,26 Open Notebook Scientific Challenge,27 Minnesota Solvation Database,28-30 
FreeSolv,31 CompSol,32 and solubility challenge database.12, 33, 34 Many computational methods have also 
been developed, enabling in silico screening of solvents and solutes through solubility prediction before 
experiments. Such methods include quantum mechanics (QM) or density functional theory (DFT) with 
implicit solvation models (e.g., Solvation Model based on Density - SMD),35 molecular dynamics (MD) 
simulations, or QM-based thermodynamic equilibrium methods, e.g., the Conductor-like Screening Model 
(COSMO).36-38 For more rapid and accurate solubility predictions, various predictive models have been 
actively developed by analyzing quantitative structure-property relationship (QSPR)34, 39-44 or adopting 
machine learning (ML) techniques.34, 42, 45-55 Particularly, current advanced ML models used graph neural 
networks (GNNs) combined with interaction layers47, 53 recurrent neural networks with attention layers,45 
and natural language processing-based transformers.54 These models achieved accuracies close to 
experimental uncertainties. Furthermore, the development of ML models has been expanded to the 
prediction of solubility limits at different temperatures,52 solvation enthalpy, LSER, and solute 
parameters,51 and generative models for designing molecules having optimal aqueous solubility.55 

Despite the dramatic advancement discussed above, further improvement is needed to accomplish 
accurate solubility predictions for the broader chemical space of solvents and solutes. There are around 
10,000 data points of Gibbs solvation free energies (DGsolv) in the current largest experimental database, 
but more data points (around >100,000) would be desirable for training reliable GNNs.53, 56 In this respect, 
there have been attempts for pre-training against computational databases followed by transferring the 
trained model and re-training against the experimental data.53, 57 Employing such transfer learning 
approaches is advantageous in utilizing the extensive computational database and refining the model by 
correcting the discrepancies between theory and experiment. However, transfer learning can diminish the 
prediction accuracy of the extensive pre-trained computational database after the model is re-trained 
against the small experimental database. A comprehensive and theory-experiment integrated database 
would provide another opportunity to accomplish balanced accuracy simultaneously for the chemical 
space covered by both experiments and computations.  

To build an integrated database, discrepancies between theoretical and experimental solubilities 
should be rectified. In other words, computational solubilities should have a fidelity as high as 
experimental ones. Accuracies of computational methods depend on the molecule size, constituent 
elements, functional groups, etc. Therefore, it is not feasible to merely combine experimental and 
computational databases and train the model. Each database has a different source and magnitude of 
errors and uncertainties,58-61 which would deteriorate the accuracy of predictive models. For reliable 
integration of databases from different sources, state-of-the-art techniques for data augmentation and 
self-training have been developed, such as noisy student self-distillation and semi-supervised distillation 
(SSD). The overall procedure of these approaches is as follows; first, the ‘Teacher’ model is trained 
against the small but reliable database. Second, predictions are carried out for larger data, creating a new 
database. Third, the ‘Student’ model is trained using the database combining the initial database and that 
from the prediction of the ‘Teacher’, with or without introducing noise to the model. This procedure is 
iterated for the gradual addition of reliable data points to the integrated database. These methods have 
been successfully applied to various ML predictive models for image classification,62, 63 natural language 
processing,64 and protein structures.65  

In this contribution, SSD was introduced to GNN predictions of solubilities, leading to an augmented 
database and accurate predictive model encompassing broader chemical space than that covered by 
experimental measurements. The solute-solvent pairs for the data augmentation were obtained from the 
CombiSolv-QM database, the largest existing database of DGsolv calculated using COSMO-RS.53 For 
reliable data integration and distillation, we referred to the solubilities calculated using COSMO-RS and 
M06-2X with SMD implicit solvation model, but these values were not included in the database. Instead, 
DGsolv values refined through SSD were considered in model development to correct the discrepancies 
between the experiment and theory. It was found that the databases augmented from SSD enhance the 
accuracy for predicting experimental solubilities, manifesting the effectiveness of our approach.  
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Moreover, we successfully applied our model to two practical examples related to solvent system 
design in reaction kinetics and separation. First, the linear relationship was elucidated between DGsolv of 
reactants/products and reaction rates for five chemical reactions. Second, 370 water-organic partition 
coefficients were predicted for 30 lignin-derived monomers and 17 drug-like molecules and compared 
with experimental values. These examples demonstrate the potential of our ML approaches in enabling 
the chemistry-informed design of solvent systems. 
 
Results and Discussion 
Graph neural networks and quantum-mechanical methods for model development. 

To execute data augmentation and self-training, first, a GNN was constructed, as shown in Fig. 1A. 
The model takes 2D molecular structures (SMILES strings) of solvent and solute as inputs, and each of 
them undergoes a message passing GNN. The overall architecture of two GNNs (GNN-Solvent and GNN- 
Solute) is similar to our previous GNNs for predicting bond dissociation enthalpy and cetane number.56, 66 
It consists of three blocks representing the atom, bond, and global state of a molecule. Initial atom, bond, 

Figure 1. (A) Architecture of the graph neural network for solubility. (B) Description of three databases used to 
evaluate theoretical methods against experimental solubilities. (C) Comparison of accuracies of CombiSolv-QM 
and QM-DB for the data points overlapping with Exp-DB. (D) Semi-supervised distillation (SSD) for self-evolving 
solubility databases and graph neural networks. (E) Control for comparing the accuracies of models with and 
without SSD. (F) A schematic description of evaluation, application, and error analysis of the model obtained from 
SSD. 
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global features are embedded as 128-dimensional vectors and pass through five message-passing layers. 
In each layer, mathematical operations among feature vectors lead to their mutual updates so that the 
model captures implications regarding the influence of local atom/bond environments and global 
molecular structures on solubility. Each GNN then outputs a 128-dimensional latent vector for solvent and 
solute, respectively. These two vectors are concatenated and undergo additional dense layers to take 
solute-solvent interactions into account, and finally, DGsolv is predicted. Other operations as well as 
concatenation have also been reported in previous studies to consider molecular interactions, such as 
global convolution among molecules and graph-of-graphs neural networks.67, 68 However, the 
concatenation of latent vectors was sufficient to achieve accuracy close to experimental uncertainty: mean 
absolute error (MAE) of DGsolv around 0.2 kcal/mol (vide infra). 

The GNN shown in Fig. 1A was inspired by the recent state-of-the-art GNN model for DGsolv developed 
by Vermeire et al.,53 but it has differences as follows. First, we have attempted to minimize the number of 
atom and bond features, leading to a fewer number of atom and bond features than their model. Second, 
the dimensions of hidden layers were also minimized while maintaining accuracy. Our GNN has hidden 
layers with 128 and 256 nodes before and after concatenation, respectively, whereas they used 200 and 
500-dimensional hidden layers. Third, a separate global state block was built in our GNN, and it 
participated in feature updates while they concatenated global features after undergoing the message-
passing layers. We selected four global features after testing various molecular descriptors; two surface 
area descriptors were utilized in Vermeire et al.,53 and two hydrogen bond descriptors were adopted in 
our predictive model for cetane number.66 Of note, accuracies comparable to Vermeire et al. were still 
achieved (Details in the next section) after the hyperparameter tuning, truncation, and modification of the 
model explained above.  

Next, we evaluated QM methods that will provide reference solubility values during the data 
augmentation using SSD by comparing experimental and calculated DGsolv. Experimental DGsolv values 
were collected from various data sources, and they were curated, resulting in Exp-DB consisting of 11,637 
data points.(Fig. 1B) Most data points in Exp-DB overlap with those in CombiSolv-Exp,53 but it has 
additional 1,419 data points accounting for ‘self-solvation’ where the solvent and solute are identical. 
COSMO-RS and SMD-M06-2X/Def2-TZVP were then benchmarked against Exp-DB. To assess 
COSMO-RS, we adopted CombiSolv-QM, the most extensive DGsolv database consisting of one million 
data points obtained from COSMO-RS calculations.53 SMD-M06-2X/Def2-TZVP was elected among 
plenty of theoretical methods since it provided reliable results from calculations of molecular properties 
pertinent to solvation. For example, it showed the best accuracy in evaluating the redox potentials of 174 
organic molecules in water and acetonitrile among 33 different combinations of density functionals, basis 
sets, and solvation models.25 In this work, a new database (QM-DB) was built by calculating DGsolv for 
190,989 solute-solvent pairs in Exp-DB and CombiSolv-QM. Not all pairs were calculated due to the 
limited availability of SMD solvent parameters (dielectric constant, refractive index, surface tension, 
Abraham hydrogen bond acidity, and basicity). 

Fig. 1C compares the number of solute-solvent pairs in CombiSolv-QM and QM-DB that are 
overlapped with Exp-DB and their MAEs and root-mean-square errors (RMSEs) against Exp-DB. There 
are 3,254 common solute-solvent pairs in CombiSolv-QM which show an MAE and RMSE of 0.4 and 
0.67 kcal/mol with respect to Exp-DB. Meanwhile, an RMSE comparable to CombiSolv-QM (0.66 
kcal/mol) was observed from QM-DB with more overlapped data points (5,317). These results manifest 
the reliability of M06-2X in providing further explanation regarding the errors of QM methods and ML 
models after the model development (Details in the next section). 
 
Self-training graph neural networks based on semi-supervised distillation and data augmentation. 

Building the GNN model and databases was followed by training the model based on SSD (Fig. 1D). 
The SSD is initiated by training the ‘teacher’ model using Exp-DB (Cycle 0). The trained model is then 
used for augmenting the database; new solute-solvent pairs are gathered from CombiSolv-QM, and their 
DGsolv is predicted using the ‘teacher’ model. The predicted values are compared with COSMO-RS 
solubilities stored in CombiSolv-QM. If the absolute difference between these two is below 0.2 kcal/mol, 
the corresponding data points are stored in the augmented database (Aug-DB-1) with teacher-predicted 
solubility values. It should be emphasized that the values from ML prediction are saved instead of those 
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from COSMO-RS. This is for refining data points based on the solubility trends learned from Exp-DB while 
maintaining reliability by referring to QM solubility values. The threshold value was set to 0.2 because the 
uncertainty of experimental measurements of DGsolv is typically up to 0.2 kcal/mol.58-61 If the deviation 
between ML and QM is below 0.2, it can be assumed that the difference is mainly from experimental 
uncertainty, and the prediction from ‘teacher’ is credible.  

Next, the ‘Student 1’ model is trained using the database combining Aug-DB-1 and Exp-DB (Cycle 
1), and the same procedure is carried out for the solute-solvent pairs that remained after extracting Aug-
DB-1. ‘Student 1’ performs DGsolv prediction for the remaining ones, and the predicted values are subject 
to the 0.2 kcal/mol cutoff, resulting in Aug-DB-2. These cycles were repeated 14 times, and such iterations 
enabled the self-training of ML models. The database is grown gradually, and subsequent student models 
learn larger databases that contain DGsolv values refined based on the guidance from previous student 
models and COSMO-RS solubilities. We found that such gradual integration shows better accuracy than 
using the Teacher-predicted values for the whole CombiSolv-QM and re-training at once. This is because 
the model should be slowly trained so that it can steadily transmit the trend it learned from Exp-DB while 
minimizing the discrepancy between experiments and theory. It should be noted that no trained weights 
of the GNN model were transferred from the previous cycle when training the Student model in the current 
cycle. Only Aug-DBs and Exp-DB are transferred, and each student is trained from scratch. This is to 
verify that the new Aug-DB is integrated well with the databases cumulated from previous cycles, and it 
shows no significant discrepancies and anomalies during the training. 

Ultimately, the 14th cycle yields the ‘Student 14’ model and the integrated database containing Exp-
DB and 14 Aug-DBs. The cycle was terminated at the 14th cycle because the MAE for the test set of Exp-
DB significantly increased (Detailed results in Fig. 2A, vide infra). This stopping criterion was applied since 
the leftover data points in CombiSolv-QM no longer synchronized well with the large Aug-DBs cumulated 
during previous cycles. The solute-solvent pairs not included in Aug-DBs were stored in Leftover DB. 
Accuracies of the Student models from SSD were compared with those from the control models trained 
by the database simply combining DGsolv values from experiments and COSMO-RS (Fig. 1E).  

The resulting Student 14 model was then subject to subsequent evaluation, error analysis, and 
applications (Fig. 1F). To evaluate the model’s accuracy, mean absolute errors (MAEs) and distributions 
of errors were investigated. For additional error analysis, we obtained the solute-solvent pairs in QM-DB 
that overlap with those in other databases (Aug-DBs, Exp-DB, Leftover DB). Next, we compared their 
DGsolv values acquired from four different sources: Experiments (if available), predictions from Student 14, 
SMD-M06-2X/Def2-TZVP, and COSMO-RS calculations. Outliers were identified from this comparison, 
and their chemical structures were analyzed to assess the strengths and weaknesses of each QM method 
or ML model. Also, the model was applied to two practical examples of solvent selections in chemistry: (i) 
Elucidation of the relationship between reaction rate and DGsolv, (ii) partition coefficients of lignin-derived 
monomers and drug-like molecules. Detailed results are discussed in the following sections. 

Figure 2. (A) Mean absolute errors of test sets of Aug-DBs and Exp-DB at each cycle of SSD, with the size of 
cumulated Aug-DBs. (B) Box plots of absolute error distributions for the test set of Exp-DB, for four representative 
models from SSD. (Yellow box: interquartile range, blue line: mean, blue dotted line: median, lower/upper bound 
of the error bar: 5th/95th percentile, gray dots: outliers beyond the 95th percentile.) (C) Parity plot of solubility values 
from the prediction and database for the 14th student model. 
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Model performance. 
Fig. 2A illustrates the results from the SSD training (Fig. 1D) of the GNN shown in Fig. 1A. The initial 

training to obtain the Teacher model showed the MAE of 0.27 kcal/mol for the test set of Exp-DB. As the 
SSD cycles proceeded, the sizes of Aug-DBs gradually increased. Interestingly, the MAE of the Exp-DB 
test set decreased as Aug-DBs grew, until Student 14, even though no data points in Aug-DBs are from 
experiments. The MAEs increased from Student 13 to Student 14, but the increment is only 0.002 kcal/mol. 
The Student 14 model achieved an MAE of 0.222 kcal/mol for the Exp-DB test set. This indicates that the 
SSD scheme works properly in data augmentation while it still captures experimental solubility trends. 
Meanwhile, the test set MAEs of Aug-DBs remain relatively constant, which is another indication of the 
feasibility of SSD. However, a higher MAE was shown in Student 15 (0.229 kcal/mol) than in Student 14 
(0.222 kcal/mol) for the test set of Exp-DB (Fig. 2A), which needs further analysis using other QM methods 
besides COSMO-RS (Outlier analysis, vide infra). 

On the contrary, the Control models showed a gradual increase in MAEs of the Exp-DB test set, 
demonstrating that simply merging solubilities from experiments and COSMO-RS is not advantageous for 
maintaining the accuracy of the ground-truth Exp-DB. In addition, Control shows overfitting to Aug-DBs, 
as test set MAEs are decreasing for Aug-DBs, whereas those for Exp-DB are increasing. These MAEs 
diverge rather than approaching the irreducible experimental uncertainty of 0.2 kcal/mol. It is arguable 
that there is a difference of only around 0.05 kcal/mol between test set MAEs from SSD (0.22 kcal/mol) 
and Control (0.27 kcal/mol). However, the Control model shows a discrepancy of 0.23 kcal/mol between 
test set MAEs of Exp-DB and Aug-DBs (0.27 vs. 0.04), whereas that from SSD is around 0.1 kcal/mol 
(0.22 vs. 0.12).  

Moreover, the box plot in Fig. 2B demonstrates that the SSD approach is promising. For the test set 
of Exp-DB, Student 1 shows more significant outliers (gray dots) with higher errors than the Teacher. This 
outlying behavior is remedied in Student 14, with a lower MAE (blue line) and a more narrow interquartile 
range (yellow box) than Teacher. The higher accuracy of Student 14 than Teacher shows the 
effectiveness of SSD. In contrast, Student 14 from Control does not show significant accuracy 
improvement compared to Teacher, and outliers also show higher errors. Student 14 from SSD showed 
high and balanced accuracies for the training, validation, and test sets of the integrated database, with 
overall MAEs of 0.10, 0.11, and 0.11 kcal/mol, respectively (Fig. 2C).  

Of note, we tested other variants of semi-supervised learning methods, such as noisy student self-
distillation (NSSD). During the training using NSSD, noises are introduced to the model by applying 

Figure 3. 2D plot of t-distributed stochastic neighbor embeddings (t-SNEs) for the latent vectors of 1,447 solvents 
obtained from Student 14 model. 
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dropout and stochastic depth methods to the hidden layers of the model. NSSD was effective in ML 
models for image classification because partially dropping the information from hidden layers would be 
helpful for handling the variance among different images with the same label.62, 63 In this regard, we also 
tested multiple NSSD models in solubility predictions with different dropout rates and survival probabilities 
of stochastic depth. However, in all cases, NSSD showed higher prediction errors than SSD (i.e., no noise 
introduced to the model). That is because dropout and stochastic depth can presumably cause errors in 
recognizing a molecule. The model can miss the information about key structural features related to 
solubility due to introducing the noise to the model. In contrast, for images, if some part is lost, the model 
can still recognize and classify them. As a result, the SSD method was chosen throughout this study 
instead of NSSD for the development of self-evolving solubility databases and GNNs. 

We also carried out the clustering analysis of t-distributed stochastic neighbor embeddings (t-SNEs) 
of latent vectors for 1,447 solvents included in all the databases shown in Fig. 1B. This analysis is to 
further verify the chemical feasibility of the Student 14 model (Fig. 3). 2D t-SNE coordinates were obtained 
for these solvents, and each solvent was categorized according to the priority of categories listed in the 
legend of Fig. 3. For example, if a solvent contains both O and S, it is classified as ‘O,N-containing’ 
because O has higher priority than S. We found clear clustering patterns among several categories: O,N-
containing (upper left), halogen (X)-containing (lower center), and hydrocarbon solvents (the rest of them). 
O,N-containing solvents exclusively occupy their region, possibly because they are solvents that can 
participate in hydrogen bonds and show characteristic solubility trends.  

However, some O,N-containing solvents are located close to other molecular groups, such as 
aromatics, hydrocarbons, and X-containing ones. We found that such solvents contain oxygen or nitrogen 
with the atoms corresponding to the molecular groups they are close to. For instance, Bis(alpha-
phenylethyl) ether shown has oxygen with aromatic carbons, so it is placed around the Aromatics cluster, 
and alkyl groups exist in trioctylamine, leading to its position around Hydrocarbons. Two solvents having 
a carbonyl group and three chlorine atoms can also be found near the X-containing cluster (Fig. 3).  

 
Outlier analysis. 

As introduced in Fig. 1F, the error and outlier analysis were carried out by using the QM-DB solubilities 
calculated in the SMD-M06-2X/Def2-TZVP level of theory. Here, we focused on analyzing DGsolv 
calculated using COSMO-RS since these values were referred to when we applied the SSD approach 
(Fig. 1D). The top five outliers of COSMO-RS against Exp-DB were found from the comparison of DGsolv 
in CombiSolv-QM53 (Fig. 1B) with those in Exp-DB. Their absolute errors range from 1.5-4.5 kcal/mol, 

Figure 4. Top 5 outliers of COSMO-RS when comparing DGsolv with (1) Exp-DB and (2) the data points that were 
not included in Aug-DBs after training until Student 14 (Leftover DB). 
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whereas DGsolv for these five solute-solvent pairs in QM-DB showed an error range of only 0.01-0.2 
kcal/mol. The same analysis was performed for Leftover DB which contains the data points that were not 
included in Aug-DBs after 14 cycles of SSD. In this case, QM solubility values were compared with the 
predicted values from Student 14 model since no experimental DGsolv is available for these outliers. The 
DGsolv values from the M06-2X level were much closer to Student-predicted values compared to those 
from COSMO-RS. It should be noted that only COSMO-RS solubility values were used during SSD, 
whereas M06-2X values had not been seen. 

In addition, common structural features can be found in these outliers. All solute and solvent 
molecules contain hydrogen bond donors and acceptors. Some molecules also contain halogens. The 
higher accuracy of M06-2X with SMD for those molecules may be in part attributed to the halogenicity, 
hydrogen bond acidity, and basicity parameters used by SMD. Further analysis was performed for all 
190,989 data points in QM-DB; among them, 117,605 were already merged into Aug-DBs. The remaining 
73,384 are in Leftover DB, and the SMD-M06-2X/Def2-TZVP method showed better accuracy than 
COSMO-RS for 17,819 of them. It should be emphasized that the outlier analysis discussed above does 
not indicate that COSMO-RS is inappropriate for the model training. The SSD guided by COSMO-RS 
solubilities led to the Student 14 model with the self-evolving database consisting of 658,194 data points 
in total (Fig. 2C). However, the outlier analysis implies that employing multiple QM methods would further 
improve the ML model and augmented database obtained from SSD since each method shows higher 
accuracy than others for a certain group of molecules. 

 
Application 1 – Linear relationships between solvation free energy and reaction rates of organic 
reactions. 

It is crucial to find a linear solvation free energy relationship (LSER) between the property relevant to 
solvents and reaction rates of organic reactions since it informs solvent selections in chemical process 
design. Previous studies have elucidated the LSER between reaction rates and experimentally measured 
solvent properties such as dielectric constant and polarity.7-9 Here, we demonstrate new directions to 
discover the LSER pertinent to the kinetics of organic reactions through ML. For three organic reactions, 
the linear relationship was found (Fig. 5A) between reaction rates,69, 70 and DGsolv differences between 
product and reactant. The high negative Pearson correlation coefficients were shown for all three cases 

Figure 5. (A) A linear relationship between DGsolv of reactants and products vs. reaction rates for three organic 
reactions. (B) A parity plot showing the correlation between experimental and predicted log P values for 363 
data points. 
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(r = -0.94 ~ -0.85). These negative correlations indicate that the solvation stabilization of the product 
leads to a higher reaction rate, while the reactant should be less stabilized to undergo reactions.  

The first reaction is a ring opening to decarboxylate the reactant and form an alkene whose reaction 
rates were measured in five solvents. A nonpolar solvent, decalin, shows the lowest reaction rate, 
whereas the fastest reaction was observed in a polar N-phenylforamide solvent. This is consistent with 
the fact that the zwitterionic product (P) is more polar than the reactant (R), so a polar solvent would be 
favorable to stabilize the product more than the reactant. The second reaction, Cope rearrangement, in 
five different solvents was investigated. Two solvents with hydroxyl groups (ethylene glycol and phenol) 
showed higher reaction rates than other solvents. This is because the ketone group in the product can 
form hydrogen bonds with alcoholic solvents, leading to product stabilization and faster reactions. Our ML 
model also showed reliable and chemically explainable results in the complex third reaction example, the 
epoxidation of β-Caryophyllene investigated in 10 different solvents.  

Notably, the above results manifest that the DGsolv difference of only around 1 kcal/mol can lead to a 
large difference in reactivity predictions, demanding a fast and accurate ML model. Such ML-driven design 
of solvent systems is promising because it can save time taken in expensive QM calculations while being 
accurate. The linear relationship can be extrapolated to the new solvents for which experiments were not 
performed yet, leading to the design of solvent systems toward a higher reaction rate. Using the ML-
predicted quantities would facilitate solvent selections in designing chemical reactions. However, the 
above three reactions were not performed at room temperature, whereas the ML model gives the 
solubilities at room temperature. Considering the temperature dependence of solubility would be one of 
the ways to further improve ML models, although the results in Fig. 5A already show decent correlations. 
 
Application 2 – Prediction of partition coefficients for lignin-derived monomers and drug-like 
molecules. 
 
Table 1. Comparison of prediction accuracies of 363 partition coefficients for COSMO-RS and ML model. 

  Kendall tau rank 
coefficient RMSE 

Set A 
COSMO-RS 0.77 0.50 

ML 0.82 0.77 

Set B 
COSMO-RS 0.77 1.00 

ML 0.58 1.41 
 

As the second application example, we examined our GNN model by calculating the 363 water-
organic partition coefficients (log P) of which experimental values are available from the literature.71 The 
dataset of log P values is divided into two sets (Set A and Set B). Set A consists of log P measured for 
30 depolymerized lignin derivatives dissolved in 10 organic solvents and water. There are log P values 
for 17 drug-like compounds dissolved in four organic solvents and water, making up 63 data points. Fig. 
5B depicts the parity plot of ML-predicted log P vs. experimental ones. Overall, the model shows 
predictions close to experimental ones while overestimating log P in some cases. We compared the 
accuracy of our model with log P calculated using COSMO-RS. Table 1 summarizes Kendall tau rank 
coefficients and root-mean-square errors (RMSEs) for COSMO-RS and our ML model. The GNN showed 
rank coefficients of 0.82 and 0.58 for Set A and Set B, respectively, whereas those for COSMO-RS are 
0.77 for both sets.71 Our GNN showed a better correlation for Set A than COSMO-RS, while COSMO-RS 
performed better in Set B. In terms of RMSE, COSMO-RS showed better accuracy in both sets.  

These results indicate that the ML model reliably captures the rank of solubilities in different organic 
solvents, although relatively less accuracy was shown in predicting the solubility value itself. However, it 
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should be emphasized that calculating log P using ML takes less than one second and yields an accuracy 
comparable to QM methods, whereas QM and COSMO-RS calculations of log P are computationally 
demanding. Some acidic/basic solutes can be ionized into cations/anions in the solution. In addition, an 
organic solvent can dissolve water and vice versa. A detailed consideration of these effects would further 
improve the accuracy. Rapid and reliable log P predictions using ML would lead to the computational 
design of solvent systems for separation processes in organic, pharmaceutical synthesis, and renewable 
energy industries.  
 
Conclusions 

Solubility is a critical molecular property to consider when designing chemical processes such as 
synthesis and separation in organic, pharmaceutical, and sustainable chemistry. Many ML models have 
been developed, but one should have a reliable integration of experimental and computational solubility 
databases to maximize the database size and, thus prediction accuracy. To reduce the discrepancies 
among different data sources, here, semi-supervised self-training methodologies were adopted in 
solubility predictions, leading to self-evolving solubility databases and GNN predictive models. The 
resulting model showed reliable accuracy. It was also applied to practical examples of solvent selection 
in chemical reactions and separation processes. All these results demonstrate the practical applicability 
of the developed model to the design of solvent systems in chemical processes. Such approaches can 
be further improved by employing multiple QM methods during the data augmentation process. 
Considering temperature effects on solubility in ML models should also be pursued to achieve the 
application of the model to a broader scope of chemistry. Predicting solubilities in multicomponent 
solvents is another challenge in the expansion of ML models, which would lead to the realistic modeling 
of mixtures utilized in various chemical reactions and separation processes. 
 
References 
1. Dalton, T.;  Faber, T.; Glorius, F., C–H Activation: Toward Sustainability and Applications. ACS 
Cent. Sci. 2021, 7, 245-261. 
2. Dyson, P. J.; Jessop, P. G., Solvent effects in catalysis: rational improvements of catalysts via 
manipulation of solvent interactions. Catal. Sci. Technol. 2016, 6, 3302-3316. 
3. Huxoll, F.;  Jameel, F.;  Bianga, J.;  Seidensticker, T.;  Stein, M.;  Sadowski, G.; Vogt, D., Solvent 
Selection in Homogeneous Catalysis—Optimization of Kinetics and Reaction Performance. ACS Catal. 
2021, 11, 590-594. 
4. Hailes, H. C., Reaction Solvent Selection:  The Potential of Water as a Solvent for Organic 
Transformations. Org. Process Res. Dev. 2007, 11, 114-120. 
5. Varghese, J. J.; Mushrif, S. H., Origins of complex solvent effects on chemical reactivity and 
computational tools to investigate them: a review. React. Chem. Eng. 2019, 4, 165-206. 
6. Moseley, J. D.; Murray, P. M., Ligand and solvent selection in challenging catalytic reactions. J. 
Chem. Tech. Biotech. 2014, 89, 623-632. 
7. Slakman, B. L.; West, R. H., Kinetic solvent effects in organic reactions. J. Phys. Org. Chem. 
2019, 32 (3), e3904. 
8. Sherwood, J.;  Parker, H. L.;  Moonen, K.;  Farmer, T. J.; Hunt, A. J., N-Butylpyrrolidinone as a 
dipolar aprotic solvent for organic synthesis. Green Chem. 2016, 18 (14), 3990-3996. 
9. Dyson, P. J.; Jessop, P. G., Solvent effects in catalysis: rational improvements of catalysts via 
manipulation of solvent interactions. Catalysis Science & Technology 2016, 6 (10), 3302-3316. 
10. Pinho, S. P.; Macedo, E. A., Chapter 20 Solubility in Food, Pharmaceutical, and Cosmetic 
Industries. In Developments and Applications in Solubility, The Royal Society of Chemistry: 2007; pp 305-
322. 
11. Jouyban, A., Review of the cosolvency models for predicting solubility of drugs in water-cosolvent 
mixtures. J. Pharm. Pharm. Sci. 2008, 11, 32-58. 
12. Llinàs, A.;  Glen, R. C.; Goodman, J. M., Solubility Challenge: Can You Predict Solubilities of 32 
Molecules Using a Database of 100 Reliable Measurements? J. Chem. Inf. Model. 2008, 48, 1289-1303. 
13. Bergström, C. A. S.;  Charman, W. N.; Porter, C. J. H., Computational prediction of formulation 
strategies for beyond-rule-of-5 compounds. Adv. Drug Deliv. Rev. 2016, 101, 6-21. 



  
 

11 
 

14. Bergström, C. A. S.; Larsson, P., Computational prediction of drug solubility in water-based 
systems: Qualitative and quantitative approaches used in the current drug discovery and development 
setting. Int. J. Pharm. 2018, 540, 185-193. 
15. Fioressi, S. E.;  Bacelo, D. E.;  Rojas, C.;  Aranda, J. F.; Duchowicz, P. R., Conformation-
independent quantitative structure-property relationships study on water solubility of pesticides. 
Ecotoxicol. Environ. Saf. 2019, 171, 47-53. 
16. Nayak, A. K.; Panigrahi, P. P., Solubility Enhancement of Etoricoxib by Cosolvency Approach. 
ISRN Phys. Chem. 2012, 2012, 820653. 
17. Seedher, N.; Kanojia, M., Co-solvent solubilization of some poorly-soluble antidiabetic drugs. 
Pharm. Dev. Technol. 2009, 14, 185-192. 
18. Newmister, S. A.;  Li, S.;  Garcia-Borràs, M.;  Sanders, J. N.;  Yang, S.;  Lowell, A. N.;  Yu, F.;  
Smith, J. L.;  Williams, R. M.;  Houk, K. N.; Sherman, D. H., Structural basis of the Cope rearrangement 
and cyclization in hapalindole biogenesis. Nat. Chem. Biol. 2018, 14 (4), 345-351. 
19. Kraml, J.;  Hofer, F.;  Kamenik, A. S.;  Waibl, F.;  Kahler, U.;  Schauperl, M.; Liedl, K. R., Solvation 
Thermodynamics in Different Solvents: Water–Chloroform Partition Coefficients from Grid 
Inhomogeneous Solvation Theory. J. Chem. Inf. Model. 2020, 60 (8), 3843-3853. 
20. Esteban, J.;  Vorholt, A. J.; Leitner, W., An overview of the biphasic dehydration of sugars to 5-
hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides. 
Green Chem. 2020, 22 (7), 2097-2128. 
21. Huber, G. W.;  Chheda, J. N.;  Barrett, C. J.; Dumesic, J. A., Production of liquid alkanes by 
aqueous-phase processing of biomass-derived carbohydrates. Science 2005, 308 (5727), 1446-1450. 
22. Shen, Z.; Van Lehn, R. C., Solvent Selection for the Separation of Lignin-Derived Monomers 
Using the Conductor-like Screening Model for Real Solvents. Ind. Eng. Chem. Res. 2020, 59 (16), 7755-
7764. 
23. Hollas, A.;  Wei, X.;  Murugesan, V.;  Nie, Z.;  Li, B.;  Reed, D.;  Liu, J.;  Sprenkle, V.; Wang, W., 
A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. 
Energy 2018, 3 (6), 508-514. 
24. Kucharyson, J. F.;  Cheng, L.;  Tung, S. O.;  Curtiss, L. A.; Thompson, L. T., Predicting the 
potentials, solubilities and stabilities of metal-acetylacetonates for non-aqueous redox flow batteries using 
density functional theory calculations. J. Mat. Chem. A 2017, 5 (26), 13700-13709. 
25. S. V, S. S.;  Law, J. N.;  Tripp, C. E.;  Duplyakin, D.;  Skordilis, E.;  Biagioni, D.;  Paton, R. S.; St. 
John, P. C., Multi-objective goal-directed optimization of de novo stable organic radicals for aqueous 
redox flow batteries. Nat. Mach. Intell. 2022, 4 (8), 720-730. 
26. Sorkun, M. C.;  Khetan, A.; Er, S., AqSolDB, a curated reference set of aqueous solubility and 2D 
descriptors for a diverse set of compounds. Sci. Data 2019, 6, 143. 
27. Bradley, J.-C.;  Neylon, C.;  Guha, R.;  Williams, A.;  Hooker, B.;  Lang, A.;  Friesen, B.;  Bohinski, 
T.;  Bulger, D.;  Federici, M.;  Hale, J.;  Mancinelli, J.;  Mirza, K.;  Moritz, M.;  Rein, D.;  Tchakounte, C.; 
Truong, H., Open Notebook Science Challenge: Solubilities of Organic Compounds in Organic Solvents. 
Nat. Preced. 2010. 
28. Marenich, A. V.;  Kelly, C. P.;  Thompson, J. D.;  Hawkins, G. D.;  Chambers, C. C.;  Giesen, D. 
J.;  Winget, P.;  Cramer, C. J.; Truhlar, D. G., Minnesota Solvation Database (MNSOL) version 2012. 
Retrieved from the Data Repository for the University of Minnesota, https://doi.org/10.13020/3eks-j059. 
2020. 
29. Kelly, C. P.;  Cramer, C. J.; Truhlar, D. G., SM6:  A Density Functional Theory Continuum 
Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute−Water 
Clusters. J. Chem. Theory Comput. 2005, 1, 1133-1152. 
30. Thompson, J. D.;  Cramer, C. J.; Truhlar, D. G., New Universal Solvation Model and Comparison 
of the Accuracy of the SM5.42R, SM5.43R, C-PCM, D-PCM, and IEF-PCM Continuum Solvation Models 
for Aqueous and Organic Solvation Free Energies and for Vapor Pressures. J. Phys. Chem. A 2004, 108, 
6532-6542. 
31. Mobley, D. L.; Guthrie, J. P., FreeSolv: a database of experimental and calculated hydration free 
energies, with input files. J. Comput. Aided Mol. Des. 2014, 28 (7), 711-720. 
32. Moine, E.;  Privat, R.;  Sirjean, B.; Jaubert, J.-N., Estimation of solvation quantities from 
experimental thermodynamic data: Development of the comprehensive compSol databank for pure and 
mixed solutes. J. Phys. Chem. Ref. Data 2017, 46 (3), 033102. 



  
 

12 
 

33. Llinas, A.; Avdeef, A., Solubility Challenge Revisited after Ten Years, with Multilab Shake-Flask 
Data, Using Tight (SD ∼ 0.17 log) and Loose (SD ∼ 0.62 log) Test Sets. J. Chem. Inf. Model. 2019, 59, 
3036-3040. 
34. Llinas, A.;  Oprisiu, I.; Avdeef, A., Findings of the Second Challenge to Predict Aqueous Solubility. 
J. Chem. Inf. Model. 2020, 60, 4791-4803. 
35. Marenich, A. V.;  Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute 
Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and 
Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396. 
36. Boothroyd, S.;  Kerridge, A.;  Broo, A.;  Buttar, D.; Anwar, J., Solubility prediction from first 
principles: a density of states approach. Phys. Chem. Chem. Phys. 2018, 20, 20981-20987. 
37. Palmer, D. S.;  McDonagh, J. L.;  Mitchell, J. B. O.;  van Mourik, T.; Fedorov, M. V., First-Principles 
Calculation of the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules. J. Chem. Theory Comput. 
2012, 8, 3322-3337. 
38. Skyner, R. E.;  McDonagh, J. L.;  Groom, C. R.;  van Mourik, T.; Mitchell, J. B. O., A review of 
methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. 
Chem. Phys. 2015, 17, 6174-6191. 
39. Ran, Y.;  He, Y.;  Yang, G.;  Johnson, J. L. H.; Yalkowsky, S. H., Estimation of aqueous solubility 
of organic compounds by using the general solubility equation. Chemosphere 2002, 48, 487-509. 
40. Palmer, D. S.; Mitchell, J. B. O., Is Experimental Data Quality the Limiting Factor in Predicting the 
Aqueous Solubility of Druglike Molecules? Mol. Pharm. 2014, 11, 2962-2972. 
41. Boobier, S.;  Hose, D. R. J.;  Blacker, A. J.; Nguyen, B. N., Machine learning with physicochemical 
relationships: solubility prediction in organic solvents and water. Nat. Commun. 2020, 11, 5753. 
42. Yang, K.;  Swanson, K.;  Jin, W.;  Coley, C.;  Eiden, P.;  Gao, H.;  Guzman-Perez, A.;  Hopper, 
T.;  Kelley, B.;  Mathea, M.;  Palmer, A.;  Settels, V.;  Jaakkola, T.;  Jensen, K.; Barzilay, R., Analyzing 
Learned Molecular Representations for Property Prediction. J. Chem. Inf. Model. 2019, 59, 3370-3388. 
43. Qiu, J.;  Albrecht, J.; Janey, J., Solubility Behaviors and Correlations of Common Organic 
Solvents. Org. Process Res. Dev. 2020, 24, 2702-2708. 
44. Lovrić, M.;  Pavlović, K.;  Žuvela, P.;  Spataru, A.;  Lučić, B.;  Kern, R.; Wong, M. W., Machine 
learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, 
or predictive ability? J. Chemom. 2021, 35, e3349. 
45. Lim, H.; Jung, Y., Delfos: deep learning model for prediction of solvation free energies in generic 
organic solvents. Chem. Sci. 2019, 10, 8306-8315. 
46. Cui, Q.;  Lu, S.;  Ni, B.;  Zeng, X.;  Tan, Y.;  Chen, Y. D.; Zhao, H., Improved Prediction of Aqueous 
Solubility of Novel Compounds by Going Deeper With Deep Learning. Front. Oncol. 2020, 10. 
47. Pathak, Y.;  Laghuvarapu, S.;  Mehta, S.; Priyakumar, U. D., Chemically Interpretable Graph 
Interaction Network for Prediction of Pharmacokinetic Properties of Drug-Like Molecules. Proc. AAAI Conf. 
AI 2020, 34, 873-880. 
48. Sorkun, M. C.;  Koelman, J. M. V. A.; Er, S., Pushing the limits of solubility prediction via quality-
oriented data selection. iScience 2020, 24, 101961-101961. 
49. Francoeur, P. G.; Koes, D. R., SolTranNet–A Machine Learning Tool for Fast Aqueous Solubility 
Prediction. J. Chem. Inf. Model. 2021, 61, 2530-2536. 
50. Tang, B.;  Kramer, S. T.;  Fang, M.;  Qiu, Y.;  Wu, Z.; Xu, D., A self-attention based message 
passing neural network for predicting molecular lipophilicity and aqueous solubility. J. Cheminform. 2020, 
12, 15. 
51. Chung, Y.;  Vermeire, F. H.;  Wu, H.;  Walker, P. J.;  Abraham, M. H.; Green, W. H., Group 
Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free 
Energy, and Solvation Enthalpy. J. Chem. Inf. Model. 2022, 62 (3), 433-446. 
52. Vermeire, F. H.;  Chung, Y.; Green, W. H., Predicting Solubility Limits of Organic Solutes for a 
Wide Range of Solvents and Temperatures. J. Am. Chem. Soc. 2022, 144 (24), 10785-10797. 
53. Vermeire, F. H.; Green, W. H., Transfer learning for solvation free energies: From quantum 
chemistry to experiments. Chem. Eng. J. 2021, 418, 129307. 
54. Yu, J.;  Zhang, C.;  Cheng, Y.;  Yang, Y.-F.;  She, Y.-B.;  Liu, F.;  Su, W.; Su, A., SolvBERT for 
solvation free energy and solubility prediction: a demonstration of an NLP model for predicting the 
properties of molecular complexes. 2022. 



  
 

13 
 

55. Bilodeau, C.;  Jin, W.;  Xu, H.;  Emerson, J. A.;  Mukhopadhyay, S.;  Kalantar, T. H.;  Jaakkola, 
T.;  Barzilay, R.; Jensen, K. F., Generating molecules with optimized aqueous solubility using iterative 
graph translation. React. Chem. Eng. 2022, 7 (2), 297-309. 
56. St. John, P. C.;  Guan, Y.;  Kim, Y.;  Kim, S.; Paton, R. S., Prediction of organic homolytic bond 
dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat. Commun. 
2020, 11, 2328. 
57. Panapitiya, G.;  Girard, M.;  Hollas, A.;  Murugesan, V.;  Wang, W.; Saldanha, E., Predicting 
Aqueous Solubility of Organic Molecules Using Deep Learning Models with Varied Molecular 
Representations. arXiv preprint arXiv:2105.12638 2021. 
58. Marenich, A. V.;  Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute 
Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and 
Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396. 
59. Kelly, C. P.;  Cramer, C. J.; Truhlar, D. G., SM6:  A Density Functional Theory Continuum 
Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute−Water 
Clusters. Journal of Chemical Theory and Computation 2005, 1 (6), 1133-1152. 
60. Nicholls, A.;  Mobley, D. L.;  Guthrie, J. P.;  Chodera, J. D.;  Bayly, C. I.;  Cooper, M. D.; Pande, 
V. S., Predicting Small-Molecule Solvation Free Energies: An Informal Blind Test for Computational 
Chemistry. J. Med. Chem. 2008, 51 (4), 769-779. 
61. Geballe, M. T.;  Skillman, A. G.;  Nicholls, A.;  Guthrie, J. P.; Taylor, P. J., The SAMPL2 blind 
prediction challenge: introduction and overview. J. Comput. Aided Mol. Des. 2010, 24 (4), 259-279. 
62. Xie, Q.;  Luong, M.-T.;  Hovy, E.; Le, Q. V. In Self-training with noisy student improves imagenet 
classification, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020; 
pp 10687-10698. 
63. Sohn, K.;  Berthelot, D.;  Carlini, N.;  Zhang, Z.;  Zhang, H.;  Raffel, C. A.;  Cubuk, E. D.;  Kurakin, 
A.; Li, C.-L., Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Adv. Neural 
Inf. Process Syst. 2020, 33, 596-608. 
64. He, J.;  Gu, J.;  Shen, J.; Ranzato, M. A., Revisiting self-training for neural sequence generation. 
arXiv preprint arXiv:1909.13788 2019. 
65. Jumper, J.;  Evans, R.;  Pritzel, A.;  Green, T.;  Figurnov, M.;  Ronneberger, O.;  Tunyasuvunakool, 
K.;  Bates, R.;  Žídek, A.;  Potapenko, A.;  Bridgland, A.;  Meyer, C.;  Kohl, S. A. A.;  Ballard, A. J.;  Cowie, 
A.;  Romera-Paredes, B.;  Nikolov, S.;  Jain, R.;  Adler, J.;  Back, T.;  Petersen, S.;  Reiman, D.;  Clancy, 
E.;  Zielinski, M.;  Steinegger, M.;  Pacholska, M.;  Berghammer, T.;  Bodenstein, S.;  Silver, D.;  Vinyals, 
O.;  Senior, A. W.;  Kavukcuoglu, K.;  Kohli, P.; Hassabis, D., Highly accurate protein structure prediction 
with AlphaFold. Nature 2021, 596 (7873), 583-589. 
66. Kim, Y.;  Cho, J.;  Naser, N.;  Kumar, S.;  Jeong, K.;  McCormick, R. L.;  St. John, P.; Kim, S., 
Physics-informed graph neural networks for predicting cetane number with systematic data quality 
analysis. Proc. Combust. Inst. 2022, Accepted. 
67. Qin, S.;  Jiang, S.;  Li, J.;  Balaprakash, P.;  Van Lehn, R.; Zavala, V., Capturing Molecular 
Interactions in Graph Neural Networks: A Case Study in Multi-Component Phase Equilibrium. 2022. 
68. Wang, H.;  Lian, D.;  Zhang, Y.;  Qin, L.; Lin, X., Gognn: Graph of graphs neural network for 
predicting structured entity interactions. arXiv preprint arXiv:2005.05537 2020. 
69. Welton, T.; Reichardt, C., Solvents and solvent effects in organic chemistry. John Wiley & Sons: 
2011. 
70. Steenackers, B.;  Neirinckx, A.;  De Cooman, L.;  Hermans, I.; De Vos, D., The Strained 
Sesquiterpene β-Caryophyllene as a Probe for the Solvent-Assisted Epoxidation Mechanism. 
ChemPhysChem 2014, 15 (5), 966-973. 
71. Tshepelevitsh, S.;  Hernits, K.; Leito, I., Prediction of partition and distribution coefficients in 
various solvent pairs with COSMO-RS. J. Comput. Aided Mol. Des. 2018, 32 (6), 711-722. 

 


